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Abstract. We introduce an approach for augmenting text-to-video gen-
eration models with novel motions, extending their capabilities beyond
the motions contained in the original training data. With a few video
samples demonstrating specific movements as input, our method learns
and generalizes the input motion patterns for diverse, text-specified sce-
narios. Our method finetunes an existing text-to-video model to learn
a novel mapping between the depicted motion in the input examples
to a new unique token. To avoid overfitting to the new custom motion,
we introduce an approach for regularization over videos. Leveraging the
motion priors in a pretrained model, our method can learn a generalized
motion pattern, that can be invoked with novel videos featuring multi-
ple people doing the custom motion, or using the motion in combination
with other motions. To validate our method, we quantitatively evaluate
the learned custom motion and perform a systematic ablation study. We
show that our method significantly outperforms prior appearance-based
customization approaches when extended to the motion customization
task. Project webpage: https://joaanna.github.io/customizing_motion/.

1 Introduction

Recent advancements in text-to-video synthesis have significantly pushed the
boundaries of video generation [2, 19, 28, 39, 41, 43, 55]. As synthesized videos
become more realistic, there is an increasing demand to provide precise control
over the output, meeting specific user needs and creative visions. Consider, for
example, a creator aiming to depict characters doing the ‘Carlton Dance’ from
“The Fresh Prince of Bel-Air” in a synthetic video with their own background and
setting, as shown in Fig 1. If the pre-trained model does not know the specific
dance, then capturing the subtle nuances of the dance’s swinging arms and the
precise timing of its poses through natural language is challenging, necessitating
a method to instead learn from visual examples. However, the challenge is not to
merely replicate the dance as in traditional motion transfer methods [5, 34, 35],
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Input videos of “V* dance”

“A futuristic robot mimicking human movements in the V* dance”

Non-
humanoid

“An older lady doing the V* dance while jumping”

Multiple 
motions

“Nurses dancing the V* dance in a hospital”

Multiple
subjects

Fig. 1: (Left) Given a few examples (“Carlton dance”), our customization method
learns the dynamic motion pattern common to the input examples and incorporates
it into a pre-trained text-to-video diffusion model using a new motion identifier (“V*
dance”). (Right) Our approach, NewMove, abstracts the motion pattern from the
appearance in the input videos and enables generation of the depicted motion across
a variety of novel contexts, including with a non-humanoid subject (robot, top row),
multiple motions (lady, middle row), and multiple subjects (group of nurses, bottom
row). To best view the results, please view our website .

but to teach the model about the motion from a few examples (‘customization’)
and to apply this learned motion seamlessly across diverse scenes, without relying
on an original driving video. Rather than copying a motion from a single video,
we wish to capture and learn the motion’s attributes while abstracting away the
appearance and context of the example setting. These challenges lead us to a
question: How can we leverage a pre-trained text-to-video model’s priors about
motion and appearance to augment them with new motions, and subsequently
generate these new motions in novel settings?

Traditional methods in video generation have offered detailed control through
techniques like conditional generation [10, 42, 49] and motion transfer [5, 15, 34,
36,46], enabling the precise replication of specific motions depicted in the input
video. However, these methods are limited by their reliance on the original video’s
scene structure and geometry, effectively locking the motion to the context of the
driving video. Such an approach restricts the ability to apply the motion more
broadly, as it does not truly learn and abstract the motion pattern for flexible
use across varied scenes and subjects. Developing methods that can generalize
motion patterns from examples for use in diverse settings presents a significant
challenge, as it requires methods that go beyond simple replication to allow for
the motion’s adaptation to new environments. A more similar scenario to ours
focuses on customization of subjects in text-to-image models [9, 11, 12, 18, 24,
33, 38, 45]. However, unlike learning a novel dynamic motion from few example
videos, these methods are restricted to still subjects. In Tab. 1 we compare the
design of related approaches to ours, and discuss them in more detail in Section 2.
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Table 1: Comparison of our method across different techniques for controllable video
/ image generation. Here, GI , GI→V and GV denote text-to-image, image-to-video and
text-to-video generation models, respectively. Symbols I and V denote input images
and videos, Î and V̂ denote output images and videos, and τ denotes a text prompt.
Superscripts refer to learned or transferred concepts , either appearance† or motion◦.
Our method is the only one that transforms a text-to-video motion prior (GV ) to a
model with customized motions (G◦

V , G◦†
V ) such that the learned concept (τ◦, τ◦†) can

be invoked at the test time.

