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Abstract. In autonomous driving, 3D object detection provides more
precise information for downstream tasks, including path planning and
motion estimation, compared to 2D object detection. In this paper, we
propose SeSame: a method aimed at enhancing semantic information in
existing LiDAR-only based 3D object detection. This addresses the limi-
tation of existing 3D detectors, which primarily focus on object presence
and classification, thus lacking in capturing relationships between ele-
mental units that constitute the data, akin to semantic segmentation.
Experiments demonstrate the effectiveness of our method with perfor-
mance improvements on the KITTI object detection benchmark. Our
code is available at https://github.com/HAMA-DL-dev/SeSame

Keywords: autonomous driving · LiDAR semantic segmentation · 3D
object detection.

1 Introduction

In autonomous driving, the perception system is the initial step in identifying
the surrounding environment for autonomous driving. Therefore, various tasks
for recognizing driving situations using cameras and LiDAR have been proposed.
Notably, 2D object detection based on image from camera has achieved accu-
racy surpassing human identification capabilities due to the rapid advancement
of deep learning and ongoing research. However, it has limitations in conveying
height and shape of objects. On the other hand, according to [6,7], 3D object de-
tection provides a spatial representation, which can be expressed in a Bird’s Eye
View (BEV), where the BEV plane can serve as the global coordinate system for
downstream tasks. For 3D object detection in autonomous driving, image-based
methods estimate depth and generate pseudo-LiDAR point clouds[10]. Never-
theless, this approach has lower accuracy compared to LiDAR-only 3D object
detection. To overcome this, other fusion methods [13,14,15,16,17,18,21] have
been proposed. But the multi-modality method presents challenges in integrat-
ing and synchronizing data, which have different representations and are defined
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2 H.O et al.

in different coordinate systems. In contrast, LiDAR-only based 3D object detec-
tion has the advantage of fully leveraging the geometric information provided
by point cloud. Furthermore, LiDAR semantic segmentation[30,33] has demon-
strated the ability to extract semantic information from point cloud. This led to
a question:

"what if we can extract semantics from point cloud and leverage them
in existing 3D detectors?"

Therefore, inspired by the question and [17], this paper proposes a method
to leverage semantics from point-wise semantic segmentation for LiDAR-only
3D object detection, aiming to minimize loss and distortion on geometric in-
formation and preserve it. This method consists of three components, where
point-wise semantic segmentation provides supplementary semantic features for
3D detector. In summary, the contributions of this paper are as follows:

1. This paper proposes a simple and easy method for 3D object detectors by
leveraging segmented point cloud from point-wise semantic segmentation.
To our best knowledge, it is the first to leverage semantic segmentation to
object detection.

2. Unlike existing methods that rely on calibration, this approach does not
require any calibration, thus minimizing loss and distortion in extracting
and incorporating semantics.

3. The proposed method outperforms multi-modality approach for all classes,
and the reference model and the baseline detector for car on KITTI object
detection benchmark[37].

2 Related Works

2.1 LiDAR Semantic Segmentation

Semantic segmentation is essential for fully understanding the driving scenario
and contextual information in autonomous driving. This can be categorized into
2D semantic segmentation at the pixel level and 3D semantic segmentation at the
point level[8]. They involve multi-class classification on the pixels and points that
constitute the image and point cloud, respectively. Originating from the Point-
Net series [28,29], methods have been proposed to extract semantics from the
point cloud. Inspired by [23,24,25], SqueezeSeg[30] and PointSeg[31] use spherical
projection to convert point cloud into range-view image, apply 2D semantic seg-
mentation, and then map the result back to the point cloud. However, spherical
projection has the drawback of causing loss or distortion of semantic information
from the camera and geometric information from the point cloud. Z.Zhuang et al.
[34] address this limitation with two-stream network and perspective projection.
Nevertheless, similar to Fig. 1, this method is sensitive to the calibration, thus
it can significantly affect the results[20]. On the other hand, inspired by [24],
Y.Zhang et al.[32] propose BEV projection method to project point cloud onto
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a 2D grid using polar coordinate. However, this method also cannot fully pre-
serve geometric information because it projects 3D point clouds into 2D space.
Cylinder3D[35], instead of other projection methods, converts point clouds de-
fined in Cartesian coordinate into Cylindrical coordinate, considering the spar-
sity of point cloud. Its asymmetrical residual block considers the characteristic
of many objects in autonomous driving scenes being cuboid-shaped. And the
dimension-decomposition considers various contexts that point clouds represent
in outdoor spaces with different densities. To reflect these high-rank contexts,
they are divided according to context, enabling a LiDAR semantic segmentation
that fully understands the contexts with low computation cost [36]. For this
reason, we select Cylinder3D[35] to extract the semantics for 3D detectors.

