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Abstract. In this work, we address the challenge of developing auto-
matic evaluation metrics for image captioning, with a particular focus
on robustness against hallucinations. Existing metrics are often inade-
quate for handling hallucinations, primarily due to their limited ability
to compare candidate captions with multifaceted reference captions. To
address this shortcoming, we propose Deneb, a novel supervised auto-
matic evaluation metric specifically robust against hallucinations. Deneb
incorporates the Sim-Vec Transformer, a mechanism that processes mul-
tiple references simultaneously, thereby efficiently capturing the simi-
larity between an image, a candidate caption, and reference captions.
To train Deneb, we construct the diverse and balanced Nebula dataset
comprising 32,978 images, paired with human judgments provided by
805 annotators. We demonstrated that Deneb achieves state-of-the-art
performance among existing LLM-free metrics on the FOIL, Composite,
Flickr8K-Expert, Flickr8K-CF, Nebula, and PASCAL-50S datasets, val-
idating its effectiveness and robustness against hallucinations. Project
page at https://deneb-project-page-nc03k.kinsta.page/.

Keywords: vision and language · hallucination · image captioning ·
metrics

1 Introduction

Image captioning has been extensively researched and applied in various social
applications, such as the assistance of visually impaired individuals, the analysis
of medical images, and the generation of explanations in robotics [2, 4, 13, 14,
19, 33, 36]. In scenarios where ‘AI safety’ is paramount, generating appropriate
and reliable captions is crucial to avoiding the misrepresentation of the con-
tent of images. In particular, erroneous captions that include words not depicted
in the image, commonly referred to as ‘hallucinations’, are a prevalent issue
in image captioning [39,42]. However, a significant issue exists in current image
captioning research: models failing to address hallucinations are often wrongfully
overrated, as existing evaluation metrics predominantly focus only on correla-
tion with human judgment, and overlook critical flaws. This misalignment is
especially problematic in the context of social applications where reliability is
essential. Despite their importance, most existing metrics inadequately address
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Fig. 1: Overview of Deneb. Our metric is designed to effectively evaluate hallu-
cinated captions, which is crucial in scenarios where ‘AI safety’ is paramount. Unlike
existing metrics such as CIDEr [46] and Polos [48], which often fail to distinguish be-
tween correct and hallucinated captions, Deneb demonstrates improved robustness by
assigning lower scores to hallucinated captions than correct captions.

the issue of hallucinations. In fact, some studies have demonstrated that while
most data-driven metrics [15,20,22,51,52] correlate well with human judgments,
they are less effective in addressing hallucinations [15,40,46,48].

Hallucination is a prevalent issue in text generation models, including Large
Language Models (LLMs) [6,21,25,31,32,42,45]. Despite their rapid advancement
and adoption in various societal applications, LLMs often generate hallucinated
text. This suggests that most LLMs are internally unable to evaluate halluci-
nations and that assessing hallucinations is a particularly challenging task. The
FOIL benchmark [42] has been introduced to evaluate the robustness of met-
rics against hallucinations in image captioning. Several studies [15, 20, 40, 48]
have revealed that most metrics still fall short of human performance on this
benchmark, despite their strong correlation with human judgments.

Automatic evaluation metrics for image captioning can be broadly classified
into four categories: classic metrics, reference-free metrics, pseudo-multifaceted
metrics, and multifaceted metrics. Classic metrics [3, 5, 26, 35, 46, 47] are tradi-
tional approaches primarily based on n-grams and/or scene graphs. Despite their
widespread use, they often provide low correlation with human judgments, lead-
ing to the development of data-driven metrics such as reference-free and pseudo-
multifaceted metrics. Reference-free metrics [15,23,40], which use images and do
not rely on reference captions, correlate better with human judgments than clas-
sic metrics. However, they face challenges in robustness against hallucinations.
This issue mainly stems from their heavy dependence on the alignment between
image and language features, which has shown to be insufficiently effective in
accurately grounding specific local areas within images. In fact, some studies
have indicated that even the classic metric CIDEr [46] outperforms CLIP-S in
terms of robustness against hallucinations [15].
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In contrast to classic and reference-free metrics, pseudo-multifaceted met-
rics [15, 20, 40, 48] utilize both image and text encoders to process an image
and multiple reference sentences. These metrics outperform reference-free met-
rics in terms of correlation with human evaluations but have significant issues
in effectively leveraging multiple reference sentences. In general, they compute
evaluation scores for each reference sentence independently, resulting in the vir-
tual processing of only a single reference sentence and leading to suboptimal
performance.

