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Abstract. Skin lesion segmentation is a challenging task in computer-
aided diagnosis, which is crucial for the early diagnosis of skin cancer.
Convolutional Neural Networks (CNNs) have been successful in medi-
cal image segmentation tasks; however, their effective receptive fields in
deep convolutional layers are limited to a local range and follow Gaus-
sian distribution, thereby failing to obtain global information. Advanced
Transformer shows great potential in modeling long-range dependencies
and obtaining global representations. Therefore, we propose a multi-path
segmentation model (MSNet) based on a combination of CNN and Trans-
former, which is dedicated to facilitating the task of skin lesion segmen-
tation. Regarding different task requirements, we design MSNet-1 for the
real-time tasks, and MSNet-2 for the tasks that require high accuracy.
Moreover, we develop an efficient residual module (ERM) in MSNet,
which can effectively integrate multi-level features and provide accurate
feature representations. Pixel attention and coordinate attention are also
introduced to enhance the perceptual ability of the network and improve
the predicting accuracy of the segmentation results. Finally, we conduct
extensive experiments on three public skin lesion datasets and one thy-
roid nodule dataset. The experimental results demonstrate that MSNet
not only possesses the SOTA segmentation performance and excellent
generalization ability, but also has lightweight and real-time characteris-
tics, and it has broad application prospects in various scenarios.

Keywords: Skin lesion segmentation · Efficient residual module · Multi-
path segmentation method · Attention mechanism

1 Introduction

Skin cancer ranks among the most prevalent cancers globally [22], and melanoma
is considered the most malignant skin cancer [6]. According to the World Health
Organization (WHO), approximately 132,000 new cases of melanoma are diag-
nosed annually [21]. However, if detected and treated during early screening, the
survival rate of patients with melanoma can be as high as 90% [8], so early di-
agnosis of dermatological conditions can effectively reduce patient suffering and
treatment costs, as well as help to improve treatment success and survival rates.
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2 T. Nie et al.

In recent years, the rapid development of deep learning technology has pro-
vided new solutions for dermatological image segmentation, and convolutional
neural networks (CNNs), which can learn more discriminative features through
an end-to-end learning approach, outperform traditional methods in image seg-
mentation. For example, full Convolutional Residual Network (FCRN) [35] en-
hances the model segmentation performance by incorporating multi-scale con-
textual information. DCL [1], an automatic skin damage segmentation method
proposed based on the FCN architecture, introduces a deep class-specific learning
to overcome the problem of blurred skin image features. Another skin damage
segmentation method SU-SWA [23] based on separable U-Net architecture and
stochastic weighted averaging can enhance the pixel-level discriminative repre-
sentation of the model. However, the receptive fields of the CNN-based model
are affected by the size of the convolutional kernel, resulting in an inherent lo-
calization of the convolutional operations, making it difficult for the network to
capture global representations, which are critical for accurately localizing the
location and boundaries of skin lesions.

Recently, Transformer with a self-attention mechanism can model long-range
dependencies between sequences and also takes into account global inter-pixel
correlations. In this paper, we propose a multi-path segmentation network (MSNet)
based on CNN and Transformer, aiming to segment skin lesion images more ac-
curately. We introduce multiple parallel feature extraction paths in the network,
specifically, MSNet includes detail information path (DIP), global information
path (GIP), and base information path (long connection, LC). Considering the
respective features and advantages of CNN and Transformer in capturing fea-
tures, an efficient residual module (ERM) is introduced in the detail information
path, and an expansion factor is introduced inside the ERM to guarantee that
the network acquires a large sensory field. The Transformer module is used in
the global information path, which slices the 2D image into a 1D sequence for
input into the network, and its unique self-attention mechanism can focus on the
global context information, which makes up for the defects of the CNN struc-
ture. The base information path follows the idea of residual connection, which
feeds the image to the end of the model through a long connection to avoid the
problem of network degradation. In addition, MSNet applies pixel attention and
coordinate attention at the front and end of the network individually, and these
attention mechanisms help the network to focus on important feature informa-
tion, which further enhances the reliability of segmentation results. Finally, to
address the differences in the requirements of different application scenarios, we
propose two types of networks, MSNet-1 and MSNet-2, based on the structure
of MSNet. MSNet-1 possesses more lightweight and real-time characteristics,
whereas MSNet-2 has a more advantageous prediction accuracy. As shown in
Fig. 1, our two proposed models achieve an excellent balance between accuracy
and inference speed. The contributions of this paper are as follows:

1. We propose a multi-path lightweight segmentation network MSNet, which
combines the features captured by CNN and Transformer to effectively ex-
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tract details and global information. Based on this structure, we design two
structures to meet the application scenarios with different requirements.