Fig. 1. (left) This depicts a scenario in which two objects, pedestrian and car, are
overlapping, causing occlusion. (center) For the pixel-wise segmentation[26] projected
onto the point cloud using perspective projection, miss-segmentation occurs, where
some semantics of pedestrian (blue) are incorrectly classified as car (green). (right)
On the other hand, it may be seen that point-wise semantic segmentation has higher
accuracy.

2.2 3D Object Detection with Image

This can be divided into mono, stereo, and multi-view image methods depending
on whether they use single or multiple images. Wang et al.[10] and D.Park et
al.[11] proposes a method that extracts depth from an image and converts it
into a point cloud through perspective projection, subsequently using it as input
for existing 3D detectors. BEVFormer[12] extracts BEV features from multi-
view images. Its spatial cross-attention between multi-camera views connects
the same objects across different camera views and extract spatial information
as a grid-shaped BEV query. However, due to the fundamental characteristics
of image, inaccurate estimated depth can interfere with detection performance.
Furthermore, this method can suffer from efficiency issues compared to LiDAR-
based detection as concatenating multiple images increases the input dimension,
leading to higher computational cost and lower performance.
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4 H.O et al.

Fig. 2. (left) Due to the error-sensitive hard association based on the LiDAR-camera
calibration matrix, some points were not projected onto reflective surfaces. (right)
Additionally, some image features did not correspond to the point cloud. it is stated
that less than 5% of image features match with point clouds (for a 32-channel LiDAR
scanner)[21]

.

2.3 3D Object Detection with Images and Point Cloud

Based on above, multi-modal 3D object detection has been proposed. In [17],
pixel-wise semantic feature from 2D semantic segmentation is concatenated with
raw point cloud and applied to 3D object detection, aiming to supplement se-
mantic feature lacking in raw point cloud. Z.Liu et al.[21] proposed a method
where both features are represented in a unified representation on BEV and
performs both 3D object detection and BEV map segmentation based on fused
features. AVOD[14] and MV3D[13] aggregate features extracted from images
and point cloud to generate 3D proposals. CLOCs[16] aims to improve detection
performance by fusing 2D bounding boxes obtained from 2D detector and 3D
bounding boxes obtained from 3D detector. However, these multi-modal methods
present additional challenges, as they require the consideration of various repre-
sentations defined in different domains as a unified representation and demand
synchronization for practical implementation. They also require a calibration
matrix between LiDAR and camera for the unified representation. Even a slight
error in this matrix can significantly impact performance as mentioned in [20].
As shown in Fig. 2, semantic loss may occur due to an insufficient number of
point clouds corresponding to the pixels .

2.4 3D Object Detection with Point Cloud

PointRCNN [3] is a two-stage detector consisting of region proposal, classifica-
tion, and box regression. It employs PointNet++ [29] as the backbone network to
extract point-wise feature vectors through an encoder-decoder structure. These
vectors are used for 3D proposal generation and foreground point segmentation,
producing semantic features and foreground masks, respectively. After merging
these with the raw point cloud, region pooling extracts semantic features and
local spatial points. On the other hand, SECOND[4] is one-stage detector which
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utilizes voxel grouping for point cloud on a 3D grid. Its sparse convolution con-
siders only non-zero data and optimizes convolution operations through fast rule
generation for repetitive patterns. This optimization significantly improves the
speed of both training and inference. Similarly, PointPillars[5] encodes the point
cloud into a pseudo-image by discretizing it into a 2D grid structure, paired with
the corresponding feature map. It allows the network to leverage standard 2D
convolutional layers, resulting in highly efficient computations. However, these
methods primarily focus on detecting the presence of objects within the scene,
which limits their ability to capture contextual relationships between points.
Consequently, LiDAR-only based 3D object detection suffers from inconsisten-
cies between the localization and classification of 3D bounding boxes [18].