Handling multiple references becomes particularly important in the auto-
matic evaluation of image captioning. Consider a scenario where an image depicts
both a person and a dog, with two corresponding references. The first reference
describes only the person, while the second focuses solely on the dog. Previous
works, by utilizing an aggregation mechanism, virtually processes only a single
reference. Therefore, they fail to evaluate a candidate that properly describes
both subjects, such as “a person walking a dog.” This underscores the necessity
of handling multiple references.

Therefore, we propose Deneb1, a supervised automatic evaluation metric
specifically robust against hallucinations. Fig. 1 shows an overview of Deneb.
Unlike pseudo-multifaceted metrics, Deneb is a multifaceted metric and thus
can effectively compare multifaceted descriptions of an image against a candi-
date caption. This capability is achieved by the Sim-Vec Transformer, a novel
architecture designed for the efficient processing of multiple reference captions.

Furthermore, for training our proposed metric, we construct the Nebula
dataset by extending the Polaris dataset, increasing the visual diversity by a
factor of three. Our dataset offers more effective data for training supervised
metrics, particularly those capable of handling a wide range of cases, including
hallucinated captions.

The main contributions of this study are summarized as follows:

1. We introduce the Sim-Vec Transformer, which handles the similarity between
an image, a candidate caption, and reference captions.

2. We propose Sim-Vec Extraction (SVE), which utilizes a Hadamard product
and element-wise differences to extract features beneficial for evaluation.

3. We construct the diverse and balanced Nebula dataset comprising 32,978
images, paired with human judgments provided by 805 annotators.

4. We achieve state-of-the-art performance among LLM-free metrics on FOIL,
Composite, Flickr8K-Expert, Flickr8K-CF, PASCAL-50S, and Nebula.

2 Related Work

Image captioning has been widely applied in various areas of society, includ-
ing the assistance of visually impaired individuals [2, 10, 13, 14], medical image
1 In the field of general text generation metrics, names of celestial bodies are often

used as names for metrics, such as METEOR [5] and COMET [38]. Following this
convention, we have named our metric and dataset after a celestial body.
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analysis [4, 36], and the generation of explanations in robotics [19, 33]. Several
comprehensive surveys [13, 17, 44] have provided an exhaustive overview of rep-
resentative models, standard datasets, and metrics, including those specifically
designed for evaluating hallucinations, such as CHAIR [39]. Notably, [13] offers
a detailed summary of how different approaches, including convolutional meth-
ods, attention mechanisms, and generative adversarial networks, contribute to
reducing hallucinations in image captioning.

Hallucinations. Hallucinations pose significant challenges not only in LLMs
but also in image captioning models [6, 21, 25, 31, 32, 42, 45]. In image caption-
ing, hallucinations are instances in which models generate captions with words
not corresponding to any of the elements in the input image. As noted in [13],
this issue is particularly critical in social applications where the correctness of
captions is prioritized over content coverage. Such hallucinations substantially
affect the reliability of these models.

A notable metric developed to evaluate this issue is CHAIR [39], which
assesses hallucinations by calculating the proportion of generated words that
accurately reflect objects in the input image. However, CHAIR’s approach is
rule-based and operates within a closed vocabulary, limiting its applicability
and generalizability. The development of CHAIR underscores the need for more
comprehensive benchmarks to evaluate the robustness against hallucinations.

In response to the challenge of hallucinations, Shekhar et al. [42] introduced
the FOIL benchmark to evaluate the robustness of metrics against hallucina-
tions. The FOIL dataset, derived from the COCO dataset [27], consists of ap-
proximately 200,000 image-caption pairs, featuring a mix of both correct and
hallucinated captions. Hallucinated captions are generated by altering a sin-
gle word in a correct caption to create a similar but inaccurate version — for
instance, replacing “motorcycle” with “bicycle”. Moreover, Hessel et al. [15] pre-
sented a widely-accepted methodology for using the FOIL dataset to evaluate
metrics. As detailed in [15], this methodology entails the following steps: For each
of the 32K test images in the dataset, a pair comprising a hallucinated caption
and its correct counterpart is sampled. The robustness of each evaluation metric
against hallucinations is then evaluated based on its capability to consistently
assign higher scores to the correct captions than to their hallucinated versions.

