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Abstract. Long videos contain many repeating actions, events and shots.
These repetitions are frequently given identical captions, which makes it
difficult to retrieve the exact desired clip using a text search. In this
paper, we formulate the problem of unique captioning: Given multiple
clips with the same caption, we generate a new caption for each clip
that uniquely identifies it. We propose Captioning by Discriminative
Prompting (CDP), which predicts a property that can separate iden-
tically captioned clips, and use it to generate unique captions. We intro-
duce two benchmarks for unique captioning, based on egocentric footage
and timeloop movies — where repeating actions are common. We demon-
strate that captions generated by CDP improve text-to-video RQ1 by
15% for egocentric videos and 10% in timeloop movies.

https://tobyperrett.github.io/its-just-another-day
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1 Introduction

Life is repetitive. So videos of daily life will inevitably contain visually similar
events, places, people and activities. As a consequence, captioning video clips
from similar activities will often result in identical sentences. For example, in
Ego4D [12] when using an off-the-shelf captioner [60], 66% of clips in each video
share their caption with at least one other clip, and thus do not have a unique
caption. This lack of caption uniqueness impacts text based search — a user has
to linearly scan all similar clips to find the desired clip. Can we do better?

The root of the problem is that currently clips are captioned independently |23,
26}(2829,137/561/59,/60]. Instead, if the captioner is aware of visually similar clips,
then potentially it can discriminate one from the others in its description.

That is the objective of this paper: to generate concise captions which dis-
criminate between visually similar clips. We achieve this in two ways: first, we
develop a model that observes all visually similar clips, and predicts prompts
that will trigger the captioner to generate a unique description for each. Second,
if it is not possible to uniquely caption a clip, we increase its temporal extent
until a unique caption can be found.

In particular, we show that by taking an approach similar to the ‘twenty
questions’ game |[2], a lightweight model can be learnt for an already trained
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Fig. 1: Standard video captioning breaks the video into smaller clips and considers
each clip independently. As a result, it is likely multiple clips from one video will have
the same exact caption (a). We introduce Captioning by Discriminative Prompting
(CDP), an approach for generating unique captions. CDP considers the set of clips
with the same caption (b), and predicts a discriminative prompt (e.g. “holding”) that
allows the clip to be captioned uniquely (c) When a unique caption cannot be found, we
advance to the next clip » to allow unique captioning based on following actions (d).

captioner. This allows for the direct prediction of discriminative prompts at infer-
ence, eliminating the need to explicitly test all possible prompts. Our framework
is agnostic to the captioner (and visual-text embedding) used.

We focus on two sources of videos with known repetitions. One is egocentric
footage of daily life, where similar clips occur naturally due to actions and rou-
tines occurring in familiar environments. The other is timeloop movies, where
repetition is specifically written into the plot, with the added challenge of iden-
tical or near duplicate clips.

The ability to uniquely caption video clips will enable a number of down-
stream tasks: (i) When querying for a caption in a retrieval system, e.g. “Opens
the fridge” in Fig. [T} the unique captions will enable an ‘auto-completion’, ap-
pending the distinctive aspects of clips to the text query. This way the user
can directly select the clip they are interested in (e.g. “Opens the fridge, while
holding vegetables in hand”) without having to study all videos of opening the
fridge. (ii) Further refinement of captions on clips previously captioned identi-
cally, without having to change the captioner. In summary, our contributions
are:

— We introduce a framework for unique captioning, Captioning by Discrimina-
tive Prompting (CDP), based on predicting the dimension along which mul-
tiple clips differ. This dimension is represented by a discriminative prompt,
which conditions the captioner to generate a unique caption for each clip.

— We introduce two benchmarks for unique captioning, from egocentric videos
with identical narrations and from the repeating segments of timeloop movies.

