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Abstract. Given the large-scale multi-modal training of recent vision-
based models and their generalization capabilities, understanding the
extent of their robustness is critical for their real-world deployment.
In this work, our goal is to evaluate the resilience of current vision-
based models against diverse object-to-background context variations.
The majority of robustness evaluation methods have introduced syn-
thetic datasets to induce changes to object characteristics (viewpoints,
scale, color) or utilized image transformation techniques (adversarial
changes, common corruptions) on real images to simulate shifts in dis-
tributions. Recent works have explored leveraging large language mod-
els and di!usion models to generate changes in the background. How-
ever, these methods either lack in o!ering control over the changes to
be made or distort the object semantics, making them unsuitable for
the task. Our method, on the other hand, can induce diverse object-
to-background changes while preserving the original semantics and ap-
pearance of the object. To achieve this goal, we harness the generative
capabilities of text-to-image, image-to-text, and image-to-segment mod-
els to automatically generate a broad spectrum of object-to-background
changes. We induce both natural and adversarial background changes by
either modifying the textual prompts or optimizing the latents and tex-
tual embedding of text-to-image models. This allows us to quantify the
role of background context in understanding the robustness and general-
ization of deep neural networks. We produce various versions of standard
vision datasets (ImageNet, COCO), incorporating either diverse and re-
alistic backgrounds into the images or introducing color, texture, and
adversarial changes in the background. We conduct thorough experi-
mentation and provide an in-depth analysis of the robustness of vision-
based models against object-to-background context variations across dif-
ferent tasks. Our code and evaluation benchmark will be available at
https://github.com/Muhammad-Huzaifaa/ObjectCompose.
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2 H. Malik et al.

Fig. 1: Image-to-background variations generated by our method, with each column
representing a specific background based on the prompt below.

Keywords: Robustness · Adversarial · Foundation Models

1 Introduction

Deep learning-based vision models have achieved significant improvement in di-
verse vision tasks. However, the performance on static held-out datasets does
not capture the diversity of di!erent object background compositions present
in the real world. Previous works have shown that vision models are vulnera-
ble to a variety of image alterations, including common corruptions (e.g., snow,
fog, blur) [20, 38], domain shifts (e.g., paintings, sketches, cartoons) [18, 19],
and changes in viewpoint (e.g., pose, shape, orientation) [3, 5, 26]. Additionally,
carefully designed perturbations can be added to images to create adversarial
examples that are imperceptible to humans but can fool the decision-making of
vision models [16,51].

Several approaches have been proposed to improve the out-of-distribution
robustness of vision models. To achieve adversarial robustness, models are typ-
ically trained on adversarial examples [37], and various augmentation policies
were proposed to improve non-adversarial robustness of models [8, 19, 53, 55].
More recently, the computer vision field has seen the emergence of large-scale pre-
training of both vision [29,40] and vision-language models [31,42,50]. Trained on
large-scale datasets and multiple modalities, these models demonstrate promis-
ing performance on non-adversarial distribution shifts. Consequently, several
works [28,57] have adapted these models for downstream tasks by utilizing learn-
able prompts to preserve the rich feature space learned during pre-training.

To evaluate the vision-based models on di!erent distribution shifts, numerous
benchmarking datasets, comprising either synthetic or altered real images have
been proposed. While synthetic datasets [5,15,27] o!er more control over desired
changes (background, shape, size, viewpoint), most of them capture only simple
shape objects within a controlled environment. On the other hand, several studies
[20, 38] employ coarse-grained image manipulations on the available ImageNet
dataset [10]. However, the coarse-grained transformations used do not encompass
the diverse changes that can be induced in real images.
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ObjectCompose 3

The main motivation of our work is to understand how object-to-background
compositional changes in the scene impact uni/multi-modal model performance.
Recent works [33, 41] have focused on leveraging existing foundational models
to forge new ways to evaluate the resilience of uni/multi-modal vision mod-
els. In [41], large language models and text-to-image di!usion models are used
for generating diverse semantic changes in real images. However, their method
employs the prompt-to-prompt method [22] for image editing, allowing limited
word changes in the textual prompt to preserve object semantics. We also observe
that it su!ers from object distortion due to absence of strong guidance between
the object and background during image editing. In [33], di!usion models are
used for background editing in real images, and ImageNet-E(diting) dataset is
introduced for benchmarking. However, their use of a frequency-based loss for
guiding the generation process of di!usion models limit the control to attribute
changes in the background. This imposes limitations on the type of background-
compositions that can be achieved.