Image Captioning Metrics. Standard metrics for image captioning include
BLEU [35], METEOR [5], ROUGE [26], CIDEr [34,46], and SPICE [3,47]. These
classic metrics, primarily based on n-grams and/or scene graphs, have been
extensively used but often exhibit low correlation with human judgments. This
discrepancy has led recent studies to shift their focus toward data-driven metrics,
such as BERTScore [51], CLIP-S [15], MID [20], and Polos [48]. BERTScore and
MoverScore, for instance, leverage a pre-trained BERT encoder to compare word
token embeddings in both candidate captions and references. However, their
lack of image incorporation can limit their effectiveness in evaluating image
captioning models.
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Several metrics adopt strategies that leverage both visual and language em-
beddings from pre-trained vision-and-language models, such as CLIP [37], ViL-
BERT [29], and UNITER [8]. A notable example is CLIP-S [15], which employs
an unsupervised approach to evaluate captions by measuring their similarity to
embeddings generated by CLIP encoders. The distinct feature of CLIP-S is its
ability to evaluate captions in contexts both with and without reference images.
In [40], the authors introduced PAC-S, a variant of CLIP-S. In this variant, the
authors generated text-image pairs using image generators and the original CLIP
model was fine-tuned with these generated pairs.

Supervised metrics, which are trained based on human judgments, have been
studied in text generation tasks, including machine translation, text summa-
rization, and text simplification [30, 38, 41, 43, 49]. In the field of image cap-
tioning, however, the development of such metrics is still in its infancy. UMIC
is an example of a supervised metric in this field and employs the fine-tuning
of UNITER through a ranking-based approach. While UMIC [23] has shown
superior performance to other metrics, [48] pointed out that ranking models
such as UMIC have shortcomings, such as varying focal points in captions and
subjective variations in expression. A notable instance of a different approach
from the ranking model is Polos, a supervised metric inspired by COMET [38],
BLEURT [41], and RUSE [43]. The authors of [48] introduced the M2LHF frame-
work, which was used to develop a metric utilizing human judgments. Based on
the M2LHF, Polos achieves state-of-the-art performance in various image cap-
tioning benchmarks. However, as outlined in Section 1, Polos falls into the cat-
egory of pseudo-multifaceted metrics, facing challenges in effectively managing
multiple references.

Datasets and Benchmarks. Standard datasets for evaluating image caption-
ing metrics include FOIL [42], Flickr8K-Expert [16], Flickr8K-CF, Composite [1],
Polaris [48], and PASCAL-50S [3]. In response to concerns about the lack of di-
versity in the Flickr8K-Expert, Flickr8K-CF, and Composite datasets, Wada et
al. [48] introduced the Polaris dataset, which is currently the largest in the field.
However, as we argue later, Polaris faces the challenge of a limited variety of
images compared with the total number of samples, leading to concerns about
imbalance in the dataset.

3 Methods

In this study, we propose a novel automatic evaluation metric Deneb, which
is specifically robust to hallucinations. Fig. 2 provides an overview of the pro-
posed metric Deneb. Unlike pseudo-multifaceted metrics, Deneb is a multi-
faceted metric and can therefore effectively compare multifaceted descriptions of
an image with a candidate caption. This capability is achieved by the Sim-Vec
Transformer, a novel architecture designed for the efficient processing of multiple
reference captions.

The proposed metric distinguishes itself from existing metrics in three key
aspects as follows: First, in contrast to classic metrics [5, 26, 35, 46], Deneb is
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Fig. 2: The architecture of Deneb. CLIP and RoBERTa are employed to extract
embeddings from an image, a candidate, and references. These embeddings are then
processed concurrently by the Sim-Vec Transformer, comprising two modules: the Sim-
Vec Extraction and transformer. Sim-Vec Extraction (SVE) utilizes a Hadamard prod-
uct and element-wise differences to extract features, capturing the similarity among
ximg, xcand, and {x(i)

ref}
N
i=1.

a data-driven automatic evaluation metric that employs a supervised approach.
Second, unlike reference-free metrics [15, 23, 40], Deneb utilizes reference cap-
tions, enhancing its robustness against hallucinations. Finally, whereas pseudo-
multifaceted metrics typically employ aggregate functions [15, 40, 48], Deneb
more effectively addresses the challenge of hallucination by handling multiple
references simultaneously through the Sim-Vec Transformer.

The Sim-Vec Transformer handles the similarity between an image, a can-
didate caption, and reference captions. This module can be broadly applied to
automatic evaluation metrics that deal with image features, including CLIP-
S [15] and PAC-S [40].

3.1 Feature Extraction

Given an image ximg, a candidate xcand, and N references {x(i)
ref}Ni=1 , the au-

tomatic evaluation metrics for image captioning models output a score ŷ that
captures the appropriateness of xcand in the context of ximg and {x(i)

ref}Ni=1. First,
the input x to our metric is defined as follows:

x =

{
ximg,

{
x
(i)
ref

}N

i=1
,xcand

}
, (1)

where ximg ∈ R3×H×W , {x(i)
ref}Ni=1 ∈ {0, 1}N×V×L, and xcand ∈ {0, 1}V×L repre-

sent an image, N references, and a candidate, respectively. Furthermore, H, W ,
N , V , L denote the height and width of the image, the number of references,
the vocabulary size, and the number of tokens, respectively.