Methods Customization Application

Image animation [6] None GI→V (I) → V̂
Text-to-video generation [2, 7, 19,28,39,41,43,55] None GV (τ) → V̂
Structure-conditioned video generation [10] None GV (τ, V ) → V̂
Zero-shot text-driven motion transfer [14, 50] None V,GV (τ◦) → V̂ or V,GI(τ

◦) → V̂
Image customization [11,24,33] GI

I−→ G†
I G†

I (τ
†) → Î

Animating text-to-image models (AnimateDiff v1) [17] G†
I ,GV → G†

V G†
V (τ) → V̂

One-shot video tuning [47] GI
V,τ−−→ G◦

V G◦
V (τ◦) → V̂

Ours (motion customization) GV
V−→ G◦

V G◦
V (τ◦) → V̂

Ours (motion and appearance cust.; see our website) GV
V,I−−→ G◦†

V G◦†
V (τ◦†) → V̂

Incorporating new motions in text-to-video models (motion customization)
faces unique challenges. The first issue is determining which model parameters
to adjust for capturing distinct motions from few examples, balancing the need
for model flexibility against the risk of overfitting due to limited data. Another
challenge is maintaining the model’s existing knowledge without having new
customizations overshadow or alter learned concepts, such as causing a bias
towards a specific dance like the Carlton. Additionally, it is critical to separate
motion from appearance so that learned motions can be applied to new scenes.

In this work, we address these challenges and introduce a novel method for
adapting text-to-video diffusion models to recognize and generate new motions,
such as local motions (human movement) or global (camera motions), indepen-
dent of the performer’s appearance or scene’s appearance, i.e., customizing text-
to-video models with novel motions. By training the model with a few example
videos of a new motion, we assign this motion to a unique text token (“V*”). This
assignment allows us to produce videos featuring various subjects performing the
new motion, as illustrated in Fig 1. Through an ablation study, we explore cus-
tomizing various model parameters, highlighting that adjustments to temporal
layers and spatial cross-attention mechanisms strike an optimal balance between
model adaptability and the risk of over-fitting. To preserve the model’s original
motion knowledge and avoid neglecting existing motion concepts, we develop a
unique regularization strategy specifically for video content. To prioritize learn-
ing about motion over appearance, we introduce a new sampling strategy that
focuses on samples that determine coarser visual structure.

To evaluate our method we perform two qualitative studies. The first is a
user study comparing our method against two baselines across diverse scenarios,
including videos with multiple people and varying subject sizes, where the cus-
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Fig. 2: Overview. Given a small set of exemplar videos, our approach fine-tunes
the U-Net of a text-to-video model using a reconstruction objective. The motion is
identified with a unique motion identifier and can be used at test time to synthesize
novel subjects performing the motion. To represent the added motion but preserve
information from the pretrained model, we tune a subset of weights – the temporal
convolution and attention layers, in addition to the key & value layers in the spatial
attention layer. A set of related videos is used to regularize the tuning process.

tom motions are sourced from internet videos. The second evaluation employs
gestures from the Jester dataset, aiming to systematically examine our method’s
effectiveness in internalizing and recognizing motions via an off-the-shelf classi-
fier. Our contributions are: (i) introducing an approach that leverages the
rich motion and appearance prior information contained in a pretrained text-
to-video generation to augment it with novel motions, (ii) demonstrating the
generalization abilities of our method to diverse scenes and multiple subjects,
and (iii) lastly a qualitative and quantitative evaluation of our method.