2. We propose the Efficient Residual Module (ERM) for extracting detailed
semantic information, which obtains rich feature information with a small
number of parameters and computational resources, and guarantees the
lightweight and real-time nature of the network.

3. We perform extensive experiments on three publicly available skin lesion
datasets, achieving an excellent balance between accuracy and inference
speed, and verifying that our algorithm has excellent generalization on the
TN3K dataset.

Fig. 1: Accuracy-Speed comparisons on the skin lesion datasets ISIC2018.

2 Related works

2.1 CNN-based model

Fully Convolutional Networks (FCN) [13] is a pioneering work for image segmen-
tation based on CNNs. It replaced the fully connected layer of a standard classifi-
cation network with a convolutional layer. U-Net [17] employs a simple U-shaped
structure and multiple residual connections to fuse underlying positional infor-
mation with deeper semantic information, achieving accurate segmentation and
exhibiting strong predictive capabilities. DeeplabV3+ [4] and PSPNet [37] im-
prove the segmentation results by concatenating feature maps of different scales,
and ICNet [36] leverages a cascade strategy to gradually refine the segmenta-
tion prediction by integrating features of differing resolutions. Another research
focus is modular attention structure, SENet [11] and ECANet [27] concentrate
on channel information and adopt a channel attention module to effectively cap-
ture cross-channel interactions. On the other hand, CBAM [28] and DANet [7]
use a hybrid attention mechanism to enhance the representation capability of
CNNs. However, CNN-based models suffer from limitations in modeling long-
range dependencies as they detect features by sliding a convolutional kernel over
an image. This limitation is desired to explore alternative structural paradigms
to overcome.
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2.2 Transformer-based model

The transformer relies on self-attention to compute the representation of inputs
and outputs. Its success in NLP tasks has led researchers to apply it to the field of
computer vision. ViT [5] is a landmark work that divides a 2D input image into
patches, which are later projected into fixed-size vectors as inputs. This approach
has achieved excellent results in image recognition tasks. Swin Transformer [12]
draws on the hierarchical construction method inspired by CNNs to build a
hierarchical transformer. It adopts the way of moving windows to reduce the
sequence length, which makes the interaction between neighboring windows and
thus enhances the model’s global modeling capability. Segformer [32] proposes a
hierarchical Transformer encoder that captures and outputs multi-scale features.
It aggregates the information from different layers in the decoder to combine
local and global attention. However, the strength of Transformer lies in modeling
global information and it may struggle to capture detailed features. Additionally,
its higher computational burden may not be suitable for resource-constrained
scenarios, hence there has been a trend towards combining CNN and Transformer
to handle segmentation tasks, leveraging the strengths of both models.

2.3 Skin lesion segmentation model

In recent years, a number of models for skin lesion segmentation tasks have
emerged. BAT [26] proposes a novel and effective context-aware network that
captures more feature information of the input image by utilizing the prior knowl-
edge of the boundaries. FATNet [30]integrates an additional Transformer branch
to efficiently capture long-range dependencies and designs an efficient decoder
to improve the multilayer feature fusion process. REMANet [33] is a simple and
effective structure that does this by employing an attention mechanism in the
downsampling stage to highlight the major regions and subsequently fusing re-
verse attention in the upsampling stage to optimize the jump connections in
order to improve the dimensionality and quality of the segmentation results.
In contrast, MALUNet [18], which is based on the UNet structure, introduces
a variety of attention mechanisms to control the number of parameters in the
model; similarly, EGEUNet [19] demonstrates excellent performance through the
grouping idea for model architecture design. However, none of the above models
consider optimizing the speed of model inference, which is detrimental to sce-
narios with real-time requirements, and thus a fast and efficient model needs to
be designed to adapt to such needs.

