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Abstract. Recently, large-scale pre-trained text-to-image models like
Stable Diffusion have demonstrated unparalleled capabilities, revolution-
izing many tasks. Recent studies have found that these advanced gen-
erative models can be applied to discriminative tasks, showing strong
accuracy and robustness in zero-shot recognition. However, the current
pipeline suffers from impractical inference speed (about 1 minute per im-
age). In this paper, we introduce Hierarchical Prompt Learning, a sim-
ple and effective pipeline to achieve high-speed classification for diffusion
generators. Our method first proposes a hierarchical evaluation strategy,
leveraging prior class tree taxonomy to reduce unnecessary class mod-
eling. To handle the excessive sampling steps, we employ prompt learn-
ing, a parameter-efficient technique, to adapt downstream task-specific
knowledge into the conditional text embedding. This allows our method
to efficiently sample diffusion models in just 25 steps while maintain-
ing high accuracy. The proposed hierarchical evaluation achieves up to
3.5x speedups compared to previous diffusion classifiers, and the com-
bination with prompt learning achieves up to 20x speedups. Beyond
efficiency, our method also maintains high performance in zero-shot and
few-shot scenarios, both in-distribution and out-of-distribution. More-
over, our visualization analysis sheds light on what our diffusion prompts
learn, providing insights into the model’s decision-making process. Codes
are available at https://github.com/PRIS-CV/Hierarchical-Prompting-
for-Diffusion-Classifiers.

Keywords: Diffusion classifier · Zero/Few-shot classification · Prompt
learning.

1 Introduction

Currently, the main paradigm for classification tasks relies on discriminative
models. These models have achieved high-speed inference and human-level ac-
curacy [14, 21]. However, they often focus on the most discriminative patterns
⋆ indicates corresponding author.
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Fig. 1. Comparison of our method (right) with diffusion classifier (left). Take
Pets dataset [36] as an example, for Diffusion Classifier, N timesteps are sampled for
each class (total K classes) to compute its prediction score. For our method, hierarchi-
cal evaluation reduces the number of classes that need to be estimated (green cells),
and prompt learning reduces the number of sampling timesteps for each class. They
simultaneously increase the speed of inference.

(e.g., the furry sharp ears of a cat) to achieve such performance, which comes
at the expense of generalization ability. As a result, they tend to perform poorly
on out-of-distribution data and are prone to shortcut learning (e.g., associating
green grass with cows) [18,29].

Conversely, generative models offer a more comprehensive data distribution
modeling [19]. Recent advancements in diffusion models have excelled in text-
to-image generation, image-to-image translation and other challenging tasks
[12, 15, 23, 24, 47]. Models like Imagen [41], DALL-E 2 [39], and Stable Diffu-
sion [40] generate realistic, high-resolution images from diverse text prompts.
This suggests a potentially more detailed and comprehensive understanding of
objects, leading to robust recognition abilities. Leveraging this, some pioneers
have adapted large-scale pre-trained generative models for downstream discrim-
inative tasks [11,32], achieving accurate zero-shot classification. For instance, Li
et al. [32] model each class’s log-likelihosod (exactly the variational lower bound)
to score the image. These methods iteratively noise and denoise test inputs using
each class as a text prompt to condition the model, and select the class with
the best denoising ability. This paradigm exhibits excellent out-of-distribution
performance and robust recognition ability. However, the slow inference speed
(about 1 minute per image) significantly hinders its practical application.