In this work, we develop a framework to investigate the resilience of vision
models to diverse object-to-background changes. Leveraging the complementary
strengths of image-to-text [31], image-to-segment [29], and text-to-image [24,
43] models, our approach better handles complex background variations. We
preserve object semantics (Figure 1) by conditioning the text-to-image di!usion
model on object boundaries and textual descriptions from image-to-segment and
image-to-text models. We guide the di!usion model by adding the desired textual
description or optimizing its latent visual representation and textual embedding
for generating diverse natural and adversarial background changes. Additionally,
we produce datasets with varied backgrounds from subsets of ImageNet [10] and
COCO [34], facilitating the evaluation of uni-modal and multi-modal models.
Our contributions are as follows:

– We propose ObjectCompose, an automated approach to introduce diverse
background changes to real images, allowing us to evaluate resilience of mod-
ern vision-based models against object-to-background context.

– Our proposed background changes yield an average performance drop of
13.64% on classifier models compared to the baseline method, and a sub-
stantial drop of 68.71% when exposed to adversarial changes (see Table 1).

– Object detection and segmentation models, which incorporate object-to-
background context, display reasonably better robustness to background
changes than classification models (see Table 5 and Figure 8).

– Models trained on large-scale datasets with scalable and stable training show
better robustness against background changes (see Figure 7 and Table 2).

2 Related Work

Common Corruptions. In [58], di!erent datasets are curated by separat-
ing foreground and background elements using ImageNet-1k bounding boxes.
They found that models could achieve high object classification performance
even when the actual object was absent. Similarly, [44] demonstrate that subtle
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changes in object positioning could significantly impact the detector’s predic-
tions, highlighting the sensitivity of these models to spatial configurations. A
related approach by [48] focuses on co-occurring objects within an image and
investigates if removing one object a!ected the response of the target model
toward another. [52] analyze the models’ reliance on background signals for
decision-making by training on various synthetic datasets. [20] benchmark the
robustness of classifiers against common corruptions and perturbations like fog,
blur, and contrast variations. In subsequent work, [21] introduce ImageNet-A
dataset, filtering natural adversarial examples from a subset of ImageNet to
limit spurious background cues. Also, [19] introduce the ImageNet-R dataset,
which comprises various renditions of object classes under diverse visual rep-
resentations such as paintings, cartoons, embroidery, sculptures, and origami.
Similarly, [38] introduce the RIVAL10 dataset to study Gaussian noise corrup-
tions in the foreground, background, and object attributes.

Viewpoint Changes. [1,5,15] introduce a large-scale 3D shape datasets to
study object scale and viewpoints variations. In a similar vein, [27] introduce
a synthetic dataset of rendered objects to aid in diagnostic evaluations of vi-
sual question-answering models. Later works have made strides in addressing
the realism gap. [2] utilize crowd-sourcing to control rotation, viewpoints, and
backgrounds of household objects, while [26] provide more fine-grained annota-
tions for variations on the ImageNet validation set. In a recent development, [3]
released PUG dataset rendered using Unreal Engine under diverse conditions,
including varying sizes, backgrounds, camera orientations, and light intensities.
While these methods o!er control over changing several attributes in images,
they lack in realism and are not suitable for our primary goal of studying object-
to-background context in real images. In contrast, our proposed framework can
generate a wide range of object-to-background compositional changes that can
influence the models performance.