3 Method

3.1 Extract Semantics from Point Cloud

The point-wise semantic segmentation used in this paper requires a point cloud
as input and outputs per-point class labels. Unlike pixel-wise semantic segmenta-
tion, it offers distinct advantages. In pixel-wise semantic segmentation, semantic
features extracted from images are fused with the point cloud via a camera-
LiDAR calibration matrix. Any slight error in this matrix can lead to inaccurate
projections of the 2D semantic features onto the point cloud. Moreover, in au-
tonomous driving and robotics, cameras and LiDAR often operate at different
frequencies, introducing latency issues. In contrast, point-wise semantic segmen-
tation relies solely on the point cloud, eliminating the need for calibration and
synchronization between data from different frames. For these reasons, we se-
lected point-wise semantic segmentation to extract semantic information directly
from the point cloud. Among the available models, we chose Cylinder3D[35] by
Zhu Xinge et al., which utilizes cylindrical coordinates to preserve the geometric
information of the point cloud while effectively handling its sparsity.

3.2 Aggregate the Semantics

Motivation. In the referenced paper[17], semantic features from stereo images
were matched and then concatenated with the point cloud. These features were
mapped to three classes at the pixel-wise level, derived from a 2D semantic
segmentation[27]. However, this matching relied on perspective projection, which
can result in geometric loss and distortion, as previously discussed. Therefore,
we employ semantics directly extracted from the point cloud, thereby preserving
the 3D geometric information without the projection.
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6 H.O et al.

Fig. 3. (up) overall architecture of point-wise semantic segmentation[35] in this paper.
It returns per-point semantics. (down-left) The input point clouds are augmented
with the semantics. (down-right) 3D detectors with various feature extractors; point,
voxel, pillar. OpenPCDet[40] supports various models within a single framework, with
the green sections indicating the components used by each model.

Proposed Method. As shown in Algorithm. 1, the semantics from previous
step include per-point class, indicating which class it belongs to. This corre-
sponds to the semantic label map of the SemanticKITTI[38], which is the train-
ing dataset for the pretrained model from the previous step. Therefore, class
mapping is required for the detector training on the KITTI 3D object detection
dataset. Among the semantics, only the classes corresponding to the KITTI label
map are assigned, followed by one-hot encoding. After aggregating with the raw
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point cloud, a new point cloud is generated as follows : [xi, yi, zi, ri, sem.], where
i is index number, x, y, z are coordinates of a point in Cartesian coordinates,
and r is intensity. Here, sem. represent which class it belongs to; unlabeled, car,
pedestrian, and cyclist, respectively. The resulting point cloud with semantic
annotations serves as the input for the feature extractor of each detector.

Algorithm 1 Pseudocode of Aggregate Semantics
Input:

map: returns index corresponding to the class
point cloud (P ) : {pi = (xi, yi, zi, ri) | i = 1, . . . , n} ∈ RN×4 with N points
semantics: generated from LiDAR sem. seg. ∈ RN×C with C classes

Output:
augmented point cloud (PL) : {piL = (xi, yi, zi, ri, sem.) | i = 1, . . . , n} ∈ RN×(C+4)

def augment_points (point_cloud, map, semantics) :
label_one_hot = np żeros((points.shape[0], len(map)))
for index, point in point_clouds:

if semantics[i] in map:
label_one_hot[index][map[cls]] = 1.0

label_one_hot = torch.from_numpy(label_one_hot).float()
augmented_point_cloud = np.concatenate((points,label_one_hot),axis=1)
return augmented_point_cloud

3.3 LiDAR Detectors

To evaluate the proposed method, we selected existing 3D detectors that take
point cloud as input. As mentioned in [17], These networks differ in their ap-
proaches to encoding the point cloud. [3] employs raw input points without
the need for separate voxelization to extract point-wise features. In contrast,
[4,5] voxelizes the input point cloud into voxels and pillars, respectively. Conse-
quently, their 3D feature extraction backbone (Voxel Feature Encoding, VFE)
generates 3D features, which are subsequently mapped to Bird’s Eye View (BEV)
and utilized as input for the 2D backbone. Finally, each network’s head predicts
bounding boxes based on the features extracted from their respective backbones.