2 Related Work

Motion transfer. Motion transfer is a well established task [5, 15, 34, 36, 46].
The task involves capturing motion from one video and applying it to the target
subject given by an image or a video. These methods explicitly model the pose
of the source motion and focus on modelling humans. More recently, the task
of text-driven motion transfer has been introduced [14, 50]. Originally, Geyer
et al . [14] leveraged a pre-trained text-to-image model to generate videos that
preserve the overall motion of a source video and provide some flexibility with re-
spect to the dynamic target subject, without tuning the original model. Yatim et
al . [50] proposed a similar approach that instead utilizes a text-to-video model.
Other approaches [3, 4, 10], ensure output videos adhere to reference videos by
guiding the generation with depth information. Our approach differs from these
prior works in that we learn a generalized motion pattern from a few video
examples. That is, instead of directly copying the motion or the overall video
motion pattern, our method allows for invoking the motion in vastly different
text-defined scenarios. This setting includes creating videos where multiple in-
dividuals execute the motion simultaneously, or blending this motion with other
distinct movements. Video synthesis with image generation models. Pre-
vious works repurposed text-to-image generation models for video generation.
Wu et al . [47] used a pretrained image-to-video model and a source video to
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stylize the video with a text condition. Similarly, several methods [8,23,51] can
generate a video conditioned on control signals such as depth maps of edges
using a pre-trained text-to-image model. Guo et al . [17] learn a motion prior
network with text-video data that can be used together with personalized text-
to-image models to generate animated images. Our work differs in that we use
a video generation model directly to learn new motions and, rather than an-
imating images, our method produces videos with complex dynamic motions.
Text-to-video models. Recently, several methods have demonstrated text-to-
video generation [2, 19, 28, 39, 41, 43, 55]. An important line of research involves
studying architectures and optimization for training video generation models.
A high-quality model is a prerequisite for our method. In this work, we use
the model from Wang et al . [41]. Molad et al . [28] show qualitative results of
adding a custom subject to the base video model. They, however, do not explore
customization beyond static objects [28]. The idea of multi-modal customiza-
tion, however, facilitates user-controllability and creative applications, since no
matter how powerful the model, there are always novel subjects and motions
that cannot be all contained in the training set used to train the base video
generation model.Text-to-image and text-to-video customization. Text-
to-image customization is a related task to ours, where a text-to-image diffusion
model is augmented with a custom object [9,11,12,18,24,33,38,45]. Gal et al . [11]
showed that this mapping can be created purely by optimizing a text embedding
of the textual description. Kumari et al . [24] proposes a method that fine-tunes
selected weight matrices in the generator network. More recent approaches inves-
tigate efficient formulations for modifying an approximation of the parameters
responsible for the text-image mapping in the generation network [18,38]. Other
methods, alternatively to adjusting the model’s parameters, introduce an image
encoder that can be directly plugged into the pre-trained network [12, 45, 56].
Alternatively to customizing individual concepts, Huang et al . [21] propose to
learn relations between two subjects from a set of images via a similar technique
to Gal et al . [11]. Similarly, image animation techniques use a video motion prior
to turn still images into videos [6,17]. The text-to-image customization is limited
to static objects due to the static nature of still images. In contrast, we focus on
customization with respect to a given motion depicted in a small set of videos,
where the task is to learn the dynamic motion pattern. More recently, several
concurrent and yet unpublished works [16, 22, 44, 48, 52, 53] highlight the grow-
ing interest in motion customization, demonstrating its importance in current
research. These works explore various facets of the problem, including transfer-
ring subject motion from a video [22, 52], customizing appearance and motion
from images and videos [44], animating high-resolution images [48], animating
images with custom camera motion patterns [16], and separating motion from
appearance [53]. While these works are exciting, our approach uniquely stands
out in the context of this recent work by abstracting dynamic motion from mul-
tiple videos, enabling the creation of new, diverse videos that showcase different
scenes, combine different motions, and depict various subjects.
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3 Approach

3.1 Text-to-Video Diffusion Model Preliminaries

Diffusion models are probabilistic models that can approximate distributions
through a gradual denoising process [20,37]. Given a Gaussian noise sample, the
model learns to iteratively remove a portion of noise until a sample is within
the approximated distribution by minimizing the L2 distance of the predicted
noise and the sampled noise. Latent Diffusion Models (LDMs) operate in latent
rather than pixel space, encoding videos into a lower-dimensional vector via an
encoder-decoder model to simplify the denoising process [32].