Adversarial and Counterfactual Manipulations. Researchers have un-
covered that subtle, carefully designed alterations to an image, imperceptible
to human observers, have the ability to deceive deep learning models [16, 30,
51]. These perturbations, constructed using gradient-based methods, serve as a
worst-case analysis in probing the model’s robustness within specified distance
norm metrics (l2 or l→). Another strategy entails applying unbounded pertur-
bations to specific image patches, thereby conserving object semantics while
inducing model confusion [12, 47]. Several studies leverage generative models to
create adversarial alterations in images. [6, 7] utilise di!usion model and GANs
to introduce global adversarial perturbations in the image with strong constraint
to semantic changes in order to preserve the original layout of the scene. More re-
cent works [33,41] are more closely related to our goal of evaluating vision-based
models on object-to-background compositional changes in the scene. In [41],
LANCE framework is proposed which utilises fine-tuned large language mod-
els to get the modified textual prompt for editing of attributes in real images.
However, this framework is not ideal for studying object-to-background composi-
tional changes since the prompt-to-prompt [22] based image editing method often
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leads to global changes in the scene, often altering the object semantics. This
necessitates hyper-parameter tuning of parameters used for prompt-to-prompt
editing, leading to generation of multiple edited image versions and selecting the
one most faithful to the original image. In [33], using already available masks of
ImageNet dataset [13], di!usion model is utilised to alter the background of im-
ages by varying its texture. A complexity loss based on gray-level co-occurence
matrix [17] of the image is used during the denoising process to vary the com-
plexity of the background. A concurrent work [54] evaluates the resilience of
models on synthetic images where both the object and background are generated
using a di!usion model. In contrast to previous works, our method induces nat-
ural/adversarial background variations in real images through textual guidance
and optimization of latent space of the di!usion model, all while maintaining
the integrity of the object semantics. Our method can be applied to standard
vision datasets to generate diverse background variations, providing a robust
benchmark for evaluating vision-based models.

3 Method

We introduce ObjectCompose, a method for generating diverse language-
guided object-to-background compositional changes to evaluate the resilience
of vision models. ObjectCompose leverages the complementary strengths of
image-to-segment and image-to-text models to guide object-preserving di!usion
for natural and adversarial background variations (Figure 2). Our automated
approach generates datasets under varying distribution shifts, useful for bench-
marking vision and vision-language models.

In Section 3.1, we outline the preliminaries of the foundational models used.
In Section 3.2, we detail our method.

3.1 Preliminaries

Di!usion Models. Di!usion models have significantly advanced in generating
high-quality images and refining them based on textual guidance. During train-
ing, noisy versions It of the clean image I are input to the model ωε at various
time steps t, with the goal of learning the noise added at each step. Training
consists of two stages: in the forward process (first stage), Gaussian noise from a
normal distribution N (0, I) is incrementally added to I according to a variance
schedule (εt : t = 1, ..., T ). Using reparameterization, the noisy image at any
time step is:

It =
→
ϑ̄tI +

→
1↑ ϑ̄tω ω ↓ N (0, I) (1)

Here, ϑt = 1 ↑ εt and ϑ̄t =
∏t

s=1 ϑs. As T ↔ ↗, ϑ̄T ↔ 0, meaning
IT ↓ N (0, I) and all information from I is lost. Di!usion models are typically
conditioned on t, class label y, or textual description T , with recent extensions
incorporating image I and its mask for image editing tasks [43,45].
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6 H. Malik et al.

Fig. 2: ObjectCompose uses an inpainting-based di!usion model to generate coun-
terfactual backgrounds. The object mask is obtained from SAM using the class label
as a prompt. The segmentation mask and original image caption (from BLIP-2) are
fed into the di!usion model. For adversarial examples, both the latent and conditional
embeddings are optimized during denoising.

In the reverse process (second stage), the model ωε learns to approximate the
Gaussian parameters at each time step for the reverse conditional distribution.
The objective Lt minimizes the error between the predicted and actual noise at
each time step:

Lt = ||ω↑ ωtε(It, eT ,ϖ)||2 (2)

where eT is the embedding of the conditional guidance, and ϖ represents any
additional conditioning, such as masks or scene layouts.

Foundational Models. BLIP-2 [31] introduces an e"cient vision-language
pre-training approach using a lightweight Querying Transformer (QFormer) to
bridge the gap between pre-trained vision and large language models (LLMs).
Images are processed by a vision encoder, with relevant features extracted via
QFormer and passed to the LLM to generate descriptive captions.

Recently, Segment Anything Model (SAM) [29], an image segmentation model,
was introduced that undergoes pre-training on an extensive dataset of high-
quality images. SAM uses prompts—such as points, boxes, masks, or text—to
identify objects in images. The image is encoded by a transformer-based encoder,
and the extracted features, combined with prompt embeddings, are processed
by a lightweight decoder to produce the segmentation mask.

3.2 Object-to-Background Compositional Changes

In order to generate object-to-background compositional changes without alter-
ing object semantics our method consists of an Object-to-Background Condi-
tioning module to provide strong visual guidance to the text-to-image di!usion
model. In the next stage, we condition the di!usion model on the textual prompt
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to introduce desired background changes or optimize the latent representation
and textual embedding in order to generate adversarial backgrounds.