3.4 Loss Functions

LiDAR Semantic Segmentation. For network optimization, weighted cross-
entropy loss is employed for both voxel-wise and point-wise losses to maximize
per-point accuracy and Intersection over Union (IoU) scores across all classes.
Additionally, Lovasz-softmax loss [41] is utilized for point-wise loss to guide the
training process. They share the same weight. So, the total loss is a summation
of them.
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Ltotal = Lvoxel + Lpoint (1)

3D object detection.

– SeSame+point. The loss function is defined in two stages:
In stage 1, focal loss addresses class-imbalance because background points,
obtained through foreground segmentation, are more numerous than fore-
ground points. For bin-based classification in 3D box generation, cross-
entropy loss is used for the x and z axes and orientation, while Smooth
L1 loss is used for regression based on residual values for the y axis and
object dimensions (h,w, l).

Lreg = smoothL1

∑
vi∈{∆y,h,w,l}

(vi, v
∗
i ) (2)

where ∆y represents the residual values for the y axis, and h,w, l are the
object dimensions. In stage 2, a positive label is assigned if the IoU is 0.55
or higher; otherwise, it is considered a negative label. Only proposals with
positive labels are refined, and cross-entropy loss is calculated. So the total
loss function is then a combination of these:

Ltotal = Lfocal + Lcls + Lreg + Lrefine (3)

– SeSame+voxel and SeSame+pillar. Ground truth and anchor boxes are
defined as (x, y, z, w, h, l, θ). Localization loss is computed using Smooth L1
loss to evaluate the residual between the two bounding boxes. The proba-
bility associated with each anchor is utilized as an argument in the focal
loss, which is employed to calculate the classification loss. Furthermore, di-
rectional loss is incorporated into these two losses to derive the final loss.

Ltotal = Lloc + Lcls (4)

4 Experiment

Training Details. SeSame+point, +voxel, and +pillar are trained with learn-
ing rates of 0.01, 0.003, and 0.003, and batch sizes of 8, 16, and 16, respec-
tively. All three detectors share the same Adam as optimizer and OneCycleLR
as scheduler[1], with a weight decay rate of 0.01 and momentum of 0.9, and are
trained for 80 epochs with a single TITAN RTX GPU.

SemanticKITTI. Cylinder3D was trained on the SemanticKITTI dataset,
which consists of point clouds classified into 28 classes. They are merged into a
total of 19 classes by combining classes based on different moving statuses and
ignoring classes with too few points. The label data is uint32_t, where the up-
per half represents the instance label and the lower half represents the semantic
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label. In this paper, only the lower half containing semantic labels was used. The
19 classes were mapped to three classes defined in the KITTI object detection
benchmark dataset: car, pedestrian, and cyclist.

KITTI 3D Object Detection Evaluation. The dataset contains 7481 train-
ing samples and 7518 testing samples, consisting of images and point clouds.
All existing detectors[3,4,5] use the dataset, but differ in data split. In this pa-
per, following general split method, the given training dataset was further split
into 3712 training and 3769 validation samples for experiment. The train and
val samples obtained through this split do not overlap[9]. Before the splitting,
pretrained Cylinder3D performs inference on this dataset, and the resulting la-
bel mapped to the KITTI dataset is concatenated with training sample, thus
forming the training dataset. The same approach was applied to the test split,
and the results can be seen in Tab. 1 and 2. The evaluation metric is Average
Precision (AP), with IoU thresholds of 0.7 for cars and 0.5 for pedestrians and
cyclists, respectively. The three classes are divided into easy, moderate, and hard
based on detection difficulty, where occlusion and truncation increase from the
former to the latter.

Data Augmentation. Due to the limited number of training samples in the
dataset, common data augmentation techniques applied in existing detectors are
incorporated. Following the approach initiated from [2], a database is first created
from the given training dataset. Random selection is made from this database for
training, involving data augmentation such as random flipping along the x-axis,
rotation around the z-axis and the origin within the range of [−π/4, π/4], and
random scaling within the range of [0.95, 1.05]. These augmentations are imple-
mented for both the parameters of individual bounding boxes and the point sets
within those boxes, with configurations tailored for each detector. To fairly eval-
uate the effectiveness of the proposed method, common settings are referenced
and applied uniformly. If the 3D bounding boxes and point clouds generated by
this technique result in physically implausible scenarios, such as collision due to
overlapping bounding boxes, the original data is reverted.