Specifically, a video x is represented with a latent vector, and a text condition
c is encoded through a text-embedding from a pre-trained text encoder. The
initial noise map ϵ is sampled from a Gaussian distribution ϵ ∼ N (0, 1). For the
diffusion timestep t sampled from a probability density t ∼ f(t), the noisy latent
sample can be computed from the noise prediction by xt =

√
αtx0 +

√
1− αtϵ,

where x0 is the original video and αt controls the amount of noise added at each
diffusion timestep according to a noise scheduler [20, 37]. The model ϵθ with
parameters θ is trained with the following weighted denoising loss,

Lθ(x, c) = E
ϵ∼N (0,1)
t∼f(t)

[wt∥ϵθ(x, ϵ, c, t)− ϵ∥22], (1)

where wt is a user-defined variable that controls the sample quality. At inference
time, a new video can be generated by sampling a Gaussian noise sample ϵ and
a text prompt, denoising them with the learned model.

3.2 Approach for Motion Customization

We illustrate our overall approach for motion customization in Figure 2. Let the
motion be represented through a small exemplar set of videos and corresponding
text prompts Dm = {(xm, cm)}. The motion can be performed by different
subjects across different backgrounds, and the commonality within the videos is
purely the dynamic movement. We choose a generic textual description across
the videos, such as “a person doing the V*”. In practice, we select rare tokens like
“pll” as “V*”. To customize a text-to-video model’s parameters θ, we fine-tune
the model’s parameters by minimizing the diffusion objective Lθ summed over
the exemplar set Dm,

min
θ

∑
(x,c)∼Dm

Lθ(x, c). (2)

At test time we can generate novel videos of the target with variations controlled
by text. Customizing text-to-video generation models has, however, several open
technical questions that need to be addressed: (i) Which model parameters to
customize? (ii) How to prevent forgetting of already learnt concepts? (iii) How
to disentangle motion and appearance? We address the above open questions
with the following three technical components, as described next.
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Choice of customization parameters. The quality and generalization abil-
ity of the novel motion depends on the choice of the model parameters updated
during customization. A text-to-video diffusion model ϵθ has parameters θ that
can be categorized to those operating on the temporal dimensions θt ⊂ θ and
those operating on the spatial dimensions (per-frame) θs ⊂ θ. Let θk,vs ⊂ θs be
the keys and values parameters of the spatial cross-attention modules. The tem-
poral layers θt are transformers and temporal convolutions, and are responsible
for modelling temporal patterns across frames. In Section 4, we empirically show
that the temporal layers alone do not effectively model a new motion pattern
due to time-varying appearance changes. For example, consider an object rotat-
ing in 3D, which requires the model to generate the appearance of disoccluded
surfaces. To faithfully learn a motion pattern, we also modify a subset of param-
eters in the spatial layers of the model. As illustrated in Figure 2, our approach
fine tunes the spatial keys/values θk,vs and temporal θt parameters. Note that in
image customization [24,38] and model editing [13], it has been shown that the
spatial keys and values of the cross-attention modules in text-to-image models
are sufficiently powerful to represent the appearance of new concepts. We show
the effectiveness of tuning these parameters for motion customization.
Preventing forgetting via video regularization. Prior work has shown that
directly optimizing Equation (2) leads to forgetting related concepts or the con-
cept category [25,26,33]. For example, if the concept is a specific person, all peo-
ple start resembling that person. To mitigate this issue, prior work has utilized
a regularization set that ensures that this knowledge is preserved. For example,
Ruiz et al . [33] proposed collecting a regularization set via generation from the
original model. Kumari et al . [24] proposed using pairs of real images and text.

In contrast to prior work, we seek to mitigate forgetting of related motions
that the model has already learned. To address this goal, we consider a video-
based regularization. Let Dr be a regularization set of paired videos with text
descriptions that have similar but not identical motion to the target custom
motion videos Dm. For example, when learning a gesture from the Jester dataset,
we chose a regularization set of real videos containing people sitting in front of a
webcam. Since this type of video data might be difficult to come across, using a
regularization set of real videos in-distribution to the training set is also helpful.
For customization, we optimize the diffusion objective Lθ over the target custom
videos Dm and regularization set Dr:

min
θ

∑
(x,c)∼Dm∪Dr

Lθ(x, c). (3)