Preserving Object Semantics. We propose an Object-to-Background Con-
ditioning Module denoted as C, which takes the input image I and the provided
label y as inputs, and returns both the textual prompt T describing the scene
and mask M encapsulates the object in the image:

C(I, y) = T ,M (3)

Our conditioning module leverages a promptable segmentation model called
SAM [29] denoted by S. By passing the class information y and the image
I to the model S(I,y), we obtain the object mask M. Simultaneously, to ac-
quire a description for the image scene, we utilize BLIP-2 [32], an image-to-text
model denoted as B to get the necessary prompt TB describing the scene, thereby
providing object-to-background context information.

B(I) = TB ; S(I,y) = M (4)

The mask M and the textual prompt TB serve as conditioning inputs for the
subsequent stage, where we employ a di!usion model to generate diverse back-
ground variations. This methodical integration of segmentation and language
comprehension o!ers fine-grained control over image backgrounds while uphold-
ing object semantics, leading to refined object-centric image manipulations. It’s
worth noting that we have the flexibility to choose any desired textual prompt
T , and are not confined to using TB as the textual condition.

Background Generation. Once we’ve obtained both visual and textual
information (T ,M) from our conditioning module, we employ a di!usion model
that has been trained for inpainting tasks, which has additional conditioning
ϖ comprising of the image I and its corresponding mask M. The denoising
operation takes place in the latent space instead of the image pixel space, which
is facilitated through the use of a variational autoencoder that provides the
mapping between images and their respective latent representations. During the
denoising stage, starting with a standard normal Gaussian noise latent zt, the
di!usion model calculates the estimated noise ω̂tε to be removed from the latent
at time step t using a linear combination of the noise estimate conditioned on the
textual description ωtε(zt, eT , i,m) and the unconditioned estimate ωtε(zt, i,m):

ω̂tε(zt, eT , i,m) = ωtε(zt, i,m) + ϱ
(
ωtε(zt, eT , i,m)↑ ωtε(zt, i,m)

)
(5)

Here, (i,m) represents the representation of the original image I and its
corresponding mask M in the latent space. The guidance scale ϱ determines
how much the unconditional noise estimate ωε(zt, i,m) should be adjusted in
the direction of the conditional estimate ωε(zt, eT , i,m) to closely align with
the provided textual description T (see Appendix A.1). In this whole denoising
process, the mask M generated from our conditioning module guides the image
alterations to the background of the object, while the textual description T
contains information for the desired background change.
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Our method also handles adversarial background changes by optimizing the
conditioned visual and textual latents zt and eT through a discriminative model
Fϑ to craft adversaries. For generating adversarial examples the goal of the at-
tacker is to craft perturbations ς that when added to clean image I with class
label y, result in an adversarial image Iadv = I + ς which elicits an incorrect
response from a classifier model Fϑ i.e., Fϑ(Iadv) ↘= y, where φ are the model
parameters. Usually in pixel-based perturbations, ς is bounded by a norm dis-
tance, such as l2 or l→ norm to put a constraint on pixel-level changes done to
preserve the semantics of the image. However, in our setting, the control on the
amount of perturbation added is governed by the textual and visual latent passed
to the di!usion model. In our method (see Algo. ??), we use the discriminative
model Fϑ to guide the di!usion model ωε to generate adversarial examples by
optimizing its latent representations zt and eT :

max
zt,eT

Ladv = LCE(Fϑ(Iadv),y) (6)

where LCE is the cross-entropy loss, eT is textual embedding and zt is the
denoised latent at time step t. Iadv represents the image generated by the di!u-
sion model after it has been denoised using DDIM [49], a deterministic sampling
process in which the latent update is formulated as:

zt↑1 =
→
ϑ̄t↑1

(
zt ↑

→
1↑ ϑ̄tω̂tε→
ϑ̄t

)
+
√
1↑ ϑ̄t↑1ω̂

t
ε, t = T , . . . , t ↑ 1 , . . . , 1 (7)

Our proposed unconstrained adversarial objective Ladv would lead to unre-
stricted changes in the image background while object semantics are preserved
by using the mask conditioning from S.