The slow and costly inference can be attributed to two main reasons. First,
unlike traditional discriminative models that compute all class probabilities in a
single forward pass, diffusion classifier models individually model the conditional
likelihood of each class, leading to inference time proportional to the number of
classes. Second, approximating each class probability needs an excessive number
of sampling steps. Inherent in the diffusion iterative inference process, genera-
tive classifiers also suffer from this stochastic denoising process over hundreds
of timesteps, which would otherwise result in lower accuracy. To address these
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two problems, we introduce Hierarchical Prompt Learning in this paper, as il-
lustrated in Fig. 1. We first propose a hierarchical evaluation strategy. The key
insight is to drop apparently “wrong” categories to avoid evaluating all classes.
However, effectively pruning “wrong” categories is crucial yet non-trivial. To this
end, we introduce prior information to generate category hierarchical trees based
on category taxonomy. During inference, our evaluation is divided into multi-
granularities based on the hierarchical tree, from coarse to fine. For example,
in Fig. 1, once recognizing “cat” at the parent hierarchy level, there is no need
to evaluate classes belonging to “dog”. This hierarchical prediction architecture
saves inference time by pruning distant sub-categories, leaving more computa-
tional space for complex fine-grained categories.

Another key contribution is that we find embedding task-specific category
knowledge through prompting can greatly alleviate the requirement for massive
sampling steps to achieve high accuracy. For many large discriminative multi-
modal models, such as CLIP [38], BLIP [33], and ChatGPT [5], the text input,
also known as a prompt, has proven to have a significant influence on downstream
performance. Consequently, prompt learning [4, 17, 35, 50] has emerged to opti-
mize downstream performance through end-to-end training with few downstream
samples. Specifically, it replaces prompts such as “a photo of a {CLASS}.”
with continuous learnable word embeddings (Fig. 1, right). Inspired by this,
we combine this technique with diffusion classifiers, reducing the number of
sampling timesteps for each class by more than 10 times compared to previous
baselines while achieving slightly better performance. Moreover, prompt learn-
ing, as a parameter-efficient fine-tuning technique, introduces negligible training
costs, requiring only a few extra downstream samples.

Comprehensive experiments are conducted to validate the effectiveness of
our method. We select fine-grained visual classification tasks as our testbeds
due to their natural hierarchical taxonomy. Our approach can also be adapted
to other downstream classification tasks by developing hierarchical trees based on
task-specific granularity. Compared to previous state-of-the-art methods, our ap-
proach achieves 7-20x speedups and an average accuracy improvement of 12.28%
across all datasets. Furthermore, our method demonstrates significantly stronger
robustness than the baseline against domain shifts. Additionally, through visual-
ization of the generation process, we analyze the model’s decision-making process
and explain how our diffusion prompts enhance discriminative ability.

2 Related Work

Generative models for discriminative tasks In recent years, many works
have explored how generative models can be applied to discriminative tasks.
Some methods use generative models for data augmentation and then train dis-
criminative tasks on augmented training datasets [1, 26, 44, 49]. Some methods
extract features from generative models for direct use or fine-tuning in discrimi-
native tasks [2,13,20,37,43,48]. Xu et al. [48] utilize a pre-trained text diffusion
model to extract features and combine it with a discriminative model for open
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vocabulary panoptic segmentation. The above methods use the generative model
as an auxiliary task to the discriminative model. Another category of inversion-
based methods use generative models directly for the discriminative task [11,32].
Li et al. [32] show that zero-shot classification can be achieved by utilizing den-
sity estimates derived from large-scale text-to-image diffusion models such as
Stable Diffusion [40]. These types of methods have stronger multimodal compo-
sitional reasoning ability and robustness [32]. However, the inference speed of
such methods is very slow and there is still a gap with the accuracy of discrim-
inative methods on the zero-shot classification task. Our work is based on the
inversion-based methods with improvements in inference speed and performance
on downstream classification tasks.

Parameter-Efficient Fine-tuning Parameter-Efficient Fine-tuning (PEFT)
focuses on selectively updating a limited number of parameters in a large pre-
trained model for downstream tasks. They add small feedforward networks be-
tween layers in the pretrained model [3, 25], or apply techniques to select and
fine-tune a sparse set of model parameters on labeled training datasets [27, 28].
The goal is to keep performance while updating as few parameters as possible.