In this study, we extract features from x using CLIP [37] and RoBERTa
[28]. We utilize the CLIP encoder (CLIP ViT-B/32) pre-trained with [40] and
RoBERTa-base pre-trained with SimCSE [12]. Specifically, we use CLIP’s text
encoder to obtain text embeddings, {r(i)clip}Ni=1 ∈ RN×dclip and cclip ∈ Rdclip , from
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{x(i)
ref}Ni=1 and xcand, respectively, where dclip denotes the output dimension of

CLIP. Concurrently, using the CLIP image encoder, we obtain image features
v ∈ Rdclip from ximg. Additionally, we employ RoBERTa to obtain text embed-
dings {r(i)rb }Ni=1 ∈ RN×drb and crb ∈ Rdrb from {x(i)

ref}Ni=1 and xcand, respectively,
where drb denotes the output dimension of RoBERTa and {r(i)rb }Ni=1 and crb are
obtained from the [CLS] token of the inputs. In this study, both the CLIP and
RoBERTa encoders are frozen.

3.2 Sim-Vec Transformer

Sim-Vec Extraction. In the context of metrics for image captioning, accu-
rately capturing the similarity between the image, the candidate, and the multi-
ple references is crucial. Several studies have incorporated mechanisms to extract
these similarities, thereby achieving high performance [30, 38, 43, 48]. According
to the observations in [30,38,43,48], the exclusion of the candidate and the ref-
erence leads to a decline in performance. This suggests that these metrics do
not fully leverage the extracted vector-form similarities, partially because the
latter part of them, specifically responsible for processing vector-form similari-
ties, is just a poorly performing MLP. Considering these mechanisms effectively
extract similarities [30, 38, 43, 48], the inclusion of raw features of candidates
and references could even hinder effective learning from vector-form similarities.
Therefore, in this study, we introduce the Sim-Vec Extraction (SVE) module by
extending them to enhance the focus on effectively leveraging these extracted
similarities. Our transformer-based metric has greater potential in capturing
vector-form similarities more effectively than the classic MLP approach.

The SVE module employs a Hadamard product and element-wise differences
to extract features that capture the similarity from the following vectors:

sin =

{
cclip,

{
r
(i)
clip

}N

i=1
, crb,

{
r
(i)
rb

}N

i=1
,v

}
. (2)

We compute hclip, hrb, dclip, drb as follows:

hclip =

{
cclip ⊙ v,

{
cclip ⊙ r

(i)
clip

}N

i=1

}
, (3)

dclip =

{
|cclip − v|,

{
|cclip − r

(i)
clip|

}N

i=1

}
, (4)

hrb =
{
crb ⊙ r

(i)
rb

}N

i=1
, (5)

drb =
{
|crb − r

(i)
rb |

}N

i=1
. (6)

It is important to note that, unlike RUSE [43] and COMET [38], we do not
combine the candidate features c and the reference features r here to allow our
model to focus more on vector-form similarity. Subsequently, we obtain ginter by
combining hclip, dclip, hrb, and drb.

ginter = {hclip,dclip,hrb,drb} . (7)
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Non-aggregate mechanism. Previous studies [15,40,48] exhibit a fundamen-
tal limitation in the handling of multiple references. Specifically, they calculate
evaluation scores independently for each of the N references, so that the mul-
tiple references are not fully utilized. Generally, CLIP-S [15], PAC-S [40], and
Polos [48] can be formulated as follows:

ŷ = Aggregate
i

f(x(i)), (8)

where x(i) denotes the ith reference included in x(i) = {ximg,x
(i)
ref ,xcand} and

Aggregate (·) represents any mapping f : RN → R, such as the Max and Mean
functions. In these methods, the core of the metric f(·) takes only a single ref-
erence, x(i)

ref , as input, implying the ineffective processing of multiple references.
Moreover, the aggregate function cannot be optimized since it does not have
trainable parameters. Therefore, it can be concluded that these methods do not
fully utilize multiple references in the automatic evaluation of image captioning.

To overcome this limitation, Deneb employs an N -layer transformer to ef-
fectively handle multiple references. Initially, we obtain g by concatenating the
[CLS] token g[CLS] to ginter obtained from the SVE as follows:

g = {g[CLS], ginter} . (9)

Here, ginter is defined as the feature extracted from the SVE. Subsequently, we
calculate hN using an N -layer transformer encoder:

hN = TransformerEncoder (g) . (10)

In this study, we set N to 3 for achieving a balance between computational
efficiency and the model’s ability to handle multiple references effectively. Sub-
sequently, we input the [CLS] token h[CLS] from hN into an MLP and then apply
a sigmoid function to compute the final evaluation score ŷ.