— We show CDP improves text-to-video and video-to-text retrieval on both
benchmarks.
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It’s Just Another Day: Unique Video Captioning. 3

2 Related work

Captioning. The standard practice for video captioning follows that for im-
ages [21}22|31], which is to take an auto-regressive language model, and condi-
tion it on the video [23}29,37,541[56L/59}/60]. Captioning models have improved
with more data [38,/54] and better pre-trained image [21] and language mod-
els [59]. Improvements have also been found by generating longer captions with
more detail [9], maximising mutual information [48|, and incorporating synthetic
captions [5] to challenge of the training objective. Other approaches include dis-
tilling knowledge from foundation models |27,51//55], and alignment with human
labelling [42]. Dense [54] and hierarchical 18] captioning models assign multi-
ple sequential captions to a longer clip, but do not aim for unique captions. To
introduce diversity into generated captions, works have sought to produce mul-
tiple captions per clip, ensuring that the concepts contained in one caption are
distinct from other captions for the same video clip |26L[28].

The problem we tackle in this paper is orthogonal to the above works. Given
an already trained captioner, how can we find the differences between multiple
video clips given a captioner’s existing capability? We aim to generate concise,
unique captions for all clips in a video, or a gallery of videos.

Model “blind spots”. A related line of work is determining aspects of an image
or video that models are blind to, and thus unable to tell apart, typically evalu-
ated on classification and VQA tasks. Examples include compositionality [44] in
images, temporal ordering in video 16|, and the limitations of image/language
pre-trained models compared to self-supervised image representations [45]. These
works have aimed at evaluating and providing benchmarks, but some also at-
tempt to fix these shortcomings, for example by collecting data focusing on these
blind spots [3,/46], or training captioners on LLM processed auto-labels to find
differences between pairs of samples [24,|32]. In this work, instead of trying to
improve the base ability of a captioning model, we acknowledge that limitations
will likely always exist. We find differences which are discernible by the chosen
existing captioning model. This approach will continue to be relevant and useful
as models’ capabilities continue to improve.

Long video. Early computer vision studies of long video focused on footage from
surveillance [13], TV |10,/53] and movies [39]. Due to computational budgets, the
community shifted to understanding short clips |6}/11]. Long-video is again be-
ing studied, due to the rise of large-scale instructional [30}/61] and egocentric
datasets [8,[12], and the ability of models to operate on larger temporal win-
dows [251/49,/50]. Several studied tasks in long video would benefit from the abil-
ity to uniquely caption clips, such as summarisation 19|, audio description |14],
VQA [43] and retrieval [34]. While visual-language retrieval benchmarks [35}52]
report Recall@K accuracy as a common practice to allow retrieving similar in-
stances in the corpus, they do not explicitly enforce uniqueness. In this paper,
we build our egocentric unique captioning benchmark using footage from the
massive-scale Ego4D dataset [12].
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Timeloop movies. Despite the challenges they pose to plot understanding,
timeloop movies rarely feature in the computer vision literature, where the em-
phasis for movies/TV is on scale |417120,)58|. Whilst they are scarce compared to
standard movies (with only 71 dating back to 1947 listed on Wikipedia [1]) and
thus not suitable for large-scale training, timeloop movies can provide insight-
ful diagnostic and qualitative results. For example, the movies Groundhog Day
and Run Lola Run were used for location retrieval assessment in [39], as tests
of identical and near-duplicate shot retrieval in 7], and the movie’s repeating
structure was determined in |36] by matching shots of the same location. In this
work, we revisit timeloop movies as an evaluation-only benchmark for unique
video captioning, where understanding the temporal context of repetitive clips
is essential.

3 Method: Captioning by Discriminative Prompting

Captioning by Discriminative Prompting (CDP), generates unique captions for
a set of visually similar clips, so they can be discriminated and teased apart in
the visual-text embedding space. CDP is built around three key ideas:

1. A set of discriminative prompts, in order to direct a captioner to focus on
properties of one clip which distinguish it from others. These properties are
chosen by contrasting all similar clips, and thus provide our mechanism for
conditioning a single-clip captioner on multiple clips.