Prompt learning is one type of PEFT that involves adding instructions to
inputs and pre-training the language model to enhance downstream tasks. Manu-
ally defined prompts are commonly used to provide guidance to large pre-trained
models like CLIP [38], GPT-3 [5], etc. However, it is impractical and sub-optimal
to find the best manually defined prompt. To solve these problems, several meth-
ods have been proposed to automatically optimize continuous vectors in the word
embedding space for large-scale vision-language models like CLIP. Zhou et al. [50]
replace hand-crafted prompts with a set of learnable prompts inferred from la-
beled few-shot samples, namely CoOp. Nayak et al. [35] learn attribute and
object soft prompts for compositional zero-shot learning. In terms of generation,
Gal et al. [16] propose textual inversion to generate images with new objects or
styles by learning new words in the textual embedding space of pre-trained text-
to-image models. Despite its success in discriminative models, prompt learning
has not been applied to generative models (similarly technique merely applied
to the customized generation [16]).To best of our knowledge, we are the first to
combine the diffusion classifier and prompting for the classification tasks.

Fine-grained visual classification Fine-grained visual classification (FGVC)
aims to achieve a refined classification of subclasses within a large class, where in-
stances have small inter-class variations and large intra-class variations [6]. Many
works [7–10, 42] use hierarchical labelling framework of FGVC due to its hier-
archical nature with different levels of concept abstraction. Chang et al. [7] use
specific classification heads for different levels and limit gradient flow to update
only the parameters in each head, enabling distinction between coarse-grained
and fine-grained features. Chen et al. [9] employ a hierarchical tree to establish
relationships between parent and child labels, ensuring mutual exclusivity of
classes at the same level. Our approach also uses multi-granularity labels to con-
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Fig. 2. Overview of our Hierarchical Prompt Learning method. For training,
we input images into the diffusion model and use each class’s learnable prompt as a
control condition to get similarity scores. Next, we compute the cross-entropy loss from
similarity scores. Finally, learnable prompts are updated by backpropagating the loss.
For inference, we use the hierarchical evaluation strategy. At each level, condition the
diffusion model with learned prompt and select the class with the highest similarity
score at this level. According to the hierarchical tree, go to the next level whose leaf
nodes continue the previous process.

struct a hierarchical tree. Instead of exploring the relationship between features
of different levels, we use the hierarchical information for inference acceleration.

3 Method

In this section, we introduce Hierarchical Prompt Learning, as inllustrated in
Fig. 2, which is combined with hierarchical evaluation (Sec. 3.2) and prompt
learning (Sec. 3.3).

3.1 Prerequisites

Diffusion Generative Classifier In this section, we describe how current
methods [11,32] convert a conditional diffusion model into a zero-shot classifier.
Let’s denote a dataset

{
(x1, y1), . . . , (xM , yM )

}
with M labeled samples, where

each image belongs to one of K classes. We can then derive conditional prompts
[ck] := {c1, c2, · · · , cK} from the labels yk (e.g., “A photo of [class]”).

Given a test input x, the goal is to use a diffusion generator parameterized
by θ to predict the most likely class. According to Bayes’ theorem, we can turn
the likelihood pθ(ck | x) estimated by generator G into predictive probabilities
for the classification task :

pθ(ck | x) =
pθ(x | ck)p(ck)

p(x)
. (1)

Since p(x) is the same for all classes, it can be ignored for the purpose of
classification, and we can focus on computing pθ(x | ck)p(ck). Assuming a uni-
form prior p(ck), the classification problem then simplifies to finding the class k
that maximizes pθ(x | ck):
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ỹ = argmax
k

pθ(x | ck). (2)

Since log-likelihoods cannot be obtained directly from the diffusion model,
existing methods use approximate evidence lower bound (ELBO) as an alterna-
tive [11, 32]. In the diffusion model, the approximate ELBO can be expressed
as [23]:

pθ(x | ck) ≥ −Et,ϵ

[
∥ϵ− ϵθ(xt, c)∥2

]
+ C, (3)

where xt is the noised sample by adding Gaussian noise ϵ ∼ N (0, I) to the clean
input x with timestep t ∼ [1, 1000], and ϵθ(xt, c) is the predicted noise through
the network and C is a constant [23].