We employ the Huber loss as our loss function due to its robustness against
outliers. The Huber loss is defined using ŷ, the human judgments y, and the
hyperparameter δ as follows:

L =

{
1
2 (ŷ − y)2 if |ŷ − y| < δ,

δ · (|ŷ − y| − 1
2 · δ) otherwise.

(11)

In this study, we set δ to 0.5.

4 Experiments and Results

4.1 Experimental Setup

Nebula dataset. The development of supervised metrics for image captioning
requires a large-scale, diverse dataset, but there are limited available datasets for
effectively training these models. Moreover, the largest dataset in this field [48]
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has a notable issue: a significant imbalance, characterized by a limited variety
of images relative to the number of captions. Specifically, there is a discrepancy
where the number of images is approximately only one-tenth of the total number
of samples. This imbalance could potentially lead to suboptimal evaluation of
various types of images.

To mitigate this imbalance, we constructed the Nebula dataset2 by extending
the Polaris dataset to have approximately three times the number of images. Fol-
lowing the standard procedure, human judgments were adopted on a five-point
scale to assess the appropriateness of a candidate for a given image and refer-
ences. The annotation process was carried out through a crowdsourcing service.
Following previous studies [23,47,48], we instructed the annotators to assess the
quality of the candidates from the perspectives of fluency, relevance, and descrip-
tiveness. To ensure the reliability of our data, we excluded data from evaluators
who exhibited suspicious behavior, such as extremely short response times or
consistently providing identical values. In addition, the human judgments, given
on a five-point scale, were normalized to the range [0, 1]. For a comprehensive
description of the dataset, please refer to the Appendix.

4.2 Comparison to State-of-the-Art

We evaluated the automatic evaluation metrics based on the accuracy they
achieved when applied to the FOIL benchmark and PASCAL-50S, as well as their
correlation coefficients when applied to Composite, Flickr8K-Expert, Flickr8K-
CF, and Nebula. Given the importance of efficiency in practical applications,
we also conducted experiments to measure the inference times of these metrics.
This enables a comprehensive evaluation of both the performance effectiveness
and practical usability of these metrics.

We adopted BLEU [35], ROUGE [26], METEOR [5], CIDEr [46], and SPICE
[3] as they are standard metrics for image captioning tasks. Additionally, we in-
cluded MoverScore [52], BERTScore [51], BARTScore [50], TIGEr [18], LEIC [9],
ViLBERTScore [22], UMIC [23], MID [20], CLIP-S [15], PAC-S [40], Polos [48],
CLAIR [7] and FLEUR3 [24] as baseline metrics since they are representative
metrics for image captioning. It is important to note that among these, CLAIR
and FLEUR are LLM-based metrics, while the others are LLM-free.

Hallucination and Likert judgments. We conducted comparative experi-
ments against baseline models across the FOIL dataset to investigate the ro-
bustness against hallucinations. Additionally, we performed quantitative com-
parisons on various datasets, including Composite, Flickr8K-Expert, Flickr8K-
CF, and Nebula. Table 1 shows the performance of the proposed and baseline
metrics on FOIL. Following previous studies [15, 40, 48], our experiments were
conducted in settings where either one or four reference captions were provided.
2 The Nebula dataset can be downloaded from this link.
3 Note that FLEUR and RefFLEUR was released after the submission of our

manuscript. At the time of our submission, Deneb exhibited the best performance.
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Table 1: A quantitative comparison with baseline metrics. Boldface indicates the
best values, and underlining indicates the second best values. A “-” indicates either
non-executable code or unavailable data. Note that, for a fair comparison, we have also
included Deneb using OpenCLIP ViT-L/32 backbone as the encoder.

FOIL
1-ref

FOIL
4-ref Composite Flickr8K

Expert
Flickr8K

CF Nebula Inference
time

Accuracy [%] Kendall’s τ [ms]

