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Abstract. One of the practical methods for general 3D shape recon-
struction is active stereo, which involves capturing images of scenes il-
luminated by structured light and reconstructing the scenes from the
images. Active stereo has the advantage of being able to achieve high-
density reconstructions even for texture-less scenes. However, it requires
finding dense correspondences between the captured image and the pro-
jected pattern, making it difficult to capture the scene using multiple sys-
tems simultaneously where patterns are overlapped each other. A simple
solution is to switch the patterns on-and-off synchronously; however, this
naturally decreases exposure time in inverse proportion to the number of
systems, resulting in a lower signal-to-noise ratio (SNR). In addition, re-
trieving relative poses between a projector and a camera of active stereo
systems as well as relative poses between multiple systems is another
challenge. To address these challenges, we propose a technique based on
neural signed distance field (Neural-SDF) using Direct Sequence Spread
Spectrum (DSSS). DSSS is the latest technique widely used in the field of
communications for multiplexing multiple signals and separating them.
We propose a novel method to utilize DSSS to project multiple struc-
tured light patterns onto the object, where the overlapped patterns are
efficiently separated. To calibrate the relative poses between projectors
and cameras in multiple sets of active stereo systems, a differential ren-
derer based method using Neural-SDF is proposed. Such an approach has
not yet been explored yet for active stereo systems. In the experiments,
it was proved that our technique worked successfully by both qualitative
and quantitative evaluations using real sensors and objects.

Keywords: Structured light · camera and projector calibration · DSSS
· Neural SDF.

1 Introduction

In recent years, 3D shape reconstruction has been used in various fields. One
of the common methods for 3D shape reconstruction is the multi-view stereo
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(MVS) using only RGB cameras. In MVS, the object is captured by two or
more cameras and the 3D shapes are reconstructed by using the correspondences
between images, which makes it difficult to restore a high-density shape of an
object when there is a small texture. On the other hand, there is an active stereo
method in which one of the cameras is replaced by a projector. In the method,
a high frequency pattern is projected onto the object, and shape restoration
is performed by finding the corresponding points using the projected pattern.
Since image features are added to the object by the projected pattern, even if
the object has only a small texture, high-density restoration can be achieved.

One issue of active stereo systems is that if multiple projectors are used simul-
taneously, patterns are overlapped each other and it becomes difficult to separate
them. A simple solution is to switch the patterns synchronously; however, this
naturally decreases exposure time in inverse proportion to the number of projec-
tors, resulting in a lower signal-to-noise ratio (SNR). In this paper, we propose a
technique based on Direct Sequence Spread Spectrum (DSSS), commonly used
in radio communication to separate multiplexed signals. By using the technique,
it not only enables the separation of each structured light, but also eliminates
the influence of external light, which significantly decreases a SNR.

Another issue of active stereo systems is that calibration of extrinsic param-
eters between the projector and the camera. In addition, rigid transformation
between the systems are also challenging. To solve the issues, novel calibra-
tion technique to simultaneously estimate the extrinsic parameters of multiple
projector-camera systems as well as rigid transformation between them are pro-
posed. In our technique, neural singed distance field (Neural-SDF) is used, where
differences between captured images and rendered images are minimized.

In the experiments, it was proved that our technique worked successfully by
both qualitative and quantitative evaluations using real devices and objects. In
summary, we provide three main contributions of this approach.
1. We propose a technique based on DSSS to separate multiple patterns over-

lapped each other from multiple viewpoints as well as improve the SNR.
2. We propose a novel approach to calibrate multiple projectors and cameras of

active stereo systems with high accuracy using Neural-SDF without use of a
special calibration instruments.

3. Comprehensive experiments are conducted by using actual devices and objects
having successfully demonstrated the effectiveness of the proposed method.