Empirically, we show in Section 4 that using real videos for the regularization
set is superior to using generated videos from the model. We find that using
generated videos degrades the quality of the customized model substantially.
Disentangling motion from appearance. To facilitate learning the common
motion in Dm, during the training process, we aim to put emphasis on the mo-
tion pattern of the videos, rather than the appearance or subject presenting the
motion. For example, in the case of the ‘Carlton’ dance in Figure 1 we wish to
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capture the motion pattern of the dance rather than the appearance of the back-
ground or the individual performers. The denoising process in diffusion models
samples a Gaussian noise and then gradually removes the noise. The initial noise
as well as early denoising steps have large influence on the output overall dynamic
structure of the video, whereas the later stages correspond to finer details [40]. To
focus on the dynamic structure of the videos and de-emphasize the appearance
of the subjects performing the motion, we define a timestep sampling strategy.
In particular, we build on [21] who develop a non-uniform sampling strategy for
generating still images. Here we adopt it for generating dynamic video content.
In detail, instead of uniformly sampling the denoising steps in Equation (1), we
define a probability distribution fα(t) =

1
T (1−α cos(πtT )) over the timesteps that

focuses more on the earlier denoising steps and hence emphasizes learning the
overall dynamic motion pattern rather than the fine appearance details of the
background or the individual subjects. The α parameter increases the skewness
of the function. We use α = 0.5 for all of our experiments.

4 Experiments

4.1 Qualitative Comparison and a User Study

Compared to the published prior work, as shown in Tab. 1, ours is the only
method that transforms a text-to-video motion model (GV ) to a model with
customized motion (G◦

V ) or customized motion and appearance (G◦†
V ) (see the

website for our joint motion and appearance customization). We adapt prior
work that learns or transfers concepts (τ◦) to compare with our problem set-
ting. In particular, we focus on “Image customization” methods that customize
the appearance of the subject and reference-based (“One-shot video tuning” or
“Zero-shot text-driven motion transfer”) methods that transfer motion from a
single input source video. We adapt these methods to closer match our problem
definition as described next. We show results for customizing the base model to
selected human gestures, which the base model does not know. For this purpose
we use videos from the Jester Dataset [27], which contains crowd-sourced videos
of diverse actors performing a gesture in front of a static camera.
Comparison with image customization methods. We select three well-
established image customization approaches: Textual Inversion [11], Dreambooth
[33] and Custom Diffusion [24], and adapt them to the motion customization
task. Textual Inversion [11] optimizes a text token embedding to learn a novel
subject. For Dreambooth [33], we optimize all spatial layers of the model and use
a synthetic video regularization set following their prior preservation loss. Cus-
tom Diffusion trains the key and value projection matrices in the cross-attention
layers of text-to-image diffusion models, optimizes a text token embedding, and
uses a regularization set with real videos.

We choose at random 10 videos from the validation set from the Jester dataset
[27] class “Sliding Two Fingers Up” as our training set. To learn the motion, we
caption the videos with a generic text description “a person doing a V* sign”.
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Textual Inversion

Custom Diffusion

Dreambooth

Ours

Fig. 3: Visual comparison with baseline methods. Examples of learning a cus-
tomized motion Sliding Two Fingers Up from the Jester dataset with prompt “A female
firefighter doing the V* sign”. Baseline methods (top three rows) fail to capture the mo-
tion and produce a temporally coherent video.

For the motion learning regularization set, we choose 50 videos from each of the
dataset classes {Doing Other Things, No gesture} and assign them text captions
“a person doing other things” and “a person in front of a computer”. We generate
results with a prompt “A female firefighter doing the V* sign”. Fig 3 shows that,
in contrast to ours, the baseline methods fail to capture the motion and produce
a temporally smooth video.
Comparison with a reference-based method. In Figure 5 we compare our
approach to two reference-based methods [47, 50]. We adapt Tune-A-Video to
fine-tune from multiple videos using the same training set as our setup. We test
the generalization abilities of the methods, firstly combining the novel motion
with a different motion: “doing the V* gesture while eating a burger with other
hand”. We can see that our method can generate the two motions. Next, we
test the motion variation. We show that we can manipulate the execution of the
motion with a natural language description; here we specify “doing the V* gesture
very slowly and precisely”. Lastly, we show that our method can generalize to
multiple people doing the motion while preserving the temporal consistency of
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“Teachers doing the V*”