3 Proposed Method

3.1 MSNet

The structure of MSNet is shown in Fig. 2, and the network can be divided
into three parts: (1) The network with initial block and pixel attention module.
(2) The parallel feature extraction module includes the detail information path,
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Fig. 2: An overview of the proposed MSNet framework.

the global information path, and the long-connected base information path. (3)
The coordinate attention module. The specific network configuration is shown
in Table 1.
Initial Block. The initial block is shown in Fig. 3(a), designed to perform initial
feature extraction and dimension adjustment on the input image. Specifically,
the initial block comprises three 3 × 3 convolutional layers. The first convolu-
tional layer utilizes a stride of 2, enabling downsampling of the input image and
adjusting the number of channels. The subsequent two convolutional layers con-
tinue with further feature extraction and abstraction of the image data, aiming
to provide richer feature representations for subsequent network layers, the final
result is output by batch normalization and PReLU activation function.

Fig. 3: Modular components in MSNet.

Pixel Attention. Pixel attention is capable of generating a 3D (C ×H ×W )
matrix as an attention feature [38], which assigns a specific pixel value to each
pixel point in the feature map, and the strategy introduces fewer additional
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parameters, making it suitable for application in networks with lightweight re-
quirements. As shown in Fig. 3(b), the pixel attention map is generated by 1×1
convolution and sigmoid function, after which the output is obtained by mul-
tiplying the input by residual join. The computational formula is as follows:

PA (F ) = σ (C1×1 (F )) · F (1)

where F represents the input feature map, C1×1 represents the 1×1 convolution,
and σ denotes the sigmoid function.

Table 1: Detailed architectural configuration of MSNet.

Stage Layer Input (3 × 512 × 256)

First Part 1 Initial Block (64 × 256 × 128)
2 Pixel Attention (64 × 256 × 128)

Second Part

3 ERM (d=1) (64 × 256 × 128)

DIP

4 Downsampling Block (128 × 128 × 64)
5 ERM (d=1) (128 × 128 × 64)
6 Downsampling Block (256 × 64 × 32)

7-9
ERM (d=2) (256 × 64 × 32)
ERM (d=5) (256 × 64 × 32)
ERM (d=9) (256 × 64 × 32)

10 Upsampling Block (128 × 128 × 64)
11 ERM (128 × 128 × 64)

12 Upsampling Block (64 × 256 × 128)

GIP
13 ERM (64 × 256 × 128)
14 Downsampling Block (64 × 128 × 256)
15 Transformer Block (64 × 128 × 256)
16 Upsampling Block (64 × 256 × 128)

Third Part 17 Coordinate Attention (64 × 256 × 128)
18 Seg Head (2 × 512× 256)

Output (2 × 512 × 256)

Coordinate Attention. As shown in Fig. 3(c), coordinate attention is located
in the aggregation part at the end of the network, and its role is to be used
to integrate feature information from different paths. The coordinate attention
mechanism [9] was originally designed to help the network locate and recognize
objects of interest, while we note that coordinate attention can perceive feature
information obtained from different processing methods, and its lightweight na-
ture reduces the computational burden of the network. Specifically, the input
F ∈ RC×H×W is first obtained by summing the three outputs of the detail
information path, the global information path, and the base information path,
after which it undergoes average pooling along the horizontal and vertical di-
rections in two parallels, such that the feature information Fh ∈ RC×H×1 and
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Fw ∈ RC×1×W can be obtained along the spatial and channel dimensions, and
then adjusting the dimension of Fh to F ′h ∈ RC×1×H after connecting with
Fw, and reduce the number of channels and batch normalization and nonlinear
activation function by 1 × 1 convolution to obtain the intermediate feature map
Fm ∈ RC/r×1×(H+W ). The specific formula is as follows:

Fh = fh
Avg (F ) , Fw = fw

Avg (F ) (2)

F ′h = p
(
Fh

)
(3)

Fm = ρ
(
C1×1

([
F ′h, Fw

]))
(4)

where fh
Avg and fw

Avg represent mean pooling operations along the vertical and
horizontal directions, respectively, p denotes the function that permutes the
dimension of the feature map, ρ denotes the batch normalization and nonlinear
activation function, C1×1 denotes the 1 × 1 convolution, and [•] denotes the
concatenation operation.