2 Related Works

2.1 Dense reconstruction by active stereo techniques

Active stereo is a 3D shape measurement technique, where a pattern is projected
from a projector onto the object, and the image taken by a calibrated camera is
used to recover the 3D shapes by stereo algorithm [2,10]. Among them, one-shot
scan, which uses a spatial-coded pattern to measure the shape by a single image,
draw wide attention, since it is suitable for measurement of moving objects [12,
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19, 20, 29, 31] or by moving cameras [21]. A key technique of one-shot scan is
efficient correspondence finding between the projection pattern and the projected
pattern on the object surface in the captured image [18,26,29]. Recently, various
methods have been developed for detecting the correspondences in stereo pairs
using deep learning [4,27,34,35], however, they are basically for passive stereo and
achieving a dense correspondence retrieval for active stereo is also a challenging
problem, since their features are almost identical and repetitive which makes it
difficult to distinguish with.

2.2 Calibration of projector and camera system

To calibrate the extrinsic parameters between a projector and a camera, a typical
approach is to use a calibration object, on which patterns are projected [15,32].
These methods require calibration in advance and the relative position be-
tween the projector and the camera should be fixed each other, which signif-
icantly decreases the usability of the system, compared to passive systems where
those parameters can be self-calibrated during the scan, known as SLAM or
SfM [3,13,14,17,28,36]. Recently, Furukawa et al . proposed a SLAM method for
active stereo systems using GCN-based estimation of 2D correspondence points
performing auto-calibration [6]. However, it requires several unique feature points
to calibrate the system and, therefore, cannot be applied to general patterns. In
contrast, our technique minimizes photometric loss using a volumetric differen-
tiable renderer, which does not have such limitations.

2.3 Differentiable renderer

Differentiable renderer is a technique to render CG images using a scene or cam-
era parameters where gradient-based optimization w.r.t. the parameters can be
processed. Mesh-based differentiable renderers [9, 11,16,25] have been proposed
to optimize various scene parameters such as geometry, illumination, textures,
or materials and intensively researched, however, point clouds or occlusions can-
not be handled. Recently, voxel-based differential renderers draw much attention
because of success of handling more general conditions, such as NeRF [22]. Es-
pecially SDF based neural representation is promising to reconstruct shape [30].
In this paper, we use a SDF based volumetric differentiable renderer.

3 Overview

3.1 System configuration

The system configuration is shown in Fig.1(a). The measurement is performed
using multiple sets of projector-camera systems. During scan, the projectors and
cameras are all fixed each other. A laser pattern projector is used to projects
structured light pattern, which is grid-like shape formed by diffractive optical
element (DOE), onto the measurement target, and then, scenes are captured by
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Fig. 1: Our measurement system. (a) Schematic configuration of the system. (b) Real
capturing system where two projector-camera systems are installed.

the cameras. In the system, infrared is used for pattern projector not to interfere
RGB colors. The projectors are capable of blinking at a high frame-rate, 90fps in
our system, so that DSSS can be applied to moving objects. All the systems are
synchronized to apply DSSS. Real system we built for experiments are shown in
Fig.1(b), where two sets of a projector and a camera systems were installed.

3.2 Active stereo system using single pattern projector

In this paper, we use one-shot active stereo system, which reconstructs 3D shapes
from a single captured image using spatial encoding. We adopt the state-of-
the-art algorithm which utilizes deep learning to obtain dense correspondences
between the captured image and the projected pattern image at the pixel level [5].

The reconstruction process is shown in Fig.2. In the method,4 initially, the
phase information of the pixels in the captured image is detected using U-
net(Fig.2(a)). Segmentation is performed based on the estimated phase, creating
a grid structure(Fig.2(b)). Additionally, the nodes of the projected pattern carry
five types of features, and these features are estimated from the captured image
using U-net(Fig.2(c)). The detected grid structure and code information of nodes
represent a graph(Fig.2(d)), which are fed into GCN (Graph Convolutional Net-
work)(Fig.2(e)) to obtain node-wise correspondence mapping(Fig.2(f)). Then,
dense correspondence is achieved through interpolation between nodes using
phase information, which is output as x, y-pixel-wise projector-coordinate im-
ages(Fig.2(g)). Finally, 3D shapes are reconstructed from dense correspondences
using triangulation algorithm(Fig.2(h)).