“A chef in a white apron doing the V*”

“A close-up of a pirate doing the V*”

“A nun doing the V*”

D
ab

“A camera V* around a banana”

“A camera V* around a teddy bear in a toy shop”

Ai
r q

uo
te

s
3D

 ro
ta

tio
n

Input videos Our motion customizations

Fig. 4: Qualitative results of our method. We demonstrate two custom motions:
Dab and Air quotes, trained using collected internet examples as well as a 3D camera
rotation trained with examples from the CO3D dataset [31]. Our method can generalize
to unseen subjects and multiple people performing the action.

the video. The Tune-A-Video and Diffusion Motion Transfer baseline produces
qualitatively worse results and do not generalize to multiple people performing a
motion, motion variations and combinations with other movements (Figure 5).

To further demonstrate the effectiveness of our approach on a broader class
of motions, we choose the motions: Carlton, Dab, Airquotes, and 3D rotation,
which the original model does not know or cannot reliably perform. For the first
two motions, we curate videos from the internet searching for the description
of the motion. We use between 5 and 6 videos for each motion and caption the
videos with a generic text description such as “A person doing the V* dance”, “A
person doing the V* sign” or “A person V*”. To learn 3D rotation, we select 10
sequences of distinct objects from the CO3D Dataset [31] and use as captions
text prompt “A camera V* around an [object]”, where [object] is an object class.
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Tune-A-Video Diffusion Motion Transfer

“A clown doing the V* gesture while eating a burger with his other hand”

“An elder woman doing the V* gesture very slowly and precisely”

“Children doing the V* gesture in the classroom in front of a blackboard”

Ours

Fig. 5: Text-driven motion transfer methods versus our method trained on
few examples of a custom motion “Shaking Hand”. Our method seamlessly
renders a custom motion in novel scenarios. Despite the training videos showing only a
single actor performing one motion, our method generates the custom motion alongside
another action (doing the gesture while eating a burger”) and varies timing (doing the
gesture slowly and precisely”) or involves multiple people (“children”). In contrast, both
baselines fail to generalize or produce temporally coherent videos.

Ours

Ours

60.7%

70% 30%

39.3%

Tune-A-Video 

Dreambooth

Fig. 6: User preference comparison.

Due to the lack of readily available
regularization set of similar motions,
we select 100 video-text pairs from the
WebVid-10M Dataset [1]. The results
are shown in Figure 4. For visualiza-
tion, we query for objects not present
in the training videos.
User Study. To further demonstrate the benefits of our approach, we conducted
a binary forced-choice user study on a diverse set of dynamic scenes involving
complex motions. Involving 6 users, we assessed 50 prompts per motion (Carlton,
Airquotes, and Dab, see Figures 1, 4), resulting in 300 votes. We presented
users with videos from our method and a baseline (DreamBooth and Tune-A-
Video), presented in a random order, and asked users to select the video that
best matched the input motion. Users select our method more often (Figure 6),
with statistical significance (p-values<0.01), further confirming the automatic
quantitative evaluation performed in Section 4.2.