4.1 Overall Results

Quantitative Results The results are based on the evaluation detection met-
rics which are: BEV, 3D as shown in Tab. 1 and 2. The modalities are LiDAR(L),
and camera(C). The proposed method incorporating the existing detectors out-
performs both the camera-only method and the multi-modality method for car.
This result is evident in both metrics, which signifies the consistency of the re-
sults. For [5], increasing per box data augmentation leads to a further degrada-
tion in performance for pedestrians. This was mentioned in [5] and also observed
in our result. Comparative analysis of the ablation studies based on modality,
the implementation of the proposed method, and references to our approach is
provided in Sec. 4.2.
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Table 1. Results on the KITTI test 3D object detection benchmark

Method modality Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

DD3D[11] C (mono) 23.22 16.34 14.20 13.91 9.30 8.05 2.39 1.52 1.31
Pseudo-LiDAR[10] + AVOD[14] C (stereo) 55.4 37.2 31.4 N/A N/A N/A N/A N/A N/A

MV3D[13] L + C 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A
AVOD-FPN[14] L + C 73.59 65.78 58.38 38.28 31.51 26.98 60.11 44.90 38.80
PI-RCNN[19] L + C 84.37 74.82 70.03 N/A N/A N/A N/A N/A N/A
F-PointNet[15] L + C 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01
PointRCNN[3] L (point) 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59
SECOND[4] L (voxel) 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

PointPillars[5] L (pillar) 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
SeSame + point (Ours) L (point) 85.25 76.83 71.60 42.29 35.34 33.02 69.55 54.56 48.34
SeSame + voxel (Ours) L (voxel) 81.51 75.05 70.53 46.53 37.37 33.56 70.97 54.36 48.66
SeSame + pillar (Ours) L (pillar) 83.88 73.85 68.65 37.61 31.00 28.86 64.55 51.74 46.13

Table 2. Results on the KITTI test BEV detection benchmark

Method modality Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

DD3D [11] C (mono) 30.98 22.56 20.03 15.90 10.85 8.05 3.20 1.99 1.79
Pseudo-LiDAR [10] + AVOD [14] C(stereo) 66.8 47.2 40.3 N/A N/A N/A N/A N/A N/A

MV3D [13] L + C 86.02 76.90 68.49 N/A N/A N/A N/A N/A N/A
AVOD-FPN [14] L + C 88.53 83.79 77.90 58.75 51.05 47.54 68.06 57.48 50.77
PI-RCNN [19] L + C 91.44 85.81 81.00 N/A N/A N/A N/A N/A N/A
F-PointNet [15] L + C 91.17 84.67 74.77 57.13 49.57 45.48 77.26 61.37 53.78
PointRCNN [3] L(point) 92.13 87.39 82.72 54.77 46.13 42.84 82.56 67.24 60.28
SECOND [4] L(voxel) 89.39 83.77 78.59 55.99 45.02 40.93 76.50 56.05 49.45

PointPillars [5] L(pillar) 90.07 86.56 82.81 57.60 48.64 45.78 79.90 62.73 55.58
SeSame + point (Ours) L(point) 90.84 87.49 83.77 48.25 41.22 39.18 75.73 61.70 55.27
SeSame + voxel (Ours) L(voxel) 89.86 85.62 80.95 50.12 41.59 37.79 76.95 59.36 53.14
SeSame + pillar (Ours) L(pillar) 90.61 86.88 81.93 44.21 37.31 35.17 72.22 60.21 53.67