3.3 Overview of the entire scanning process

The entire flow of wide area 3D reconstruction and calibration process are shown
in Fig.3. Note that our technique can calibrate the system using arbitrary-shaped
objects for each frame; however, in real experiments, it is preferable to use
4 The followings are a brief explanation of the method [5], however, it is not necessary to understand

our method, so readers who are familiar with active stereo can skip the rest of this section.
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Fig. 2: Flow of one-shot dense active-stereo system used in out method.
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Fig. 3: Overview of the 3D object scanning process of wide area

simple-shaped objects with a certain number of inputs to achieve better results.
Therefore, we typically adopt a two-step approach consisting of calibration and
reconstruction steps.

In first step, the calibration of the system is conducted. Auto-calibration for
one-shot scan [6] is performed to obtain initial values of extrinsic parameters.
Then, simultaneous calibration of both extrinsic and rigid transformation based
on NeRF is performed using the initial parameters and the corresponding points
obtained by U-net and GCN, which are retrieved in the process of Sec.3.2.

In the next step, the target object on which the multiple patterns are pro-
jected is captured from multiple viewpoints to reconstruct a wide area. Although
multiple patterns are projected onto the object, only a single pattern should be
extracted for 3D reconstruction. The separation is achieved by DSSS. Using
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Fig. 4: Demodulation of multiple patterns for one-shot scan using DSSS.

these separated images as the input, a dense 3d reconstruction is performed by
oneshot scan algorithm explained in Sec.3.2. The final wide areal 3D shape is
obtained by integrating the reconstructed shapes from multiple viewpoints by
aligning them using the estimated rigid transform parameters.

4 Separation of overlapped patterns using DSSS

DSSS is a signal modulation technique used in radio communications that can
reduce the effects of noise and interference signals. In DSSS, the signal is spread
by multiplying the transmitted signal by a spreading code. We apply DSSS to
modulate light blinking timing on-and-off not only for separating overlapped
patterns, but also for improving SNR. Fig.4 shows the flow of demodulation
by DSSS in our method. We used a spreading code based on maximal-length
sequence (MLS) [7] which is a pseudo-noise sequence and its length is 2N − 1
for DSSS. A circular-shifted sequence of MLS is also a type of MLS. We convert
the value of -1 in MLS to 0 and use 1 for laser to project pattern and 0 for
no pattern. For a signal s projected by the projector, DSSS multiply it by a
spreading code S as follows:

M(t) = S ◦ s(t), (1)

where M(t) is the signal we projected and the operator ◦ means an entry-wise
product. Then, the projected signal is received with interfered by noise:

M ′(t) = M(t) + n(t), (2)

where M ′(t) is the received signal and n(t) is the noise. Then, the signal need
to be despread by multiplying despreading code S′:

s′(t) = M ′(t) ◦ S′. (3)
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During the despreading, we get the original signal and spread the noise to re-
move it’s interference. In our system, since we used two sets of the active stereo
system, we set N = 3, and thus, we get 0,0,1,0,1,1,1 for projector #1 and
0,1,0,0,1,1,1,0 for projector #2 with one bit shift. Multiple cameras simultane-
ously capture the same number of images for the length of MLS in accordance
with the blinking timing of the projectors. The captured images contain multi-
ple projected patterns overlapped and the external light sources (noises), which
sometimes significantly decrease the SNR. As the correlation between different
MLSs is small, we can demodulated single pattern from the captured images by
multiplying spreading code based on used MLS, and DC and low frequency com-
ponents can be removed by applying a high-pass filter. After the demodulation,
as only a single pattern is observed in the image, the one-shot scan reconstruc-
tion technique can be applied without any modification. As a result, shapes are
reconstructed for each device.