2. A combinatorial search over all prompts and clips, to find the exact combi-
nation of prompts that will generate the most unique set of captions.

3. A network, CDPNet, which approximates the most computationally expensive
part of the search - auto-regressively captioning each clip with all prompts
and then computing video/text embedding similarities.

Note that we can, with significant computational cost, generate unique captions

by performing the combinatorial search for discriminative prompts without train-

ing an additional network. This would be possible but inefficient. We introduce
this process first in Section |3.2| as our method builds on the search, and it pro-
vides a good insight into the constraints and comparisons necessary for caption
uniqueness. CDPNet is a required approximation to make our proposed approach
feasible for inference, described in Section [3.3]

3.1 Problem statement and uniqueness definition

Given a set of N video clips V = {v1,v2,...,un }, we aim to output a correspond-
ing set of unique captions C = {c1, ¢a, ..., cy }. We assume access to two trained
foundation models:

— A video captioner ©(v,p), which takes in a video clip v and optional prompt
p, and produces the caption text c.

— A dual-encoder video/text model, with encoders f(v) and g(c) for projecting
video clips and caption text into a joint embedding space. The video-text
similarity is measured by cosine similarity between their embeddings.

These trained models are general and do not need to have been trained jointly.

They remain frozen throughout.
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It’s Just Another Day: Unique Video Captioning. 5

A correct output of our method is one where captions are distinct, i.e.
¢i # ¢;; Vi # j, but also can be correctly matched to the clip it was generated
from. Formally, v; is captioned uniquely by ¢; with respect to all other v; € V and
¢; € C if the following condition is satisfied, where (-, -) denotes cosine similarity:

(F(w0) 9(e)) > max(max(f(vi), g(e)) max(F(0y), (e} ). ()

3.2 Combinatorial search for unique captions

Discriminative prompts. For each clip v;, our goal is to select one or more
discriminative prompt(s) that will induce a unique caption with respect to all
other clips in V. While there are many ways in which clips can differ, we pro-
pose to use a given set of general prompts. We define a bank of P prompts
B ={p1,...,pp}. Fixed prompts are more suited to this task than learned, as
they are interpretable, and can be designed to increase diversity and reflect
known model capabilities. We typically select the most frequent N-grams from
the training set.

Selecting a single discriminative prompt. We define the similarity function,
s, between a video v; and a caption generated from another video v; using the
prompt pi € B as

s(vi,vj, pr) = (f(vi), 9(O(vj, pr))), (2)

which measures clip/caption similarity in the shared embedding space. We next
define the uniqueness margin, M, for clip v;, with respect to the other clips in
V, using prompt pg, as

M(Uivpk) = S(Ui,’l]i,pk) - maX(I?;ig((S(Uj,Ui,pk)),Iglig((s(’l}i,’l}j,pk))>. (3)

For the clip v;, we denote the chosen discriminative prompt as pj;, which is
the prompt with index k that maximises M, i.e. k = arg max;, M(v;, pr). If
M(vi,p;,) > A, where X is the margin of confidence, then the caption ¢; =
O (v, p;,) uniquely describes v;, as defined by Eq. [I} That is, v; is closer to its
caption ¢; than to any other caption, and ¢; is closer to v; than to any other
video. If M(v;,p;) < A, then we have determined that it is not possible to
identify v; uniquely, given the other video clips in the set and the capabilities
of the captioner and embedding space. In such cases, multiple discriminative
prompts are required to find unique captions, which we describe next.
Selecting multiple discriminative prompts. Given P prompts in our bank
and N clips in V, the exact search for the best combination of multiple prompts
would have complexity O(N PT) if every prompt could be chosen for every clip.
Instead, we constrain the maximum number of prompts to be selected for each
clip as @ << P, which reduces the complexity to O(NP*). This not only con-
strains the search space, but also keeps our captions concise and focused on the
most discriminative aspects of each clip.