LLM-free metrics
BLEU [35] 66.5 82.6 30.6 30.8 16.4 40.4 0.13
ROUGE [26] 71.7 79.3 32.4 32.3 19.9 42.6 0.51
CIDEr [46] 82.5 90.6 37.7 43.9 24.6 48.1 0.40
METEOR [5] 78.8 82.6 38.9 41.8 22.2 46.8 0.14
SPICE [3] 75.5 86.1 40.3 44.9 24.4 44.0 17
UMIC [23] – – 56.1 46.8 30.1 – –
CLIP-S [15] 87.2 87.2 53.8 51.2 34.4 46.9 1.7
PAC-S [40] (ViT-B/32) 89.9 89.9 55.7 54.3 36.0 47.2 2.5
PAC-S [40] (ViT-L/14) 93.1 93.1 54.0 55.7 37.0 47.9 12
SPARCS [11] – – 43.1 48.1 10.4 46.5 1.5
BERTScore [51] 88.6 92.1 30.1 46.7 22.8 47.0 7.6
BARTScore [50] 85.3 91.1 43.5 37.8 24.3 43.8 130
ViLBERTScore [22] – – 52.4 50.1 – – –
MID [20] 90.5 90.5 55.7 54.9 37.3 51.3 52
RefCLIP-S [15] 91.0 92.6 55.4 53.0 36.4 46.9 2.8
RefPAC-S [40] (ViT-B/32) 93.7 94.9 57.3 55.9 37.6 50.6 4.5
RefPAC-S [40] (ViT-L/14) 94.4 94.9 56.0 56.4 37.8 50.4 17
Polos [48] 93.2 95.1 57.6 56.4 37.8 53.9 6.9

95.1 96.1 57.9 56.5 38.0 54.1 7.3Deneb (ViT-B/32) (+0.7) (+1.0) (+0.3) (+0.1) (+0.2) (+0.2)
95.4 96.5 58.2 56.8 38.3 54.3 22Deneb (ViT-L/14) (+1.0) (+1.4) (+0.6) (+0.4) (+0.5) (+0.4)

LLM-based metrics
CLAIR [7] 81.4 83.4 55.0 44.6 34.4 52.7 1600
FLEUR [24] 96.8 96.8 63.5 53.0 38.6 – 700
RefFLEUR [24] 97.3 98.4 64.2 51.9 38.8 – 760

In both single-reference (1-ref) and four-reference (4-ref) settings, our metric
achieved state-of-the-art (SOTA) performance, with scores of 95.4% and 96.4%,
respectively, marking improvements of 1.7 and 1.4 points over existing LLM-free
metrics. This suggests that our metric is more effective in addressing hallucina-
tions compared to existing metrics.

Table 1 also shows the quantitative comparison results with baseline metrics
for the Composite, Flickr8K, Flickr8K-CF, and Nebula datasets. Consistent with
previous studies [3,15,20,48], we employed τb (Kendall-B) for Flickr8K-CF and
τc (Kendall-C) for the other datasets. It should be noted that the Kendall-C
evaluation values for the CLAIR metric were not provided in [7]; thus, for a fair
comparison, we reproduced CLAIR and reevaluated it using Kendall-C. This
illustrates that our proposed metric Deneb achieved SOTA results with scores of
58.2, 56.8, 38.3, and 54.3 on the Composite, Flickr8K-Expert, Flickr8K-CF, and
Nebula datasets, respectively. In particular, Deneb outperformed the existing
SOTA LLM-free metrics by margins of 0.6, 0.4, 0.5, and 0.4 on the Composite,
Flickr8K-Expert, Flickr8K-CF, and Nebula datasets, respectively.
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Table 2: A quantitative comparison on PASCAL-50S. Deneb achieved the best or
second-best performance across all categories.

HC HI HM MM Mean

Accuracy [%]

LLM-free metrics
BLEU [35] 60.4 90.6 84.9 54.7 72.7
METEOR [5] 63.8 97.7 93.7 65.4 80.2
ROUGE [26] 63.7 95.3 92.3 61.2 78.1
SPICE [3] 63.6 96.3 86.7 68.3 78.7
CIDEr [46] 65.1 98.1 90.5 64.8 79.6
CLIP-S [15] 56.5 99.3 96.4 70.4 80.7
PAC-S [40] (ViT-B/32) 60.6 99.3 96.9 72.9 82.4
PAC-S [40] (ViT-L/14) 59.6 99.7 96.9 75.2 82.9
UMIC [23] 66.1 99.8 98.1 76.2 85.1
BERTScore [51] 65.4 98.1 96.4 60.3 80.1
MoverScore [52] 65.1 97.1 93.2 65.6 80.3
TIGEr [18] 56.0 99.8 92.8 74.2 80.7
MID [20] 67.0 99.7 97.4 76.8 85.2
RefCLIP-S [15] 64.5 99.6 95.4 72.8 83.1
RefPAC-S [40] (ViT-B/32) 67.7 99.6 96.0 75.6 84.7
RefPAC-S [40] (ViT-L/14) 65.0 99.8 97.3 76.1 84.6
Polos [48] 70.0 99.6 97.4 79.0 86.5