By plugging Eq. 3 into Eq. 2, the prediction of the model is:

ỹ ← c̃ = argmax
ck

log pθ(x | ck)

≈ argmin
ck

Et,ϵ[∥ϵ− ϵθ(xt, ck)∥2].
(4)

In practice, each expectation in Eq. 4 is computed using an unbiased Monte
Carlo estimate by sampling N pairs (ti, ϵi), with ti ∼ [1, 1000] and ϵi ∼ N (0, I),
and computing:

Sck
(x) = −Et,ϵ[∥ϵ− ϵθ(xt, ck)∥2] ≈ −

1

N

N∑
i=1

∥ϵi − ϵθ(xti , ck)∥
2
. (5)

We denote it as prediction similarity score Sck
for each class k. It can be simply

summarized as the mean squared error between the prediction noises of the
network and the original sampling noises added to the image, with higher scores
representing higher similarity.

Efficiency Improvement Strategy If using diffusion model for classification
according to the above process directly, K×N trails are required for each image,
where K is the number of classes and N is the number of sampling pairs in the set
{(ti, ϵi)}Ni=1 to estimate the prediction scores. For accurate prediction, hundreds
of pairs (e.g., 250-500) are usually required, resulting in very slow inference.

To reduce inference time, Diffusion Classifier [32] uses a adaptive evaluation
strategy. The strategy first roughly classifies all the categories and then finely
classifies the most likely part of the categories. Specifically, evaluation is split
into a series of stages, in each of which the classes with the highest prediction
score are selected to the next stage. Taking two stages for Pets dataset as an
example, in the first stage, a smaller amount of N1 (25 times) is used to evaluate
each class, and then the Ktop (top 5) classes with the highest prediction scores
are selected to the second stage with a larger amount of N2 (250 times). This
allows more computational resources to be allocated to the more reasonable
classes. However, in case of large number of classes, the inference is still slow.
For example, it takes 61 seconds to classify an image of CUB-200-2011 dataset
with 200 classes. Our proposed strategy in Sec. 3.2 further reduces the inference
time.
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3.2 Hierarchical evaluation when inference

Despite the adaptive evaluation strategy used in Diffusion Classifier [32], the
inference time still increases roughly linearly with the number of categories.
Adaptive evaluation requires to evaluate all categories in the first stage, which
is time-consuming and unnecessary. To further reduce the number of categories
to be estimated, our approach utilizes a smarter hierarchical evaluation strategy
using multi-granularity labels. We construct hierarchical classification tree based
on multi-granularity labels. When inference, first classify the coarse-grained level
and then the fine-grained level according to the structure of the hierarchical tree.
In this way, the number of categories to be classified is reduced and the scope of
classification is refined.

Take two levels in CUB [45] dataset as an example, “order” (coarse) and
“species” (fine) granularity. When inference, the conditional prompts [corder] are
first synthesized based on the order level labels [yorder] of Korder categories.
Then the prediction class at the order level can be obtained by finding highest
prediction score Sck

(x) (i.e. the Monte-Carlo estimate for condition ck on image
x in Eq. 5):

ỹorder ← c̃order = argmax
ck∈[corder]

Sck
(x), (6)

where [corder] := {c1, c2, · · · , cKorder}.
Next, find the sub-classes [yspecies] of Kspecies categories belonging to pre-

diction ỹorder in the hierarchical tree and transform them to prompts [cspecies].
Similarly, we can get the prediction class at the species level:

ỹspecies ← c̃species = argmax
cj∈[cspecies]

Scj
(x), (7)

where [cspecies] := {c1, c2, · · · , cKspecies}.