4 Experimental Protocols

Dataset Preparation. For classification, we initially gathered 30k images from
the ImageNet validation set [10], which are correctly classified with high success
rate using an ensemble of models; ViT-T, ViT-S [11], Res-50, Res-152 [18], Dense-
161 [25], Swin-T, and Swin-S [35]. In order to create a high-quality dataset for
our object-to-context variation task, we remove image samples where the bound-
ary between foreground and background is not distinct, e.g., "mountain tent"
where the mountain might appear in the background of the tent. This process-
ing results in 15k images. Then for foreground semantic preservation, we utilize
a compute-e"cient variant of SAM, known as FastSAM [56] with class labels
as prompts to generate segmentation masks of the foreground object. However,
FastSAM encounter challenges in accurately segmenting objects in all images. To
address this, we selected images where the mask-creation process demonstrated
exceptional accuracy and generated a clear separation between the object of
interest and its background. This meticulous selection process yield a curated
dataset comprising 5,505 images, representing a subset of 582 ImageNet classes.

379



ObjectCompose 9

We refer to this dataset as ImageNet-B. Due to the computational cost involved
in adversarial background optimization and running baseline methods, we select
a subset of 1000 images from 500 classes of ImageNet-B by sampling two images
from each class for comparison. We refer to this dataset as ImageNet-B1000. Rest
of our experiments are performed on the full ImageNet-B dataset.

For object detection, we manually filtered 1,127 images from the COCO 2017
validation set [34], ensuring a clear distinction between foreground objects and
background, referred to as COCO-DC. This dataset, containing multiple objects
per image, is used for both detection and classification. For classification, models
are trained on the COCO train dataset using the label of the object with the
largest mask region and evaluated on our generated dataset. Additional details
and dataset comparisons are provided in Appendix A.16.
Di!usion Parameters. We use the pre-trained Inpaint Stable Di!usion v2 [43]
as our text-to-image model and set the guidance parameter ϱ to 7.5, and use
the DDIM sampling [49] with T = 20 timesteps. We craft adversarial examples
on ImageNet-B1000 using Res-50 [18] as the classifier model and maximize the
adversarial loss Ladv shown in Eq.6 for 30 iterations. For COCO-DC, we maxi-
mize the loss in the feature space of the model. Both the text embedding eT
of the prompt T (initialized with TB) and denoised latent zt are optimized from
denoising time step t = 4 using AdamW [36] with a learning rate of 0.1.
Vision Models. We conducted evaluations for the classification task using a
diverse set of models. a) Natural ImageNet Training: We evaluate seven nat-
urally ImageNet-trained vision transformers and convolutional neural networks
(CNNs). Specifically we use ViT-T, ViT-S [11], Res-50, Res-152 [18], Dense-
161 [25], Swin-T, and Swin-S [35]. b) Adversarial ImageNet Training: We also
evaluate adversarial ImageNet-trained models including ResAdv-18, ResAdv-50,
and WideResAdv-50 at various perturbation budget of ↼→ and ↼2 [46]. c) Mul-
timodal Training: Additionally, we explored seven vision language foundational
models within CLIP [42] and EVA-CLIP [50]. d) Stylized ImageNet Training: We
evaluate the DeiT-T and DeiT-S models trained on a stylized version of the Ima-
geNet dataset [14,39]. e) Self-Supervised Training: We evaluate the performance
of Dinov2 models with registers [9,40] which are trained in a self-supervised man-
ner on a large-scale curated dataset LVD-142M, and subsequently fine-tuned on
ImageNet. f) Segmentation and Detection: We evaluate Mask-RCNN for seg-
mentation and object detection respectively using our proposed background-to-
object variations. Evaluations on FastSAM [56] and DETR [4] are reported in
Appendix A.11 and A.10. g) Image Captioning: We also evaluate the robustness
of a recent image captioning model BLIP-2 [32], using our generated dataset.
For the task a), and b), we provide comparison with the baseline methods on
ImageNet-B1000 and report results on ImageNet-B in the Appendix A.5.
Evaluation Metrics: We use the top-1 accuracy (%), Intersection Over Union
(IoU), Average Precision(AP) and Recall(AR), and CLIP text similarity score for
classification, segmentation, object detection, and captioning tasks, respectively.
Background Conditioning. To induce background variations, we use the fol-
lowing text prompt templates: Class Label: "A picture of a class" where class
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Table 1: Resilience evaluation of vision models on ImageNet-B1000(Top-1 (%) accu-
racy). Our natural object-to-background changes, including color and texture, per-
form favorably against state-of-the-art methods. Furthermore, our adversarial object-
to-background changes show a significant drop in performance across vision models.