Then Fm is obtained as two feature mappings F1 ∈ RC/r×1×H and F2 ∈
RC/r×1×W by channel separation sp operation, and the dimension of F1 is ad-
justed to F ′

1 ∈ RC/r×H×1, and then 1 × 1 convolution is applied to recover it
to the number of input channels, and then after that two attention weights W1

and W2 are obtained by the sigmoid function, which is formulated as follows:

W1 = σ (C1×1 (p (sp (Fm)))) (5)

W2 = σ (C1×1 (sp (Fm))) (6)

Finally, the attention weights are multiplied by the sum of the three input
paths X0, X1 and X2 to output the result Y . The formula is given below:

Y = (X0 +X1 +X2) ·W1 ·W2 (7)

3.2 Detail Information Path

CNN structure is responsible for capturing low-level features of an image such
as edges and textures at the bottom layer, while the deeper convolutional layers
can extract abstract and semantic features such as shapes and categories of
objects, which is the most common approach in semantic segmentation tasks, so
we design an efficient residual module based on the convolutional structure for
extracting the feature map information at different stages.
Efficient Residual Module. The ERM structure evolves from the bottleneck
structure, and similarly, the inverted residual structure and the ShuffleNet unit
proposed in MobileNet [20] and ShuffleNet [14], which are modules designed to
extract feature information more efficiently, while we build upon the basis of this
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kind of structure to further explore its potential, aiming at capturing more fea-
ture information. As shown in Fig. 4, firstly, the input features will be convolved
by 1 × 1 to halve the number of channels. Then a decomposition convolution
strategy will be used to decompose the 3 × 3 depth expansion convolution into 3
× 1 and 1 × 3 convolutions, which can obtain a larger sensory field while reduc-
ing the network parameters. The expansion rate will increase with the decrease
of the graph size. The specific formula is as follows:

x = DC1×3,r (DC3×1,r (C1×1 (Fin))) (8)

where DC1×3,r and DC3×1,r denote 1 × 3 and 3 × 1 deeply inflated convolution
with an inflation rate of r, Fin denotes the input feature map, and x denotes the
output of that part.

Fig. 4: Efficient Residual Module (ERM) architecture.

The ERM is next divided into three branches: the left branch employs a fu-
sion channel attention mechanism to capture semantic and detail information,
while the right branch combines the spatial attention to obtain the location
information of features. These two attention mechanisms pool two different di-
mensions, spatial and channel, to generate an attention graph for finer feature.
Subsequently, the left and right branches integrate semantic and spatial infor-
mation through asymmetric deep convolution, and the middle branch retains the
original base information through the long connection. The end fuses the outputs
of the three branches and recovers the channels by 1 × 1 point-by-point con-
volution, and finally sums the input feature maps with the three-branch fusion
results by residual join, and outputs the results by using the channel blending
operation. The formula is as follows:

CA = σ (MLP (fAvg (x)) +MLP (fMax (x))) (9)

SA = σ (C7×7 ([fAvg (x) , fMax (x)])) (10)
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yl = DC1×3 (DC3×1 (CA (x))) (11)

yr = DC1×3 (DC3×1 (SA (x))) (12)

Fadd = C1×1 (yl + yr + x) (13)

Fout = CS (Fadd + Fin) (14)

where MLP denotes multilayer perceptual machine, which consists of two layers
of fully connected and activation functions. CA and SA denote the channel and
spatial attention mechanisms, respectively, yl and yr denote the outputs of the
left and right branches, DC1×3 and DC3×1 stand for 1 × 3 and 3 × 1 deep
convolution, CS is the channel shuffle operation, Fadd is the result of fusion of
the three branches, and Fout is the final output result of ERM.

3.3 Global Information Path

The transformer’s self-attention mechanism can integrate all positional informa-
tion in the input sequence, thus enhancing the model’s ability to handle long-
range dependencies. Therefore, we enhanced the global modeling capability of
the network by introducing the Transformer module in the global information
path. To reduce the effect of image size on the computational parameters of the
Transformer, we downsample the image to reduce the memory load. Meanwhile,
only one Transformer module is set in the global information path to reduce the
overall computational burden. Specifically, the image input to the Embedding
layer needs to be transformed into several small patches first, followed by map-
ping each patch to a one-dimensional vector through linear mapping, to satisfy
the input requirements of the Transformer. Then comes the multi-head atten-
tion part, we divided 8 heads to reduce computational complexity, after the input
vectors are normalized by a normalization operation, we divide the sequence into
multiple heads, which are obtained by three trainable transformation matrices
corresponding to Q (query), K (key), and V (value), where Q goes to match
with each K, and V denotes the information obtained from the sequence. Then
we perform scaled dot-product attention computation for each head to get the
output of that head, and then we splice all the outputs of the heads together to
get the output of the sequence by implementing linear transformation through
a multilayer perceptron machine. Finally, we recover the 2-dimensional vector
data as 3-dimensional image data and output the feature processing results of
the global information path. The formula for the scaled dot-product attention
computation is as follows:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (15)
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where dk denotes the length of the vector K, and KT denotes the transpose of
the vector K.