Our problem is now to define the margin for combinations of prompts, and
to find the combination which obtains the maximum margin. The margin for
a single prompt reflects that a clip is distinct from all others with respect to
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ties (Eq. are computed. clip, which generates a unique caption if > A.

Fig. 2: Pipeline for computing the margin at a single timestep for three clips. This
example uses a = 2, so margins are computed for all single prompts and pairs of
prompts. (a) and (b) are replaced by a learned network in Sec.

that single prompt. We extend to multiple prompts by adjusting the similarity
measure (Eq. [2)) used to compute the margin. Instead, we take the mean of the
similarities of each individual prompt in the combination.

We first define all combinations of prompts in B up to order o as B“. For
example, B? contains all the combinations of {p;} and {p;,p,;}. We denote the
k-th combination in B as Bj;. We then adjust the similarity to:

ST (F ), 9(6(v5, ) (4)

5% (vi,v5, BY) = a7

B 5o
We use s® instead of s in calculating the uniqueness margin (in Eq. [3)) to choose
the best prompt combination Bg.

We now have a complete pipeline for computing margins, and thus creating

unique captions, for a set of clips with no learning necessary, which is illustrated
in Fig. 2] In[2a] captions are extracted with every prompt for every clip using
the frozen single-clip captioner. In 2B clips and captions are projected into
the embedding space by f and g, where their similarities are computed. In
for each video, margins are computed from the similarities for every prompt
combination (here, a = 2, so all individual and pairs of prompts are tried). If
the maximum margin for a clip is > ), i.e. M(vi,Bg) > A, then the prompt
combination with the maximum margin generates a unique caption for that
clip. However, it is possible that no combination of prompts is able to uniquely
identify a clip, i.e. M(v;, Bk‘)‘) < A. In such cases, we allow the temporal duration
of video clips to be extended in time, which we describe next.
Temporal extension As clips are taken from a longer video, we explore ad-
vancing to a subsequent clip so as to distinguish identical clips. As a result of
the expansion, we can caption the two clips into “X then Y” vs “X then Z”, where
Y and Z are distinct follow-up events in the longer video. We denote a video v;
advanced by time ¢ as v;(» t). We define the set of all (prompt, time) combi-
nations up to time 7 as B7 and define the k-th element as Bf. Our problem is
now to adjust the similarity to account for prompt/time combinations. We can
again achieve this by adjusting the similarity for clips up to time 7 as follows:

ST, BY) = S (F0i(m 1), 9(0(u; (> 1), p))) (5)

=
|Bk‘ p,teB]
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(a) A frozen captioner is run on a (b) f and g project clips (c) CDPNet es-
video input with a discriminative and captions, where their timates embedding
prompt from the bank. similarities are computed. similarities.

Fig. 3: Training CDPNet, which aims to predict the similarity between a clip (yellow)
and the caption from another clip (green), when conditioning the captioner with a
prompt. (a) and (b) show how to compute the similarity between the clip and caption
in a shared embedding space, which is used as the training signal. (c¢) shows CDPNet
predicting the similarity only using the video clips and prompt in one forward pass.

Similar to the case of multiple prompts at a single timestep above, we replace s
in Eq. [3| with s”. The process for generating unique captions is then the same
as Fig. 2| The only differences would be the tensor in 2b] having an additional
dimension for the number of timestep advances (i.e. N x N x P x 7), and
additional margin computations for prompt combinations at different timesteps.

3.3 Predicting discriminative prompts with CDPNet

In Sec. and we predict the best prompts exhaustively and exactly. That
is, we have an exact process for generating unique captions in a given video/text
space, with no training or fine-tuning. It uses exact embeddings of captioner
outputs, computes margins, and searches over the set of prompt combinations to
find the optimal combination. However, this process is not scalable. We recognise
that the main bottleneck is attempting to generate a caption for every one of
the N x P x 7 video/prompt/time combinations.