Datasets
ViT CNN

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 Dense-161 Average

Original 95.5 97.5 97.9 98.3 98.5 99.1 97.2 97.71

ImageNet-E (ω=-20) 91.3 94.5 96.5 97.7 96.0 97.6 95.4 95.50(-2.21)
ImageNet-E (ω=20) 90.4 94.5 95.9 97.4 95.4 97.4 95.0 95.19(–2.52)
ImageNet-E (ωadv = 20) 82.8 88.8 90.7 92.8 91.6 94.2 90.4 90.21(-7.50)
LANCE 80.0 83.8 87.6 87.7 86.1 87.4 85.1 85.38(-12.33)

Class label 90.5 94.0 95.1 95.4 96.7 96.5 94.7 94.70(-3.01)
BLIP-2 Caption 85.5 89.1 91.9 92.1 93.9 94.5 90.6 91.08(-6.63)
Color 67.1 83.8 85.8 86.1 88.2 91.7 80.9 83.37(-14.34)
Texture 64.7 80.4 84.1 85.8 85.5 90.1 80.3 81.55(-16.16)
Adversarial 18.4 32.1 25.0 31.7 2.0 14.0 28.0 21.65(-76.06)

is the image’s class name; Caption: "captions from BLIP-2"; Color: "A pic-
ture of ___ background" where ___ is red, green, blue, or colorful; Texture:
"A picture of __ background" with ___ replaced by textured, rich textures,
colorful textures, distorted textures; Adversarial: "captions from BLIP-2" with
updated prompts after optimization. For ImageNet-E [33], default values of ϱ
are employed to regulate the strength of texture complexity. For LANCE [41], we
use the default prompt to generate background variations via a large language
model. We report the worst-performing prompt across colors and textures, with
detailed analysis in Appendix A.5.

4.1 Comparison with Baseline Methods

Natural ImageNet Training. In Table 1, we observe that background varia-
tions introduced by our method are more challenging for vision models, resulting
in a performance drop of 13.5% compared to ImageNet-E (ϱ = 20) on natural
background variations. When subjected to adversarial background changes, a
substantial performance drop of 68.56% is observed compared to ImageNet-E
(ϱadv = 20), highlighting the e!ectiveness of the unconstrained nature of our
attack. Background variations by our method show a consistent decline in ac-
curacy for both transformer-based and CNN models when exposed to diverse
object-to-background changes. This decrease is especially noticeable in texture
and color backgrounds. We find that as we moved from purely transformer-based
architectures to convolution-based architectures, there is an overall improvement
in accuracy across natural background changes. For instance, the average accu-
racy across all backgrounds for ViT-T, Swin-T, and Res-50 on ImageNet-B1000 is
76.95%, 89.22% and 91.08% respectively. Further, we observe that as the model
capacity is increased across di!erent model families, the robustness to back-
ground changes also increases. As is evident, the models are most vulnerable to
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Table 2: Resilience evaluation of Zero-shot CLIP and EVA-CLIP models on
ImageNet-B1000(Top-1 (%) accuracy). Our natural object-to-background changes, in-
cluding color and texture, perform favorably against state-of-the-art methods. We find
that EVA-CLIP models show better performance across all background variations.

Datasets CLIP
ViT-B/32 ViT-B/16 ViT-L/14 Res50 Res101 Res50x4 Res50x16 Average

Original 73.90 79.40 87.79 70.69 71.80 76.29 82.19 77.43
ImageNet-E (ω=-20) 69.79 76.70 82.89 67.80 69.99 72.70 77.00 73.83(-3.60)
ImageNet-E (ω=20) 67.97 76.16 82.12 67.37 39.89 72.62 77.07 73.31(-4.12)
ImageNet-E (ωadv = 20) 62.82 70.50 77.57 59.98 65.85 67.07 67.07 68.23(-9.20)
LANCE 54.99 54.19 57.48 58.05 60.02 60.39 73.37 59.78(-17.65)