74.4 99.8 97.3 76.5 87.0Deneb (ViT-B/32) (+4.4) (+1.3)
76.1 99.7 97.4 77.9 87.8Deneb (ViT-L/14) (+6.1) (+0.5)

LLM-based metrics
CLAIR-E [7] 57.7 99.8 94.6 75.6 81.9
FLEUR [24] 61.3 99.7 97.6 74.2 83.2
RefFLEUR [24] 68.0 99.8 98.0 76.1 85.5

Inference time. In the context of practical applications, it is essential to con-
sider not only the performance of metrics but also their inference times. Table
1 shows the inference times per sample, measured on a system equipped with
a GeForce RTX 3090 and an Intel Core i9-10900KF. The inference times for
recent LLM-free metrics, RefCLIP-S and RefPAC-S, were 2.8 ms and 4.5 ms,
respectively. Similarly, Deneb demonstrated an inference time of 7.3 ms, sug-
gesting that the proposed metric is comparable in terms of inference speed. In
contrast, LLM-based metrics such as CLAIR and FLEUR exhibited significantly
longer inference times of 1600 ms and 700 ms respectively, which are at least 95
times slower than Deneb. These results indicated the limitations of LLM-based
metrics, rendering them impractical for real-time applications. Considering that
standard evaluation datasets sometimes contain more than 40,0000 samples [16],
it is crucial that the evaluations are completed within a practical timeframe.

Pairwise ranking on Pascal-50S. PASCAL-50S consists of 1,000 images
each with 50 reference captions, and presents the task of identifying which
caption out of a given pair has received the majority vote from human judg-
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x
(1)
ref : “A kitchen with vending

machines and a black and white
checkered floor”
xcand: “black and white checkered
floor”
Human: 0.5

RefCLIP-S Polos
0.719 0.816

Deneb
0.634(a)

x
(1)
ref : “Three traffic signs arranged

on a sign post.”
xcand: “ “a man sitting on a stop
sign on a street corner”
Human: 0.0

RefCLIP-S Polos
0.442 0.392

Deneb
0.023(b)

x
(1)
ref : “A small cat standing on a

wood railing next to an arrange-
ment in a vase.”
xcand: “a cat on a fence”
Human: 0.25

RefCLIP-S Polos
0.591 0.703

Deneb
0.691(c)

Fig. 3: Qualitative results on the Nebula dataset. Panels (a) and (b) illustrate success-
ful cases, and panel (c) depicts a failure case.

ments. Specifically, this task focuses on pairwise preference judgments between
two captions in the following categories: pairs of HC (human correct) captions,
HI pairs (both human-written, with one being incorrect), HM pairs (one from a
human and the other machine-generated), and MM pairs (both generated by ma-
chines). Table 2 presents the performance of our proposed metric with baselines
in PASCAL-50S. As indicated in Table 2, Deneb achieved SOTA performance
with scores of 76.1% in HC, 77.9% in MM, and Mean of 87.8%, outperforming
existing metrics by margins of 6.1, 0.6, and 1.3 points, respectively.

4.3 Qualitative Analysis

Fig. 3-(a) shows a successful sample in the Nebula dataset. In this sample, xcand

is “black and white checkered floor,” and x
(1)
ref is “A kitchen with vending ma-

chines and a black and white checkered floor”. The human judgment in this
sample was rated 0.5 because xcand was partially correct. While both Polos [48]
and RefCLIP-S [15] incorrectly evaluated it as 0.816 and 0.719, respectively,
Deneb evaluated it closer to y with a score of 0.634. Fig. 3-(b) shows another
successful sample in the Nebula dataset. In this sample, xcand is “a man sitting
on a stop sign on a street corner,” and x

(1)
ref is “Three traffic signs arranged on

a sign post.” The human judgment for this sample was 0.0 due to the presence
of hallucinations (“a man sitting on”) in xcand. Polos [48] and RefCLIP-S incor-
rectly evaluated this sample with scores of 0.392 and 0.442, respectively, whereas
Deneb evaluated it more accurately with a value of 0.023. These results demon-
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strate that our proposed metric Deneb is not only aligned more closely with
human judgments but also shows robustness against hallucinations.

Fig. 3-(c) illustrates a failure sample in the Nebula dataset. In this sample,
xcand is described as “a cat on a fence,” while x

(1)
ref is “A small cat standing

on a wood railing next to an arrangement in a vase.” The human judgment
for this sample was 0.25 due to the lack of sufficient detail. However, Deneb
inappropriately evaluated it with a score of 0.691. Polos [48], RefPAC-S [40], and
RefCLIP-S [15] also output significantly erroneous evaluation scores of 0.703,
0.847, and 0.591, respectively. These consistent errors across metrics utilizing
image features suggest that the failure of the proposed metric is likely due to
an overestimation of the quality of xcand, which only describes objects that are
prominently displayed in the image.