5 Auto calibration by Neural SDF

5.1 Initial auto-calibration for static pattern for oneshot scan

Optimizing parameters using Neural SDF requires reasonably accurate initial
values, therefore, initial parameters are obtained through recently proposed auto-
calibration technique [6]. With the technique, several images are captured where
static patterns are projected onto arbitrary object and dense correspondences
are obtained by code information estimated by U-net and GCN. Then, RANSAC
algorithm is applied to remove outliers from estimated correspondence points by
sampling eight correspondence points to obtain the extrinsic parameter between
a camera and a projector.

5.2 Optimization by volumetric differential renderer using
photometric loss

To improve calibration accuracy, neural shape representation using SDF as same
as NeuS [30] and a volume renderer-based optimization algorithm is proposed as
shown in Fig.5. We use NeuS instead of NeRF in our method because surfaces
of objects reconstructed by NeuS are more accurate than those of NeRF. More-
over, rendered results of a ray in NeRF can be a weighted average of multiple
high-density regions that are separated, which does not occur in active stereo
systems. For NeuS, rendered results of a ray is basically a weighted average
of single region around a zero-crossing of SDF. Although arbitrary-objects can
be used in the calibration step, in order to stabilize the optimization, we use a
three-plane corner shape as the measurement target. Then, in the reconstruction
step, the calibrated parameters are used as shown in Fig.3. We capture it from
multiple viewpoints, and x, y-projector-coordinate images are obtained by esti-
mating U-net and GCN. To utilize information from active pattern projection,
we render projector-coordinate images by differential volume renderer using the
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neural scene representation by MLP where cameras and projectors poses are set
as the learnable parameters. Detailed process of each step is as follows.

First, x-projector-coordinate image and a y-projector-coordinate image are
obtained from captured image for calibration, where a combination of a x-
projector-coordinate image and a y-projector-coordinate image represent a 2D-
to-2D mapping:

Hf : R2 7→ R2 ; r 7→ q (4)

from camera pixels r to projector pixels q. Hf represents all the observed infor-
mation obtained at the f -th frame.

We use c, which maps a 3D point p to ‘2D projector coordinates’ in the
similar way as ‘projection mapping’ used in CG. Thus, c : R3 → R2 is defined
as

c(p) =
1

−z′

[
αxx

′

αyy
′

]
+

[
βx

βy

]
, for

x′

y′

z′

 = Rwp p+ twp, (5)

where Rwp and twp are rotation and translation of the world-to-projector coor-
dinate transformation.

The surface S is represented as a zero level set of SDF in the same way as
NeuS [30].

S = {x ∈ R3|f(x) = 0}. (6)

We render a pixel correspondence maps by using the following rendering method.
A ray from a camera can be represented by camera optical center o and ray
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direction v, as {p(t) = o+ tv|t ≥ 0}. The rendered pixel value is as follows:

C(o,v) =

∫ +∞

0

w(t)c(p(t))dt. (7)

Note that c(p) is not a radiance-field color vector. Instead, we use xy-
coordinates of a projector represented as Eq.(5). Also, by using the weighting
function w(t) similar to NeuS, we can selectively put high weights around zero-
level surfaces of the SDF. So, by using c(p) instead of a radiance-field color
vector, we can render “correspondence maps,” which is a similar calculation with
projection mapping in CG.

For the Neural SDF, we use hash-grid-encoding representation [23]. Since we
do not use radiance-field color vectors, the output of the field function is only
the SDF function. We optimize the Neural SDF and all the camera/projector
poses by minimizing discrepancies between the projector-coordinate images and
the target coordinates obtained from the observed patterns.

For loss functions for the optimization, we utilize the sum of L1 losses for
the projector-coordinate images for all the frames. To avoid effects of outliers af-
fecting the optimization, we mask the image regions where the projector-camera
correspondences are not obtained. Also, we add Eikonal loss [8] along the sam-
pled rays to regularize the SDF.