Class label 78.49 83.69 88.79 76.60 77.00 82.09 84.50 81.59(+4.16)
BLIP-2 Captions 68.79 72.29 79.19 65.20 68.40 71.20 75.40 71.49(-5.94 )
Color 48.30 61.00 69.51 50.50 54.80 60.30 69.28 59.14(-18.29)
Texture 49.60 62.39 66.99 51.69 53.20 60.79 67.49 58.88(-18.55)
Adversarial 25.5 34.89 48.19 18.29 24.40 30.29 48.49 32.87(-46.25)

Datasets
EVA-CLIP

g/14 g/14+ B/16 L/14 L/14+ E/14 E/14+ Average
Original 88.80 92.69 89.19 91.10 91.99 93.80 94.60 91.74
ImageNet-E (ω=-20) 84.74 88.98 85.55 89.19 88.78 92.02 91.81 88.72(-3.02)
ImageNet-E (ω=20) 84.10 89.40 85.81 88.51 89.69 92.69 92.50 88.95(-2.79)
ImageNet-E (ωadv = 20) 79.69 85.45 80.20 84.04 85.95 89.89 89.59 84.97(-6.77)
LANCE 70.25 77.40 73.26 76.63 77.46 80.95 78.65 76.37(-15.37)

Class label 90.10 92.90 88.61 91.31 91.90 93.40 93.41 91.66(-0.08)
BLIP-2 Caption 80.31 84.29 82.10 82.50 84.80 86.90 86.90 83.97(-7.77)
Color 73.50 80.50 73.20 80.70 84.61 84.39 87.00 80.55(-11.19)
Texture 75.30 78.90 74.40 80.80 82.10 83.60 85.60 80.10(-11.64)
Adversarial 55.59 62.49 48.70 65.39 73.59 70.29 73.29 64.19(-27.55)

Original Class Label BLIP-2 Color Texture Adversarial

Fig. 3: The loss surfaces (flipped) of the ViT-S depicted on ImageNet-B. Significant
distribution shifts result in narrow and shallow surfaces at convergence.

adversarial background changes, resulting in a significant drop in average accu-
racy. Res-50 shows most drop on adversarial changes, which is expected as it
serves as the discriminative model Fϑ (Eq. 6) for generating adversarial exam-
ples. In Figure 3, we depict the loss surfaces of ViT-S and observe that these
surfaces become narrower and shallower with more pronounced background vari-
ations, aligning with our results. We provide results on ImageNet-B and COCO-DC

dataset in Appendix A.5 and A.7 with ablations across di!erent background
prompts. Visualizations are provided in Figure 4 and Appendix A.13.
Multimodal Training. In Table 2, we observe that compared to ImageNet-E
(ϱ = 20), our natural background variations lead to an average performance
drop of 15.66% and 8.85% on CLIP and EVA-CLIP models. On comparing with
ImageNet-E (ϱadv = 20), our adversarial background variations lead to an av-
erage performance drop of 35.36% and 20.78% on CLIP and EVA-CLIP mod-
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LANCE ω = →20 ω = 20 ωadv = 20 Blur Noise

Original Class Label BLIP-2 Color Texture Adversarial

Fig. 4: Qualitative comparison of our method (bottom row) with previous related work
(top row). Our method enables diversity and controlled background edits.

els. Similar to results mentioned in Table 1, zero-shot robustness shows similar
trend across di!erent background changes. However, for background variations
induced using class label information the performance increases in CLIP-based
models. This reason could be the use of CLIP text encoder utilized for generat-
ing the textual embedding eT for guiding the generation process of the di!usion
model. On EVA-CLIP, which proposed changes to stabilize the training of CLIP
models on large-scale datasets, we observe significant improvement in zero-shot
performance across all background changes. In Appendix A.5, we delve into the
comparison between multimodal and unimodal models, o!ering detailed results
on ImageNet-B dataset.

Fig. 5: Evaluating LANCE
on ImageNet-B1000 dataset
with masked background.

Object Semantic distortion: It’s noteworthy to
mention that in both Table 1 and 2, we observe
a significant drop in performance of models across
background changes induced by LANCE method.
However, we discover that the drop in performance
is not necessarily due to the induced background
changes, rather than distorting the object seman-
tics, making it unsuitable for evaluating object-to-
background context. This observation is supported
by Figure 5, where we evaluate performance on orig-
inal and LANCE generate images while masking the
background. A significant performance drop is ev-
ident across all models, emphasizing the distortion
of object semantics. We provide a detailed discussion with FID [23] comparison
and visualizations in Appendix A.3 and A.4.