4.4 Ablation Studies

We conducted ablation studies to investigate the contribution of each module.
Table 3 presents the quantitative results of the ablation studies.

Sim-Vec Transformer ablation. We replaced the Sim-Vec Transformer with
MLP to investigate the contribution of the Sim-Vec Transformer. Table 3 shows
that the accuracy for 1-ref and 4-ref on FOIL in Metric (i) were 76.2% and
76.5%, respectively, representing a decrease of 19.2 and 20.0 points compared to
Metric (iv). Table 3 also shows that the correlation coefficients for Composite,
Flickr8K-Expert,Flickr8K-CF, and Nebula in Metric (i) were 37.7, 40.1, 25.1,
and 48.1, respectively. In comparison to Metric (iv), these values have decreased
significantly by 20.7, 16.1, 13.2, and 6.2 points. These results demonstrate that
the SVE Transformer contributes to both performance and robustness against
hallucinations.

SVE ablation. To analyze the contribution of the SVE, we simply used Eq. (2)
as input instead of Eqs. (3) to (6). Table 3 shows that the accuracy for 1-ref and
4-ref on FOIL in Metric (ii) were 84.3% and 89.3%, respectively, representing a
decrease of 11.1 and 7.2 points compared to Metric (iv). Table 3 also shows that
the correlation coefficients for Composite, Flickr8K-Expert, Flickr8K-CF, and
Nebula in Metric (ii) were 35.8, 49.6, 24.7, and 45.2, respectively. These values
were lower by 22.6, 6.6, 13.6, and 9.1 points than Metric (iv). These results
indicate that the SVE is effective in extracting significant features for automatic
evaluation and enhancing robustness against hallucinations.

Multifaceted references ablation. We did not originally employ Aggregate
functions in Deneb to handle multifaceted references, as detailed in Section 3. To
explore their effect on performance, we conducted an ablation study by adding
Aggregate functions. Table 3 shows that the accuracy for 1-ref and 4-ref on FOIL
in Metric (iii) were 94.4% and 96.1%, respectively, representing a decrease of 1.0
and 0.4 points compared to Metric (iv). Table 3 also demonstrates that the cor-
relation coefficients for Composite, Flickr8K-Expert, Flickr8K-CF, and Nebula
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Table 3: Quantitative results of the ablation studies. The incorporation of the SVE
Transformer, as indicated for Metrics (i) and (ii), emerges as the most significant factor
in enhancing performance.

Sim-Vec
Transformer

SVE
Multifaceted
references

FOIL
1-ref

FOIL
4-ref

Flickr8K
CF

Flickr8K
Expert

Composite Nebula

Accuracy [%] Kendall’s τ

(i) 76.2 76.5 25.1 40.1 37.7 48.1
(ii) ✓ ✓ 84.3 89.3 24.7 49.6 35.8 45.2
(iii) ✓ ✓ 94.4 96.1 37.2 55.7 57.4 53.2
(iv) ✓ ✓ ✓ 95.4 96.5 38.3 56.2 58.4 54.3

in Metric (iii) were 57.4, 55.7, 37.2, and 53.2, respectively. In comparison to
Metric (iv), these values were lower by 1.0, 0.5, 1.1, and 1.1 points. These results
indicate that the inclusion of a mechanism for handling multifaceted references
contributed to both performance and robustness against hallucinations.

5 Limitations and Discussion

While our metric has clearly been shown to provide impressive robustness against
hallucinations, it is not without its limitations. The primary limitation is the oc-
currence of errors stemming from differences in the areas of focus. Moreover, the
metric tends to erroneously overevaluate candidates that only describe promi-
nent objects in an image while neglecting finer details. These limitations indicate
that the proposed metric may not effectively capture the relationship between
xcand and the local regions of ximg. For further error analysis, see Appendix.

6 Conclusions

In this study, we have proposed the novel automatic evaluation metric Deneb,
which is specifically robust to hallucinations. Our key contributions are as fol-
lows: (1) We have introduced the Sim-Vec Transformer, which handles the sim-
ilarity between an image, a candidate caption, and reference captions. (2) We
proposed the Sim-Vec Extraction (SVE), which utilizes a Hadamard product
and element-wise difference to extract features beneficial for automatic evalua-
tion. (3) We constructed the diverse and balanced Nebula dataset comprising
32,978 images, paired with human judgments provided by 805 annotators. (4)We
achieved state-of-the-art performance on FOIL, Composite, Flickr8K-Expert,
Flickr8K-CF, PASCAL-50S, and the Nebula dataset.
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