We approximate this by training a Captioning by Discriminative Prompting
Network, CDPNet, denoted ¥. It takes in two clips v; and v; and a prompt py.
It predicts the video-text similarity between the visual embedding of v;, and the
text embedding of v; when captioned using prompt p,. We denote this predicted
similarity as:

8ijk = Y (vi, v}, pr). (6)

Importantly, this allows us to replace Fig. and with the direct prediction
of similarities from video clips only, without having to calculate a forward pass
through the captioner or the embedding networks.

We train ¥ by minimising the MSE between its output 3;;;, and the com-
puted cosine similarity of the embeddings s(v;,v;, by) from Eq. [2| To allow scal-
ability, CDPNet ¥ only operates on one prompt, and the search for combina-
tions of prompts is handled by the averaging of similarities in the combinatorial
search (Eq. [5).

Fig.[3| shows the training process for CDPNet: [3a] shows a green clip, and its
generated caption (green circle), when captioned using a prompt from the bank;
[3D] shows the yellow clip and green caption being embedded by f and g in the
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> >

[ 74 )
Closes a drawer

T=+0s

A Awoman runs pss a street corner
Fig. 4: Examples of the Unique Captioning Benchmarks, from Egocentric videos (left)
and timeloop movies (right). We show 3 sequences from each set of clips — i.e. video
clips with the same caption at T=-+0. Subsequent clips are indicated by ». We note
the common caption in each case.

shared visual/text space, where their similarity is computed; and [3¢| shows how
this similarity is used as the training signal for ¥, which takes just the clips and
prompt (i.e. no caption).

We implement ¥ as a transformer encoder, and its prompt bank as a collec-
tion of learnable tokens, one per prompt. ¥ takes as input representations for
the two clips as well as the prompt token selected from the bank. We use learned
positional encodings to indicate the different inputs. We apply a linear layer to
the output of the prompt token to regress the similarity §.

In summary, CDPNet operates as follows. It is initialised with a bank of
prompts. For a given set of clips, CDPNet directly predicts the visual-text sim-
ilarity between each clip and every other clip with respect to every prompt in
the bank, using visual input only (i.e. no captioning). The combinatorial search
is run over CDPNet similarity predictions to find the combination of (max «)
prompts for each clip which produces the maximum margin. If this margin is
> ), the clip and prompt combination are passed to the captioner to expecting
unique captions. If the margin is < A, the clip is advanced (») and the process
is repeated until a unique prompt combination is found.

4 Unique captioning benchmarks

The ability to uniquely caption video clips can be assessed by checking if there
is a one-to-one correspondence between the set of video clips and the predicted
set of captions. We frame this as a retrieval problem and use standard retrieval
metrics accordingly.
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Metrics. Given a set of video clips V and generated captions C, we measure how
well each caption ¢; can retrieve the video v; and vice versa. We use both text-to-
video and video-to-text recall @1, @2 and @3. Text-to-video RQK indicates that
v; is one of the K-closest videos to ¢; in the shared embedding space, and vice
versa. We present Avg RQ1 as a standard combined metric. However, Avg RQ1
does not check for one-to-one assignment. Accordingly, we introduce the more
stringent Cycle@1 combined metric. This checks that video clip v; retrieves the
corresponding ¢; and c; then retrieves v;. Formally, this means v; and ¢; must
satisfy the uniqueness condition in Eq. [I]

Egocentric benchmark. Videos of daily living are an ideal test of unique
captioning, as we perform the same activities and routines over both short and
long timescales. The egocentric viewpoint naturally captures these repetitions
as we move around, so we use videos and narrations from Ego4D to construct
this benchmark. For training, We sample 30K ground truth narrations from the
Natural Language Query (NLQ) training split that are repeated 10 or more
times, i.e. 10 or more clips share the same narrations. For each, we randomly
sample 10 clips from the same or a different video, producing a benchmark of
300K clips. Our balanced sampling, per narration, helps alleviate the long-tail
property where some narrations such as “look around” are common.