4.2 Further Evaluations

Adversarial ImageNet Training. As can be seen from Figure 6 (bottom row),
our object-to-background compositional changes on ImageNet-B lead to a sig-
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Fig. 6: The top row plots the Top-1(%) accuracy achieved by adversarially trained
ResNet models on adversarial background changes on ImageNet-B1000 and the bottom
row indicates for the case of non-adversarial background changes on ImageNet-B.

nificant decline in accuracy for adversarially trained models. This highlights the
robustness of these models is limited to adversarial perturbations and does not
transfer to di!erent distribution shifts. In Figure 6 (top row), when we evaluate
these models on adversarial background changes on ImageNet-B1000, the per-
formance improves with an increase in adversarial robustness(ω) of the models.
Furthermore, we also observe models with more capacity perform better, similar
to results on natural training. For detailed results and comparison with baseline
methods, refer to Appendix A.6.
Stylized ImageNet Training. Despite the focus of Stylized ImageNet train-
ing [14] to encourage models to concentrate on the foreground of the scene by
reducing background cues for prediction [39], our findings indicate that it is still
susceptible to both natural and adversarial object-to-background variations (see
Table 3). Consequently, its applicability appears to be constrained to specific
distribution shifts.

Fig. 7: Evaluating Dinov2 models on
ImageNet-B background changes.

Self-Supervised Training. Improved
performance is observed in Dinov2 mod-
els across object-to-background variations
(see Figure 7). We hypothesize this im-
provement is acquired through training
on extensive curated datasets and the
utilization of additional learnable regis-
ters/tokens during training for refining
the interpretability of attention maps. For
more details, refer to Appendix A.8.
Segmentation and Detection. We observe a consistent decrease in AP scores
on object detection and instance segmentation tasks across background varia-
tions generated on COCO-DC(see Table 5). The adversarial background results
in the lowest AP scores, but still remains at a reasonable level given that the
adversarial examples are generated using a classification model, with limited
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Table 3: Stylized Training Evaluation

Datasets Background Stylized Trained models

DeiT-S DeiT-T Average

ImageNet-B

Original 91.22 87.21 89.21
Class label 89.35 85.35 87.35(-1.86)
BLIP-2 Caption 84.01 79.19 81.60(-7.61)
Color 66.57 57.54 62.05(-27.15)
Texture 64.08 54.82 59.45(-29.76)

ImageNet-B1000 Original 89.60 85.90 87.75
Adversarial 15.90 10.80 13.35(-74.40)

Table 4: Image-to-
Caption (BLIP-2)
Evaluation

Dataset Background CLIP Score

ImageNet-B Class Label 0.75
BLIP-2 Caption 0.84
Color 0.66
Texture 0.67

ImageNet-B1000 Adversarial 0.62

Table 5: Mask AP
and Segment AP
score on COCO-DC

Background Box AP Segment AP

Original 57.99 56.29
BLIP-2 Caption 47.40 44.75
Color 48.12 45.09
Texture 45.79 43.07
Adversarial 37.10 34.91

Fig. 8: Correct predictions by Mask-RCNN and Res-50 on the original image (top row)
and the corresponding predictions on altered backgrounds (bottom row).

cross-task transferability. Moreover, our qualitative observations suggest detec-
tion and segmentation models exhibit greater resilience to changes in the back-
ground compared to classifiers (see Figure 8 and Appendix A.10.
Image Captioning. Table 4 shows the CLIP scores between captions from clean
and generated images using the BLIP-2 model. Scores decrease with color, tex-
ture, and adversarial background changes (Appendix A.9 for qualitative results).

5 Conclusion

In this study, we propose ObjectCompose, a method for generating object-
to-background compositional changes. Our method addresses the limitations of
current works, specifically distortion of object semantics and diversity in back-
ground changes. We accomplish this by utilizing the capabilities of image-to-text
and image-to-segmentation foundational models to preserve the object seman-
tics, while we optimize for diverse object-to-background compositional changes
by modifying the textual prompts or optimizing the latents of the text-to-image
model. ObjectCompose o!ers a complimentary evaluation protocol to the ex-
isting ones, for comprehensive evaluations across current vision-based models to
reveal their vulnerability to background alterations. In Appendix A.18, we elab-
orate on the initial insights gained from our work and discuss current limitations
and future directions.
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