In particular, long connection-based base information paths in parallel with
DIP and GIP are used to preserve the original characteristics of the input infor-
mation, thereby improving the performance and generalization of the network.

4 Experiments

4.1 Dataset and Evaluation Metrics

Table 2: Detailed description of the three skin lesion datasets ISIC2016, ISIC2017,
ISIC2018, and the thyroid nodule dataset TN3K.

Dataset Training Validation Testing

ISIC2016 900 / 379
ISIC2017 2000 150 600
ISIC2018 2594 100 1000
TN3K 2879 / 614

In this paper, we have chosen to perform experiments on three publicly avail-
able skin lesion datasets, which are provided by the International Skin Imag-
ing Collaboration (ISIC). The publicly available thyroid nodule segmentation
dataset was then selected for generalization experiments on our method. The
specific details of each dataset are shown in Table 2. In addition, we selected the
mean intersection-over-union (mIoU) and accuracy (Acc) for evaluation.

4.2 Implementation Details

We performed this in the PyTorch framework and used an NVIDIA GeForce
RTX 3090 Ti graphics card (24 GB video memory) for training and testing. All
images were resized to a resolution of 512 × 256 throughout the experiment.
In the training phase, the BCE loss function was chosen for calculating the
difference between the predicted probabilities and the true labels with a batch
size of 8. Stochastic Gradient Descent (SGD) was used as the optimizer, with
an initial learning rate set to 0.01 and momentum parameter of 0.9, while a
weight decay strategy was applied with a decay coefficient of 0.0001, and cosine
annealing of the learning rate descent was used to guide the training process. In
addition, all layers in our proposed neural network are trained from scratch.

4.3 Ablation Experiment Analysis

To evaluate the effectiveness of the various components of the network, we con-
duct a comprehensive ablation experiment. We start with a single-path model as
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the baseline and gradually introduce additional components to create the multi-
path model. We specifically examine the impact of pixel attention and coordinate
attention. Ablation experiments were conducted using the ISIC2016 dataset.
Single Path. As shown in Model 1 and Model 2 in Table 3, choosing only
one feature extraction method, it is evident that the combined performance of
the CNN-based DIP surpasses the Transformer-based GIP. Model 1 achieves an
inference speed of 106 FPS and a mIoU of 89.44%, which is 16 FPS and 4.24%
higher compared to Model 2.
Dual Path. Model 3, Model 4, and Model 5 in Table 3 introduce a second path
built upon the single path approach. Three combination methods are employed:
DIP+LC, GIP+LC (LC represents the long connection operation of the basic
information path), and DIP+GIP. Notably, the DIP+LC combination achieves
an accuracy of 89.86% while maintaining an inference speed of 106 FPS, so we
consider doing further extensions based on this combination of Model 3 to design
MSNet-1, a segmentation network that takes into account real-time performance.
Three Paths. As shown in Model 6 in Table 3, the DIP+GIP+LC three-way
parallel strategy increases the model complexity, but its mIoU reaches 90.32%,
which outperforms all the previous methods in terms of accuracy, making it a
worthwhile choice for scenarios that demand higher accuracy.
Pixel Attention. Acknowledging the outstanding advantages of Model 3 and
Model 6 in terms of speed and accuracy respectively, we incorporate the PA
module into both models (Model 7 and Model 8). As a result, the accuracy of
the module increases by 0.16%, while the inference speed remains unaffected.
Coordinate Attention. The CDA module is added to the end of the model,
as demonstrated by Model 9 and Model 10 in Table 3. Compared with Model 7
and Model 8, the inference speed of Model 9 and Model 10 undergoes a minor
decrement, but the mIoU is improved by 0.56% and 0.74%, differently. Given
the substantial gain in accuracy, we propose MSNet-1 with faster inference and
better real-time performance, as well as MSNet-2 with higher accuracy.