For evaluation, we select 300 sets of 10 clips from the NLQ validation set, fol-
lowing the same process. Sets remain fixed for all evaluations. To select prompts
for the bank B, we take N-grams from narrations on the training set. We sort
by N-gram frequency, selecting the 10 largest, whilst manually removing seman-
tically similar prompts to ensure diversity. Prompts are ablated in Sec.
Timeloop movies benchmark. A timeloop movie is one where the plot centres
around the characters reliving the same sequence of events over and over. For
example, in the 1998 movie ‘Run Lola Run’, the character repeatedly starts
running from the same premise in her repeated attempts to save her boyfriend.
At each repetition, a difference occurs, which causes the story to diverge. This
makes these timeloop movies an ideal test for unique captioning.

For the test set, we start with the Wikipedia timeloop list 1|, and manually
annotate the timestamps of these repeating moments. We only select sets when
there are at least 3 repeating moments per movie, and where these moments are
near-identical, making this a very challenging evaluation. For example, in the
movie Groundhog Day, the main character is clearly filmed waking up 9 times,
from which the story diverges. These “waking-up” clips form a set of 9 clips. This
process gives a total of 63 clips across 10 timeloop movies, ranging from 1993 to
2021. Sets range in size from 3 to 10.

Due to the scarcity of timeloop movies, they can only be used for a test
set. For training , we use non-timeloop data as a proxy for timeloop clips. We
curate our training set from the Condensed Movie Dataset |4], which consists of
sequences of 2-minute movie truncations, from which we exclude timeloop movies.
We construct sets of 10 video clips with CLIP visual similarity > 0.92 (chosen to
match the egocentric training size), giving 30K sets of 10 clips. Examples from
both benchmarks are shown in Fig. [4
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Our benchmark and training clips are available from the project’s website.

5 Experiments

5.1 Baselines
Our proposed method, Captioning by Discriminative Prompting (CDP), is ap-
plicable to any captioning model and does not fine-tune the captioner. Here,
we focus our experiments on the SOTA baseline model for each benchmark,
with other models in the supplementary [561|57./59,/60]. For egocentric, we use
the Visually-Conditioned-Language-Model (VCLM) from LaViLa [60], which is
specifically trained to caption egocentric clips. For the timeloop movie bench-
mark, we use Video-LLaMA [59], which has recently been successfully used for
describing movies [151/40]. We use publicly available captioner checkpoints. Com-
bined with our CDP, we demonstrate improved performance in every case.
CDP advances to the next clip in the continuous video when a unique caption
cannot be predicted. For direct comparison, we evaluate all models on the same
number of clips. T'= +0s indicates the models can only see one clip, which is 5s
for egocentric and 2s for timeloop following model defaults. For the egocentric
benchmark, T' = 45s indicates the methods are allowed access to the next 5s
clip, T' = +10 indicates access to the next two clips and so on. The timeloop
movie benchmark, the equivalents are T'= +2s and T = +4s.

5.2 Implementation details.

We implement CDPNet (¥ in Eq. @ as a transformer encoder, with 2 layers, 4
heads and feedforward dimension of 1024. It is trained for 25 epochs using Adam
with Ir 0.0001, decaying by a factor of 10 at epochs 15 and 20, and batch size of
64. Default hyperparameter values are « = 3 (Eq. 4) and A = 0.1 (Sec. .

For the egocentric benchmark, we use EgoVLP 336px [33| as the evaluation
network. For the captioner, we take the LaViLa VCLM-HR [60], which is a
GPT-2XL with trained cross attention layers and bridge to the visual features,
and the Timesformer-L /Distilbert-Base 256d visual/text embedding network for
training. Video clips are 5s long, from which 4 frames are uniformly sampled
(the default). At maximum temporal extension, the inclusion of CDPNet and
the search only increases captioning time from 4.5 to 5.8s, compared to 300s
when we do not use CDPNet searching exhaustively.