6 Experiment

6.1 Evaluation of demodulation using four projector camera
systems

We conducted an experiment to demonstrate the effectiveness of pattern sep-
aration for one-shot scan using DSSS. We projected patterns from four direc-
tions using four sets of camera-projector systems. Each of the four laser pattern
projectors captured seven images based on MLS: [0,0,1,0,1,1,1], [0,1,0,1,1,1,0],
[1,0,1,1,1,0,0] and [0,1,1,1,0,0,1]. The captured images and the demodulation re-
sults are shown in Fig.6. It is confirmed that overlapped patterns are successfully
separated by our DSSS based algorithm. These demodulated images allow for
shape reconstruction from multiple viewpoints.

In DSSS, since the pattern is redundant to increase SNR, it is important to
confirm the effectiveness of our method. A comparison was conducted under a
strong external illumination with and without DSSS. In the experiment, target
objects are illuminated by a video projector as a strong external light source.
Fig.7 shows separation results with and without DSSS. To make comparison fair,
total exposure times for both methods are adjusted, such as 18ms * 2 frames
= 36ms for single pattern alternating projection, whereas 5ms * 7 frames =
35ms for DSSS projection. From the separation results, we can confirm that
DSSS result is better than naive method. PSNR were 25.60 for naive method
and 31.36 for DSSS, respectively.
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Fig. 6: Scene scanning using four devices and separation results.
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Fig. 7: Overlapped pattern separation results. (a) ground truth, (b) single pattern pro-
jection with 18ms exposure time, (c) normalization of (b) after subtracting background
image without pattern projection, (d) two patterns projection with 5ms exposure time,
and (e) separation results using DSSS from 7 images of (d). We can clearly confirm
that our result (e) is similar to ground truth (a) than result of simple method (c).

Next, we conducted phase and code estimation using U-net as shown in
Fig.2(a) and (c). The results are depicted in Fig.8. When DSSS is not applied,
certain portions of the phase and code estimation failed due to the influence of
the external light source. However, by utilizing DSSS, the impact of the external
light source was effectively decreased and it is confirmed that severe noises are
successfully eliminated as shown in close up view in Fig.8(bottom). From the
results, it can be confirmed that code estimation algorithm gained more benefit
from DSSS, since the image features were more easily affected by noise.

In addition, we confirmed the improvement of the projector-coordinate es-
timation, which was an output of GCN(Fig.2(e)) using both phase and code
images as the input and reconstructed shapes. The results are shown in Fig.9,
where the areas illuminated by external light sources were severely deteriorated
if DSSS was not applied. The ratio that has error of 1 pixel or more from the
reference in the projector coordinates in the area was 5.5% for the image with-
out DSSS, whereas 1.0% for the image with DSSS, and decrease of outliers in
reconstructed results quantitatively confirmed the effectiveness of our method.
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Fig. 8: Effect of DSSS. (a) Input images. Bottom image was after applying DSSS. (b)
Phase estimation results by U-Net. (c) Close up views of (b). (d) Code estimation
results by U-Net. (e) Close up views of (d).
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Fig. 9: Projector-coordinate images of Fig.8, cropped where strong external light was
illuminated and reconstructed shapes of them.

6.2 Evaluation of calibration compared to previous methods

To evaluate the accuracy of camera and projector pose optimization using Neural
SDF, we captured images of a planar board and calculated RMSE with respect
to a ground truth. Fig.10(a)(b) show the reconstruction results using parameters
obtained by previous auto-calibration method [6] and parameters obtained by
our Neural-SDF based calibration method. Fig.10(c) shows the RMSE values
for both results. Notably, the reconstruction results using Neural-SDF exhibit
smaller RMSE values for both viewpoints, i.e., systems #1 and #2.