We examine different numbers of ERMs, specifically 3, 5, 7, 9, and 11, within
MSNet, which prioritizes faster inference. As shown in Table 4, we observed that
fewer ERMs, such as 3, lead to improved speed but at the cost of reduced accu-
racy. Conversely, using 11 ERMs yields the highest accuracy but slower inference.
Notably, with 7 ERMs, a balance can be struck between real-time requirements
and accuracy in MSNet-1. In the case of MSNet-2, which emphasizes higher
accuracy, using 7 ERMs also yields the highest accuracy compared to other con-
figurations. Therefore, employing 7 ERMs for feature extraction is considered
the optimal choice.

4.4 Comparison Experiment

Quantitative Evaluation. We compare MSNet with other state-of-the-art
methods on three publicly skin lesion datasets. As shown in Table 5, MSNet-1
exhibits superior accuracy compared to most models while maintaining a com-
mendable inference speed of 99 FPS. On the other hand, MSNet-2 has the highest
accuracy with the best prediction with a mIoU of 91.22%, 84.63%, and 84.14%
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Table 3: Quantitative analysis of ablation experiments.

Method Params FLOPs Speed mIoU
(M) (G) (FPS) (%)

A: Single path Model 1: DIP 0.903 9.23 106 89.44
Model 2: GIP 0.900 10.25 90 85.2

B: Dual path
Model 3: DIP + LC 0.903 9.23 106 89.86
Model 4: GIP + LC 0.900 10.25 90 84.71
Model 5: DIP + GIP 1.727 16.91 60 89.71

C: Three paths Model 6: DIP + GIP + LC 1.727 16.91 60 90.32

D: Pixel attention Model 7: DIP + LC + PA 0.907 9.37 106 90.02
Model 8: DIP + GIP + LC + PA 1.731 17.04 60 90.48

E: Coordinate
Model 9 (MSNet-1): 0.911 9.38 99 90.58

attention
DIP + LC + PA + CDA

Model 10 (MSNet-2): 1.735 17.06 58 91.22DIP + GIP + LC + PA + CDA

Table 4: Ablation experiments on ERM quantities.

Method
MSNet-1 MSNet-2

Params FLOPs Speed mIoU Params FLOPs Speed mIoU
(M) (G) (FPS) (%) (M) (G) (FPS) (%)

ERM-3 0.226 6.04 123 85.37 1.05 13.71 65 87.08
ERM-5 0.763 9.08 107 90.31 1.587 16.75 61 89.63
ERM-7 0.911 9.38 99 90.58 1.735 17.06 58 91.22
ERM-9 0.950 9.72 87 90.15 1.774 17.39 54 90.07
ERM-11 0.961 10.13 67 90.63 1.785 17.80 45 90.53

on the three datasets, respectively. Moreover, the number of parameters of our
model is small, which doesn’t impose any extra memory burden in practical
application scenarios.
Visual Comparison. In Fig. 5, we present the visualized prediction results of
the various models. The first two columns display the input images and their cor-
responding ground truth labels, while the subsequent columns showcase the pre-
dicted images from different models. The figure highlights that our two proposed
models perform remarkably well in accurately segmenting the lesion regions, even
for images with intricate boundaries and varying sizes. This qualitative compari-
son reaffirms that MSNet effectively addresses diverse and complex tasks in skin
lesion segmentation.

4.5 Generalization Experiment

To assess the generalization capability of the proposed approach, we conducted
experiments on the TN3K dataset for thyroid nodule segmentation. Employ-
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Table 5: Comparison with state-of-the-art methods on three skin lesion datasets.