4.2 Automated quantitative evaluation via recognition

In this section we introduce an automated quantitative evaluation of the gen-
erated videos by employing pre-trained descriptors [29, 30], and motion-specific
classifiers [54]. First, we introduce the used dataset and describe the proposed
metrics. This automatic evaluation protocol then allows us to perform an exhaus-
tive ablation study of the different components of our method. Finally, we use
this automatic evaluation to compare our approach to other competing methods.
Dataset. Evaluating the motion pattern separately from the appearance is chal-
lenging. We evaluate on the Jester dataset [27], which requires gesture recogni-
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tion models to generalize beyond appearance and learn the specific motion pat-
tern. The dataset contains 148,092 crowd-sourced videos of 27 human gestures
by diverse actors performing a gesture in front of a static camera. We select 5 ges-
ture classes as our target motions – {Swiping Down, Drumming Finders, Rolling
Hand Forward, Shaking Hand, Sliding Two Fingers Up}. From each class, we
choose at random 10 videos from the validation set as our training set. To learn
the motion, we caption the videos with a generic text description “a person doing
a V* sign”. As a regularization set for the motion learning, we also choose 50
videos from each of the dataset classes {Doing Other Things, No gesture} and
assign them text captions “a person doing other things” and “a person in front of
a computer”. We design a test set containing 100 text prompts across 3 random
seeds, that detail a person’s appearance, for example “A female firefighter doing
the V* gesture” or “A Japanese toddler doing the V gesture”. Motion accu-
racy score. The Jester dataset has been widely adopted for the task of action
recognition. We leverage this for our motion accuracy score, measuring gesture
recognition accuracy with a video classifier, pre-trained on the Jester training
set [54].The classifier reaches 94.78% accuracy for all gesture classes, fitting our
evaluation needs. Test set prompts often yield videos matching the classifier’s
training layout with a single person, thus being in-distribution. Text alignment
scores. To regulate overfitting, we measure how faithfully the model adheres to
the appearance described in the text prompt with an appearance score defined
as the mean CLIP score between the generated frames and the part of the text
prompt describing the person’s appearance (e.g ., “A female firefighter”). We em-
pirically find that the appearance score is a good proxy to determine when
the model starts to overfit. For a fair comparison across all models, we fine-tune
each model until this appearance score reaches a chosen value (here 0.265), de-
termined empirically based on the visual quality of the results. To assess how
well the generated video corresponds to the overall text prompt (both motion
and appearance), we measure the text alignment score as a mean CLIP score
between the video frames and a full caption written in natural language. For
example, for the class Swiping Down and a text prompt “A female firefighter
doing the V* gesture”, a full caption would be “A female firefighter swiping hand
down.” We use this score as another criterion to compare different methods.
Copying score. We report a copying score (“Copy”) that measures how much
of the training data appearance leaks into the generated data. We use the SSCD
description score [29] to detect image copying between the training videos and
the generated videos. The copying score is the maximum SSCD score between
generated and training frames, with the percentage of samples above a manually
set threshold of 0.25, indicating significant copying of the person or background.

Ablation study. We perform an ablation study and report motion accuracy
(“Accuracy”) and copying score (“Copy”) in Table 2.

First, we study the choice of the optimized parameters. As in the case of the
image customization methods, it is clear that optimizing the spatial layers of
the model is not enough to learn a novel motion pattern, as shown in Table 2b.
Training the key and value projections in the cross-attention layers of the spatial
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Table 2: Quantitative results of the ablation study. Each table examines the de-
sign choices of our method. We report the motion recognition accuracy (“Accuracy”) ob-
tained with a pre-trained classifier for gesture recognition. The copying score (“Copy”)
is the percentage of generated videos with a detection score above a set threshold.

(a) Spatial layers

Spatial layers Accuracy ↑ Copy ↓
None 62.3 5.9
All 68.7 17.0

K,V (Ours) 70.6 8.7

(b) Temporal layers

Trans. layers Accuracy ↑ Copy ↓
None 22.7 1.4

All (Ours) 70.6 8.7

(c) Text Token

Text Token Accuracy ↑ Copy ↓
✓ 75.5 22.7

✗ (Ours) 70.6 8.7

(d) Sampling
Strategy

Sampling Accuracy ↑ Copy ↓
Uniform 66.9 15.4
Coarse-noise (Ours) 70.6 8.7

(e) Regularization

Prior Accuracy ↑ Copy ↓
None 43.9 1.2
Synthetic 48.3 3.7
Real (WebVid10M) 66.7 10.9
Real (Jester) 70.6 8.7

(f) Fine-tuning
Strategy

Tuning Method Layers Accuracy ↑ Copy ↓
LoRA All 17.4 0.5
LoRA Ours 10.6 3.3
Full All 68.7 17.0
Full Ours 70.6 8.7

layers achieves a good balance in terms of accuracy and copying score, as shown
Table 2a. We observe a two-fold reduction in the copying score when training
only those parameters and an 8% improvement in motion accuracy compared to
not training any spatial parameters.