Discussion By hierarchical classification during inference, (Korder +Kspecies)
categories for which the conditional likelihood are required to be computed when
classifying a given image. As for adaptive evaluation strategy, (K +Ktop) cat-
egories are required. Clearly, due to the introduction of the hierarchical prior,
(Korder+Kspecies) are much smaller than (K+Ktop). When keeping the number
of sampling steps the same for each category, the number of trials our method
required is fewer than adaptive evaluation strategy, which improves the speed of
inference. Here we just take two levels as an example. For the same hierarchical
structure, when the number of levels is higher, theoretically more categories can
be eliminated. We also conduct experiments to illustrate this phenomenon in
Sec. 4.3. However, although the number of categories to be predicted is reduced,
the large number of sampling steps per category still leads to a long sampling
time. In Sec. 3.3 we will further discuss how our method reduces the large number
of sampling steps.
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3.3 Learn prompt for each granularity

To further reduce the number of sampling steps per category, we introduce
prompt learning, which is a parameter-efficient learning technique for fine-tuning
pre-trained diffusion models. We replace hand-crafted prompts with learnable
context, bringing task-relevant knowledge into the control prompts. With the
inclusion of learned prompts, compared to previous diffusion classifiers, the num-
ber of sampling pairs in the set {(ti, ϵi)}Ni=1 can be reduced to 1/10 or even less
while increasing the accuracy. Specifically, the conditional prompt for class k
given to the diffusion model is designed as:

ck = {vk1 , vk2 , . . . , vkM , yk}, (8)

where each vkm ∈ Rd(m ∈ {1, . . . ,M}) is a learnable vector with the same
dimension as word embeddings, M is a hyperparameter specifying the number of
context tokens to be tuned1, and yk(k ∈ {1, . . . ,K}) is the label. Since diffusion
classifiers require comparing differences across classes, to better capture class-
specific information, we choose to design specific context vectors for each class.
In this way, vkm is not the same when k changes.

Next, input the conditional prompt ck into the Eq. 5 and get prediction score
Sck

for each class yk on image x.
Note that for each image, we only randomly select one (ti, ϵi) from the small

number of sampling pairs {(ti, ϵi)}Ni=1 (e.g., N = 25) used for inference to com-
pute the prediction score. This allows the information under the sampling steps
that need to be applied when inference to be learned into the prompts at a faster
rate.

For diffusion classifiers, probabilities for classes are not directly obtained,
but are estimated by expectation in Eq. 5. Although we can theoretically get
the probabilities by applying softmax to the expectation, in practice the proba-
bilities are very close and noisy. To get calibrated probabilities, we convert these
expectation into probabilities by applying softmax with temperature:

pθ(y = yk | x) =
exp(−Sck

(x)/τ)∑
cj∈[cK ] exp(−Scj

(x)/τ)
, (9)

where τ is the temperature parameter.
Finally, conditional prompts at each granularity are learned by minimizing

the cross-entropy loss on the training dataset. Take two levels as an example,
“order” (coarse) and “species” (fine) granularity. The final loss can be defined as:

L = LCE(pθ(yorder | x), yorder) + LCE(pθ(yspecies | x), yspecies), (10)
where pθ(yorder | x) and pθ(yspecies | x) denote the prediction probabilities of
the “order” and “species” level respectively, LCE denotes the cross-entropy loss.

During inference, We apply the learned prompts to the hierarchical evaluation
strategy. The fine-tuned learnable vectors and class names are recomposed as
prompts for each granularity.
1 M is set to 16, the same as CoOp [50]. During inference, the additional computation

introduced by the learnable text is minimal and does not affect inference speed.
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4 Experiments

In Sec. 4.1 we test our approach in the fine-grained visual classification task. In
Sec. 4.2, we conduct experiments to test the out-of-distribution robustness. In
Sec. 4.3, we conduct ablation study. In Sec. 4.4, we do further analysis compar-
ing the speed of our method with the baseline and analyzing why the learned
prompts are useful through visualization.

Implementation details We use Stable Diffusion v1.5, a latent text-to-image
diffusion model. It utilizes the pre-trained text encoder from CLIP to encode
text and a pre-trained variational autoencoder to map images to a latent space.
With 860M parameters, the model takes 512x512-resolution images as input.