Qualitative Results As shown in Fig. 4 and Fig. 5, SeSame+point detects cars
more than the other approaches, which corresponded to the actual cars present
in the scene. While SeSame+voxel recognizes pedestrian better than the other
two approaches, this finding is consistent with the quantitative results presented
in Tab. 1 and 2. On the other hand, SeSame+point and SeSame+pillar seem to
have false positive and false negative for pedestrian each other. However, they
also seem to detect other objects correctly, and especially +pillar detects far
away car, which was confirmed to be actual objects upon inspection of the scene.
Overall, SeSame+point demonstrates high accuracy in detecting cars, closely
aligning with the ground truth, despite the occurrence of false negatives in sparse
point regions. SeSame+voxel and +pillar effectively identifies objects even in
sparse point cloud, with +voxel identifying cars missed by SeSame+point. These
findings are consistent with the quantitative results in the paper, demonstrating
the overall result is reliable.
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Fig. 4. The leftmost of the four sections represents the ground truth(GT), while the
remaining three sections depict predictions from detectors varying with input features
of point[3], voxel[4], and pillar[5]. The top figure illustrates a scenario with multiple
cars(blue) and some cyclists(red), while the bottom figure shows multiple pedestri-
ans(green).

Fig. 5. Qualitative results on the KITTI test set. There are two scenes. For each scene,
the results of SeSame+point, +voxel, and +pillar are shown from leftmost to rightmost.
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4.2 Ablation Study

Encoding : Label and Score. The label obtained from point-wise semantic
segmentation is mapped from SemanticKITTI to KITTI, assigning a score vec-
tor composed of 0 or 1 according to one-hot encoding to the point cloud. When
comparing the aggregated point cloud with the point cloud passed through soft-
max for score mapping, the accuracy improved for the score mapping with val
split. However, for test split, the accuracy was higher when mapped by one-hot
encoding label. Furthermore, score mapping through softmax exhibits discrepan-
cies in performance between the validation split and the test split. This implies
that the training was within the range of noise for score mapping, and mapping
by label is more reasonable. The corresponding results are included in Tab.1-4
in the Supplementary Material.

Modality : point cloud and multimodal As mentioned earlier in Sec. 2.2, the
multimodal methods require calibration, which can distort or lose semantic infor-
mation from images or geometric information from point clouds as illustrated in
Fig. 2. Our method aims to address these challenges and demonstrates superior
performance without calibration compared to multimodal methods as shown in
Tab. 3. This indicates that the proposed method can be free from calibration-
induced distortions and losses, while outperforming multimodal methods.

Table 3. Performance comparison of BEV and 3D object detection with reference
method and ours for car on the test split. The IoU threshold is 0.7. The mAP (Mod.)
column represents the mean Average Precision at the moderate difficulty level, provid-
ing a balanced assessment of model performance.

Method Modality mAP
(Mod.)

AP3D APBEV

Easy Mod. Hard Easy Mod. Hard
MV3D[13] L+C 69.63 71.09 62.35 55.12 86.02 76.90 68.49

AVOD-FPN[14] L+C 74.86 73.59 65.78 58.38 88.53 83.79 77.90
PI-RCNN[19] L+C 80.32 84.37 74.82 70.03 91.44 85.81 81.00
F-PointNet[15] L+C 77.23 82.19 69.79 60.59 91.17 84.67 74.77

Painted PointRCNN[17] L+C 79.91 82.11 71.70 67.08 92.45 88.11 83.36
SeSame+Point (Ours) L (point) 82.16 85.25 76.83 71.60 90.84 87.49 83.77

Evaluation of the Method: Pre- and Post-Application Analysis. When
comparing the detectors that employ our method to their baselines, there are per-
formance improvements across all the detectors for car. Notably, SECOND ex-
hibits the most substantial enhancement, as shown in Tab. 4. For SeSame+voxel,
performance gains are observed not only for car but also for cyclist. But [5] did
not show gains in identifying pedestrian and cyclist. We initially assumed that
this was due to the conversion of 3D features into 2D features. However, this
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hypothesis was rejected as the conversion implemented in SECOND[4] did not
lead to any performance degradation. In conclusion, this can be attributed to the
stochastic sampling in [5]. The sampling filter out or eliminate points containing
semantic information, particularly when the ground truth object consists of only
a few points. As a result, performance degradation may occur.

Table 4. We compared the performance of the detectors before and after the appli-
cation of the proposed method using the KITTI object detection benchmark for car,
with an Intersection over Union (IoU) threshold of 0.7. The detectors that employed
our method exhibited performance improvements.