Method
ISIC2016 ISIC2017 ISIC2018 Params FLOPs Speed

mIoU Acc mIoU Acc mIoU Acc (M) (G) (FPS)
(%) (%) (%) (%) (%) (%)

UNet [17] 85.56 95.03 80.86 91.40 82.54 91.95 24.891 225.00 38
PSPNet [37] 86.25 95.62 72.51 87.85 76.89 89.41 46.602 89.34 39
BiseNetV2 [34] 87.45 96.08 79.08 90.69 79.68 90.84 3.341 6.14 132
DeeplabV3+ [4] 85.76 95.52 76.02 89.48 74.82 88.20 41.216 88.24 35
MobileNetV3 [10] 90.12 96.86 79.80 91.96 81.20 91.55 3.282 8.68 99
CGNet [31] 86.25 95.30 82.02 91.86 76.88 89.17 0.492 1.74 122
ICNet [36] 88.62 96.27 80.16 91.27 77.92 89.52 47.528 7.77 113
FastFcn [29] 88.00 96.23 79.00 90.75 75.64 88.91 66.338 65.16 48
Fastscnn [15] 88.61 96.36 80.41 91.32 80.25 90.94 1.398 0.46 179
Segformer [32] 87.40 95.80 79.11 90.79 80.74 91.05 3.716 3.68 117
DPT [16] 87.10 95.75 77.38 89.88 79.05 90.04 110.00 104.00 22
ViT [5] 88.62 96.30 79.23 90.78 80.83 90.97 142.00 216.00 16
Swin [12] 88.79 96.39 83.17 92.49 80.87 91.02 58.942 119.00 34
TransUNet [3] 81.45 93.57 78.43 90.23 77.36 89.65 66.815 32.63 43
SwinUNet [2] 85.29 94.95 81.84 91.88 82.86 92.21 27.145 5.91 85
UNext [25] 83.77 94.44 82.28 92.15 81.54 91.45 1.471 0.43 192
FATNet [30] 89.74 96.68 83.41 92.74 83.86 92.77 29.615 42.81 85
MedT [24] 86.32 95.39 83.14 92.54 83.20 92.33 1.37 1.10 12
MALUNet [18] 83.30 94.11 80.93 91.49 82.65 91.96 0.175 0.083 138
EGEUNet [19] 81.33 93.21 81.02 91.46 81.51 91.55 0.053 0.072 113

MSNet-1 90.28 96.89 83.28 92.61 83.00 92.14 0.911 9.38 99
MSNet-2 91.22 97.27 84.63 93.19 84.14 92.88 1.735 17.01 58

ing the same experimental setup, we compared our method, MSNet, with ten
representative algorithms. The numerical metrics results are presented in Table
6, where it’s evident that MSNet-1 maintains good real-time performance and
achieves superior accuracy compared to most methods. Furthermore, MSNet-
2 exhibits even higher accuracy, surpassing all other methods. These findings
underscore the excellent generalization ability of our algorithm in addressing
thyroid nodule segmentation tasks.

5 Conclusion

In this paper, we propose MSNet, a multi-path segmentation network for skin
lesion segmentation tasks. The proposed network combines the strengths of CNN
and Transformer to leverage local and global information, resulting in state-of-
the-art performance. In MSNet, we design ERM to efficiently extract feature
information at different stages, enabling more precise identification of lesion
boundaries. Additionally, pixel attention and coordinate attention modules are
strategically incorporated at the network’s beginning and end to guide and in-
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Fig. 5: Visual comparison with different SOTA methods on the ISIC 2018 dataset.

Table 6: Generalization experiments on the thyroid nodule dataset.

Method mIoU (%) Acc (%) Params (M) FLOPs (G) Speed (FPS)

UNet 84.94 96.21 24.891 225.00 38
BiseNetV2 81.14 95.57 3.341 6.14 132
MobileNetV3 82.87 95.31 3.282 8.68 99
ICNet 83.59 95.73 47.528 7.77 113
Fastscnn 85.58 96.32 1.398 0.46 179
Segformer 79.10 94.76 3.716 3.68 117
ViT 77.37 94.03 142.000 21.00 16
Swin 77.6 93.78 58.942 11.00 34
TransUNet 86.56 96.47 66.815 32.63 43
SwinUNet 80.57 94.96 27.145 5.91 85

MSNet-1 86.12 96.38 0.911 9.38 99
MSNet-2 86.62 96.62 1.735 17.01 58

tegrate important feature information without introducing additional computa-
tional burden. Extensive experiments demonstrate that MSNet is superior to
other models in terms of accuracy, and its lightweight and real-time character-
istics make it highly versatile across various scenarios. Moving forward, we plan
to further optimize the model structure to facilitate its application in differ-
ent medical image processing tasks. The prospects for MSNet include exploring
ways to enhance its efficacy and adaptability in diverse medical imaging domains.
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