When inference, the number of sampling timesteps for each class is set to 25.
During training, we randomly select 1 timestep from the 25 sampling timesteps
for each image. We fix the length of the learnable context vectors to 16 and
initialize them with Gaussian noise. Learnable context vectors are trained by
minimizing the cross-entropy loss with SGD for 30 epochs. Initial learning rate
is set to 0.001, which is decayed by the cosine annealing rule. All experiments
are conducted on a single NVIDIA A800. In Sec. 4.1, We follow the few-shot
evaluation protocol used in CoOp [50], training with 1, 2, 4, 8, and 16 shots
respectively, and testing over the full test sets. In Sec. 4.2, as for fine-grained
domain generalization, we train with 16 shots on CUB [45] and CUB-Paintings
[46], respectively, and test on another dataset. As for robustness of corruption,
we train with 16 shots on CIFAR-10 [31] and test on CIFAR-10-C [22].

4.1 Fine-Grained Visual Classification

Datasets We evaluate our proposed method on fine-grained visual classifica-
tion task with four widely used FGVC datasets: CUB-200-2011 [45], Aircraft [34],
Stanford Cars [30] and Oxford Pets [36]. To construct a taxonomy of label hi-
erarchy for CUB-200-2011 and Stanford Cars, we learn from the work of Chang
et al. [7] and use GPT-3 [5] to check for corrections. Details on the datasets and
how to apply the method to other datasets are in the supplementary material.

Baselines We compare our method with the following zero-shot or few-shot
models. Diffusion Classifier [32] is a zero-shot classifier using density estimates
from large-scale text-to-image diffusion models such as Stable Diffusion without
any additional training. In fairness, we choose to use the results of experiments
with Stable Diffusion v1.5, the same as ours. CLIP ResNet-50 [38] with manual
prompts is a strong discriminative zero-shot model. CoOp [50] is a few-shot
classification model, which resembles soft-prompting method applied to VLMs
with limited labeled examples. Our approach differs from CLIP and CoOp in
several aspects such as training data, model size, and model structure of the
pre-trained model. Thus, the comparison is not absolutely fair.
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Table 1. Comparison with Diffusion Classifier baseline on accuracy and com-
putation speed. Our zero-shot method represents only adding hierarchical evaluation
strategy to baseline. Our few-shot method represents adding hierarchical evaluation
strategy and prompt learning to baseline. Time denotes inference time per image (s).

Model Aircraft Stanford Cars CUB-200-2011 Oxford Pets

Type shots Acc Time Speedup Acc Time Speedup Acc Time Speedup Acc Time Speedup

baseline [32] zero-shot 29.10 47.13 1.0x 77.64 53.04 1.0x 45.63 61.20 1.0x 87.30 17.50 1.0x

Ours zero-shot 30.03 18.76 2.5x 77.58 17.67 3.0x 44.03 17.49 3.5x 86.11 8.50 2.1x

Ours 16 47.78 4.15 11.4x 84.17 2.61 20.3x 70.47 8.91 6.9x 86.37 1.96 8.9x
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Fig. 3. Main results of few-shot learning on the 4 datasets.

Comparison with Diffusion Classifier Our experimental results in Table 1
demonstrate the improvement of our method on the inference speed and accuracy
of Diffusion Classifier baseline. When the hierarchical evaluation strategy is used,
the inference speed can be improved by 2-3.5x on the four datasets while the
accuracy keeping basically the same. Combining prompt learning with it, in order
to further improve the speed, we choose to reduce the number of sampling steps
for each category to 1/10 of the baseline or even more. Compared to the baseline,
hierarchical prompting (our few-shot method) improves inference speedup by
11x, 20x, 7x, and 9x on the Aircraft, Stanford Cars, CUB-200-2011 and Oxford
Pets respectively. Accuracy can definitely be improved due to our fine-tuning in
the downstream dataset. However, we can achieve a boost with less training data.
In the 16-shots setting, we achieve improvement by 18.68% on Aircraft, 6.53% on
Stanford Cars, and 24.84% on CUB-200-2011. And it is comparable on Oxford
Pets with much reduced inference time. Note that in the case of increasing the
number of sampling timesteps per class, our accuracy can be much higher.