The error between the two systems is measured by scanning the angles of
the corners of several boxes by both viewpoints and compared the differences
between them. Fig.11(a-d) show the restoration results. Compared to the results
using auto-calibration method [6] with results using the parameters obtained by
our method, the errors between two shapes are apparently decreased. Fig.11(e)
shows the quantitative results of the improvement, confirming the effectiveness
of our method.

Next, we compared our method with several previous methods by recon-
structing shapes of several statues. We conducted KinectFusion [24] to obtain
ground truth as shown in Fig.12(leftmost). We applied three previous methods,
such as Gray-code based self-calibration method [33], hard calibration using
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Fig. 10: Plane reconstruction results. Gray color point cloud is reconstructed shape
and light green color point cloud is ground truth (GT). (a) Results using parameters of
auto-calibration [6]. (b) Results using parameters of calibration based on Neural SDF
(ours). (c) RMSE of (a) and (b) compared to GT.

known-shape [32] and auto-calibration based on markers imposed into the pat-
tern [6]. Results are summarized in Tab.1 and depicted examples of reconstructed
shapes are shown in Fig.12. From the results, we can confirm that our method
best performed among state of the art methods.

6.3 Demonstration

Finally, we measured several objects by our multiple one-shot scanning system.
Reference images of target objects are shown in Fig.13 1st column. Recovered
results of each system is shown in Fig.13 2nd and 3rd column. Integrated shapes
of the reconstruction results are shown in Fig.13 4th and 5th column, where
effectiveness of wider scene reconstruction by using the rigid transformation pa-
rameters estimated by our Neural-SDF based calibration method are confirmed.

7 Conclusion

In this paper, we propose a wide area 3D reconstruction method by propos-
ing pattern separation method based on DSSS as well as efficient calibration
method based on Neural-SDF for multiple active stereo systems. Since DSSS is
widely utilized for telecommunication purposes for enhancing SNR under severe
noise condition, our proposed method is expected to separate multiple projection
patterns in active stereo systems without decreasing SNR. To achieve efficient
calibration of multiple oneshot scanning systems, Neural-SDF with volumetric
differential renderer is applied to reduce the error among multiple systems when
integrating the reconstructed results. Comprehensive experiments are conducted
to prove the effectiveness of our method. In the future, we plan to increase the
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Fig. 11: Reconstruction results of several box-shaped objects. (a) Corner A using pa-
rameters estimated by auto-calibration method [6]. (b) Corner A using parameters
estimated by our method. (c) Corner B of auto-calibration method [6]. (d) Corner B
of our method. (e) Angle difference of the same corner scanned by system #1 and #2.
The smaller the better.

GT [24] Gray-code [33] Hard-calib [32] Auto-calib [6] Ours

Fig. 12: Shape differences from ground truth of previous methods. The more dappled
the pattern is, the closer the two shapes are and the smaller the error. It can be
confirmed that our method achieved most spotted pattern.

Table 1: Reconstruction accuracy comparison with previous methods.
RMSE[mm] Gray-code [33] Hard-calib [32] Auto-calib [6] Neural SDF calib (ours)
Plaster dog 2.03 1.54 1.60 1.40
Ceramic hen 1.13 1.31 1.21 1.07
Plaster object 1.22 1.26 1.29 1.20
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(a) (b) (c) (d) (e)

Fig. 13: Inputs and results of wide area 3D reconstruction. (a) Reference images. (b)
Reconstructed shapes of objects of projector-camera system #1. (c) Reconstructed
shapes of objects of projector-camera system #2. (d) Integrated shapes of system #1
and #2. (e) Integrated shapes of birds eye view. From the 4th and 5th column, it
is confirmed that wider shapes are successfully reconstructed by our method. Note
that shapes are integrated without using iterative closest point (ICP) [1] or similar
algorithm, but automatically aligned by our auto-calibration technique using Neural-
SDF.

number of cameras and projectors to measure the entire shape of an object at
one time.
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