AP3D APBEVMethod Modality mAP
(Hard) Easy Mod. Hard Easy Mod. Hard.

PointRCNN [3] L(point) 76.71 86.96 75.64 70.70 92.13 87.39 82.72
SeSame+Point (Ours) L (point) 77.69 85.25 76.83 71.60 90.84 87.49 83.77

Improvement 0.98 -1.71 1.19 0.9 -1.29 0.1 1.05
SECOND [4] L (voxel) 72.08 83.13 73.66 66.20 88.07 79.37 77.95

SeSame+Voxel (Ours) L (voxel) 75.74 81.51 75.05 70.53 89.86 85.62 80.95
Improvement 3.66 -1.62 1.39 4.33 1.79 6.25 3.00

PointPillars [5] L (pillar) 74.07 79.05 74.99 68.30 88.35 86.10 79.83
SeSame+Pillar (Ours) L (pillar) 75.29 83.88 73.85 68.65 90.61 86.88 81.93

Improvement 1.22 4.83 -1.14 0.35 2.26 0.78 2.10

Comparison between Reference Method and Ours. There is only one re-
sult of [17] on test split, painted PointRCNN, so we compared it with SeSame+point
as shown in Tab. 3. Our method demonstrates an improvement in performance
for car. However, PointPainting[17] outperforms our method in detecting pedes-
trian and cyclist. We hypothesize that the results are attributed to the per-
formance differences between pixel-wise and point-wise semantic segmentation
across classes. [17] extracts semantic information using DeepLabv3+[27], trained
on Cityscapes[39], achieving IoU of 87.95 and 78.88 for pedestrian and cyclist
classes, respectively. In contrast, the point-wise semantic segmentation[35] used
in this paper achieves IoU of 73.90 and 65.80 for pedestrian and cyclist, respec-
tively. We can see Tab. 5 supports this hypothesis. This indicates that 3D object
detection leveraging semantics is dependent on the performance of semantic seg-
mentation. Therefore, while LiDAR-based semantic segmentation can provide
reliable semantics for classes where it performs well, it may lead to performance
degradation for classes where it does not. This leads us to focus on future work
in Sec. 5.
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Table 5. Performance comparison of 3D object detection with baseline, reference
method, and ours on KITTI val split.

Method Modality Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointRCNN[3] L(point) 86.75 76.05 74.30 63.29 58.32 51.59 83.68 66.67 61.92
Painted PointRCNN[17] L+C 88.38 77.74 76.76 69.38 61.67 54.58 85.21 71.62 66.98
SeSame + point (ours) L(point) 88.76 78.35 77.43 62.83 55.30 51.35 87.80 72.74 67.00

SECOND[4] L(voxel) 86.85 76.64 74.41 67.79 59.84 52.38 84.92 64.89 58.59
Painted SECOND[17] L+C 87.15 76.66 74.75 68.57 60.93 54.01 85.61 66.44 64.15

SeSame + voxel (ours) L(voxel) 88.35 78.55 77.27 56.02 52.37 48.34 81.34 65.97 61.16
PointPillars[5] L(pillar) 87.22 76.95 73.52 65.37 60.66 56.51 82.29 63.26 59.82

Painted PointPillars[17] L+C 86.26 76.77 70.25 71.50 66.15 61.03 79.12 64.18 60.79
SeSame + pillar (ours) L(pillar) 85.65 75.94 73.85 53.43 48.43 44.69 77.85 61.45 58.32

5 Conclusion

In this paper, we leveraged semantics from point-wise semantic segmentation
for LiDAR-only 3D object detection and assessed its potential impact. The
proposed approach was evaluated through performance improvements of the
baseline model on the KITTI 3D object detection benchmark. Additionally, we
demonstrated superior performance compared to multimodal methods that rely
on calibration, which can lead to a loss of semantic information from images.
Nevertheless, both our method and the reference model require annotated data
for semantic segmentation, which incurs labeling costs. Furthermore, the per-
formance of point-wise semantic segmentation remains insufficient for certain
classes. In conclusion, our future research will focus on self-supervised multi-
modal semantic segmentation as a pretext task for 3D object detection, aiming
to leverage both modalities without the calibration and data annotation.
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