Comparison with disciminative methods Table 2 shows the comparison
between our method and other discriminative models. Our zero-shot method
significantly outperforms CLIP ResNet-50. As for few-shot classification, the
average improvement over the four datasets is 7.29% compared to CoOp at 16-
shots setting. Our few-shot method can achieve 14.5% and 10.62% higher than
CoOp on the Aircraft and Stanford Cars datasets and is competitive on the
CUB-200-2011 and Oxford Pets datasets. Fig. 3 exhibits the comparison results
of accuracy at 1, 2, 4, 8, and 16 shots.
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Table 2. Percent accuracies for fine-grained visual classification compared with other
discriminative few-shot/ zero-shot classification methods.

Model
Aircraft Stanford Cars CUB-200-2011 Oxford Pets Average

Type Shots

CLIP-RN50 [38] zero-shot 19.30 55.80 40.21 85.40 50.18

Ours zero-shot 30.03 77.58 44.03 86.11 59.44

CoOp [50] 16 33.28 73.55 65.80 87.01 64.91

Ours 16 47.78 84.17 70.47 86.37 72.20

4.2 Robustness to Out-of-distribution

Compared to discriminative methods, diffusion classifier methods show stronger
out-of-distribution (OOD) classification performance [11, 32]. We find that our
method can achieve better results on out-of-distribution datasets on top of Dif-
fusion Classifier baseline. In this section, we compare the out-of-distribution
robustness of our method with baseline.

Datasets (i) For fine-grained datasets, we choose two domains: CUB and CUB-
Paintings dataset. CUB-Paintings is a dataset of bird paintings with the same
class list (200 classes) as CUB. It includes watercolors, oil paintings, pencil draw-
ings stamps, and cartoons. (ii) In order to comprehensively evaluate the model’s
robustness to a given type of corruption, we select CIFAR-10 as source dataset
and CIFAR-10-C as target dataset. CIFAR-10-C dataset offers multiple cor-
rupted versions of the original CIFAR-10 test set including noise, blur, weather,
and digital distortions. Overall, there are 15 different types of perturbations and
corruptions, each available in 5 severity levels, enabling the study of performance
under increasing data shifts.

Table 3. Effect of context length on accu-
racy.

Model C−→P P−→C Avg

baseline [32] 25.51 38.58 32.05

Ours 37.79 56.62 47.21

Results Table 3 shows the results of
domain generalization on fine-grained
datasets. Our method achieves better
performance across two transfer tasks.
We raise average accuracy from the
baseline of 32.05% to 47.12%, a boost
of more than 15 percent. As for the experiments to explore robustness to differ-
ent corruptions, Fig. 4 shows improved effective robustness on the CIFAR-10-C
distribution shift. Compared with baseline, our method improves by 6.74% on
average across 5 severity levels under 15 different types of corruptions. Two
experimental results show that our method improves the robustness to out-of-
distribution changes.

4.3 Ablation Study

Effect of the number of sampling timesteps per class The number of
sampling timesteps per category is one factor that affects the inference speed of
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Fig. 4. Robust accuracy on CIFAR-10-C for our method and Diffusion Classifier. Our
method shows better performance.

diffusion classifier models. Fig. 5 illustrates the changing behavior of the accu-
racy and inference time of our method with the number of sampling timesteps
per category. We test the results on the Oxford Pets dataset when the number
of sampling steps is 1, 5, 25, 120 and 250. It can be seen that as the number
of sampling steps per category increases, the accuracy and the time increases
gradually. This is due to the fact that selecting more samples used for Monte
Carlo estimation improves its estimation accuracy but also increases the compu-
tational time. We can also see that the increase in accuracy is more drastic when
the number of sampling steps is less than 25. Therefore, in the final experiment
we choose a number of sampling timesteps per category of 25.