Next, in Table 2c, we consider the role of optimizing the text token em-
bedding. We notice that when jointly training the text token embedding with
the model’s parameters, the motion accuracy is higher than when training only
the model parameters. However, it also leads to nearly three times as much
memorization of the training video appearance, as evidenced by the significantly
increased Copy score. We hypothesize that this indicates that the text token em-
bedding is learning something related to the appearance of the training videos.
To test our sampling strategy we compare a model trained with our motion pat-
tern sampling strategy (“Coarse-noise”) to a model that simply samples diffusion
time steps uniformly (“Uniform”). As shown in Table 2d, our sampling strategy
improves the motion accuracy and reduces the appearance copying. Following
our intuition regarding learning motion patterns rather than fine-grained details,
our model is less prone to replicating the training examples.

We study the effect of the regularization prior in Table 2e. We train four
models with the same design choice as our method, yet we choose the regu-
larization set to be either: (i) empty, (ii) a synthetic set of videos generated
from the original text-to-video model, or (iii) real videos from the WebVid10m
dataset (iv) containing real videos that contain similar visual scenes. We observe
a significant drop in performance both without using a prior as well as using a
synthetic prior. Using real data is beneficial for fine-tuning. We observe that us-
ing motions and visual scenes similar to the target motion is optimal. However,
should this support set be unavailable, off-the-shelf dataset is still better than no
regularization or synthetic video. Overall, our method achieves a good balance
between high motion accuracy and low copying score. Lastly, we compare full
parameter fine-tuning to low-rank adaptation in Table 2f. We test two variants;
adding LoRA adapters to both spatial and temporal transformers (first row),
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and to the same layers as our NewMove (second row). In our experiments we
use rank 32 and generate videos with LoRA scale 1, we observe that full pa-
rameter fine-tuning achieves higher motion accuracy. Qualitatively, we observe
that LoRA models perform relatively well on coarser gestures like Drumming
Fingers but struggle to learn fine-grained motions like Sliding Two Fingers Up.
Quantitative evaluation of motion fidelity. We quantitatively evaluate our
approach by computing metrics corresponding to the quality of the generated
motion and the overall fidelity of the generated video with respect to the input
text prompt. We compare to baseline methods that have explicitly learned the
motion pattern from a few examples. We follow the evaluation protocol as de-
fined in Section 4.2. We report the motion accuracy and text alignment metrics
across different methods in Table 3 and show qualitative comparison (Figure 3).

Table 3: Quantitative comparison with base-
line methods

Motion accuracy ↑ Text Alignment ↑
Textual Inversion [11] 0.3 0.2733
Custom Diffusion [24] 10.5 0.2788
Dreambooth [33] 28.4 0.2796
Tune-a-Video [47] 18.9 0.2818
MotionDirector [53] 24.7 0.2786
Ours 70.6 0.2818

We observe that Textual In-
version completely fails to
learn the motion, this failure
is potentially because the text
encoder has been trained only
on image-text pairs, and the
embedding fails to generalize
to the video domain. Addi-
tionally, the text embedding
is injected only into spatial
layers in the cross-attention layers, and not the temporal ones. Alternatively,
because we are learning an unseen motion pattern, which is more complex than
a static object, the embedding does not have enough parameters to learn it.
Dreambooth and Custom Diffusion learn to adhere to the spatial structure of
the training videos and some hand manipulation. However they fail to accu-
rately reproduce the motion and produce a temporally smooth video. Our ap-
proach yields over a 2× improvement in motion accuracy and more faithfully
adheres to the text prompt. We also compare with the concurrent MotionDirec-
tor method [53] and find that our approach outperforms it in motion accuracy
and text alignment. However, with longer training, the baseline achieves similar
performance (see Appendix for details and qualitative comparison).

5 Conclusion

We present an approach for motion customization in text-to-video diffusion mod-
els. Our method can learn a new motion pattern from a set of few exemplar
videos of different subjects performing the same motion. We conduct a thorough
ablation study that identifies the key components of the method and evaluate
them with respect to motion accuracy. We demonstrate qualitative results of
our method and evaluate our method with a user study, specifically in scenar-
ios where our method generalizes the motion to unseen actors, multiple people
performing the motion, and different viewpoints.
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