Effect of the number of hierarchies To explore the impact of hierarchical
structure, we test with 1, 2, and 3 hierarchical structures on the Aircraft dataset.
Fig. 6 demonstrates the decrease in inference time and accuracy as the number
of hierarchies increases. As the number of hierarchies increases, the number of
classes that needs to be estimated decreases resulting in faster inference. How-
ever, the accuracy decreases due to the accumulation of errors in the upper
hierarchy. For example, when the number of hierarchies changes from 2 to 3, the
speed of inference achieves 1.6x speed-ups and the accuracy decreases by 5.94%.
Thus it’s necessary to find the trade-off between performance and inference time
when determining the number of hierarchies.
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Fig. 7. Comparison of in-
ference speed across differ-
ent datasets.

Table 4. Effect of context length
on accuracy.

Context Length Acc(%)
4 85.11
8 85.39
16 86.37

Effect of the design of learnable prompts
(i) We experiment with different context
lengths (4, 8, and 16) on the Pets dataset to
assess their impact. As depicted in Table 4, in-
creasing the context length generally enhances
accuracy, likely because more parameters are
trained, enabling prompts to capture addi-
tional semantic information relevant to the task. However, the gains between
different context lengths are modest, suggesting potential for parameter reduc-
tion without significant loss in effectiveness. (ii) We investigate the effectiveness
of class-specific prompts compared to unified prompts on the Pets dataset. Re-
sults indicate that using class-specific prompts boosts accuracy by 1.02% over
unified prompts. Class-specific prompts facilitate learning distinct characteristics
of each category, thereby improving differentiation between categories.

4.4 Further Analysis

How does inference speed vary across datasets? We compare the infer-
ence time of our method with Diffusion Classifier as the number of categories in
the dataset grows in Fig. 7. Diffusion Classifier requires to do the forward pass
for each category separately to obtain its conditional likelihood. In this way,
the inference time basically increases linearly with the number of categories in
the dataset. For our method, on the other hand, the inference time is greatly
reduced due to the introduction of hierarchical evaluation and prompt learning.
Although still showing a linear relationship, the growth is substantially reduced.
We also see that the speedup of our method is often more pronounced when the
number of categories is larger.

Why are learned prompts useful? Compared to discriminative models, dif-
fusion classifier models offer clearer visual insights into decision-making pro-
cesses. In this section, we explain the role of learned prompts by image genera-
tion. Using Stable Diffusion v1.5, we apply prompt control to edit images based
on both hand-crafted (e.g., “a photo of a {CLASS}, a type of bird.”) prompts
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Fig. 8. Comparison of image generation for hand-crafted prompts and learned prompts.

and learned prompts in our method. As shown in Fig. 8, images generated with
hand-crafted prompts (column 2) often diverge from the input image (column 1),
whereas those generated with learned prompts (column 5) align more closely. For
incorrect classifications, images generated with hand-crafted prompts (columns
3, 4) closely resemble the input (column 1), while those with learned prompts
(columns 6, 7) highlight features of the wrong class (e.g., color and feather pat-
terns of a hooded merganser in row 1, column 6), thereby magnifying the dis-
parity from the input image. This demonstrates that learned prompts in our
method effectively capture class-specific details, improving alignment with cor-
responding classes and enhancing scores for correct classifications while reducing
scores for incorrect ones.

5 Discussion and Conclusion

In this paper, we introduce Hierarchical Prompt Learning, a method leveraging
hierarchical evaluation and prompt learning techniques. We achieve significant
speedups and maintains high accuracy for diffusion classifiers in zero-shot and
few-shot classification, both in-distribution and out-of-distribution. Visualiza-
tion analysis shows the effectiveness of what we have learned about prompts.
However, Although achieving results, it requires additional training costs, which
we aim to mitigate in future research. Finally, while our method has significantly
improved in speed over previous diffusion classifiers, it is still not comparable to
other discriminative methods (CLIP takes about 60ms to recognize an image).
Using Consistency Models to improve speed may be an avenue for future work.
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