For timeloop movies, we use InternVideo [47] as the video/text evaluation
space with 8 x 224px frames projected to a 768d feature. We use Video-LLaMA [59]
as the captioner, operating on 8x224px uniformly sampled frames, and EVA-
CLIP |41] video/text features as the embedding space during training.

5.3 Results

Table [I] shows results on the egocentric benchmark. At every timestep in every
metric, CDP outperforms the captioner, LaViLa VCLM. The improvement is 8%
Avg R@1 and 4% Cycle@1 acting on just the 5s clips without any advancement
(i.e. T = +0). Whilst the LaViLa VCLM obtains small improvements with
access to subsequent clips (i.e. as T increases), as expected, it is not able to pick
out the specific aspects which make each clip unique. In contrast, the mechanism
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Text—Video Video— Text

T  #Clips Method R@1 R@2 R@3 R@1 R@2 R@S‘Avg R@1 Cycle@1
05 1 LaViLa VCLM 40 58 70 33 49 61 |37 22.0
° LaViLa VCLM + CDP 55 71 80 34 50 61 (45 (8 26.0 4.0
L5 9 LaViLa VCLM 42 61 72 34 51 62 |38 23.0
LaViLa VCLM + CDP 69 81 88 44 60 71 [57 +19 38.6 +15.6
L 10s 3 LaViLa VCLM 45 63 74 36 52 64 |41 25.3
LaViLa VCLM + CDP 77 87 92 53 68 77 |65 124 47.1 +21.8
308 7 LaViLa VCLM 47 66 76 38 55 67 ‘43 27.2

LaVila VOLM + CDP 86 92 95 66 80 85 |76 133 62.3 135.1
Table 1: Egocentric benchmark using the LaViLa VCLM as the base captioner, and
combined with Captioning by Discriminative Prompting (CDP). At every T, CDP
improves by a significant margin on every metric. Improvements are shown in green
for the combined metrics Avg R@1 and Cycle@1.

Text—Video Video—Text

T #Clips Method R@1 RQ2 R@3 RQ@1 RQ2 R@3‘Avg RQ1 Cycle@1
0 1 Video-LLaMA 37 65 84 34 54 59 |35 18.3

s Video-LLaMA + CDP 47 71 86 36 63 78 |42 +7 25.0 +6.7
9 9 Video-LLaMA 5, 70 82 32 64 75 |43 25.4

s Video-LLaMA + CDP 51 70 81 45 64 75 |48 +5 32.0 +6.6
ds 3 Video-LLaMA 53 70 83 33 56 75 143 18.4

b Video-LLaMA + CDP 62 77 85 44 68 84 |53 +10 37.4 +19.0

10s 5 Video-LLaMA 44 70 83 32 56 74 ‘38 18.2

Video-LLaMA + CDP 73 87 95 53 75 84 |63 25 44.5 +26.3

Table 2: Timeloop movie benchmark using Video-LLaMA as the base captioner. CDP
is able to pick out more differences as the storylines diverge.

in CDP to find uniqueness provides greater improvements as more information
becomes available over time. With additional access to the next clip (i.e. +5s),
we have larger improvements of 19% Avg RQ1 and 16% Cycle@Q1, with further
gains as CDP is able to find uniqueness over more subsequent clips.

Table [2| shows results on timeloop movies with 2s clips. CDP is able to give
a larger number of unique captions when allowed to advance through the story
of each repetition. The base model Video-LLaMA struggles to generate unique
captions at longer timescales because it is not conditioned on other clips, and
thus has no mechanism to identify uniqueness. Because there is a large amount
of information in longer clips, it ends up producing captions based on their most
obvious properties, which tend to also be common between clips. With access
to the next 2 clips (i.e. +4s), CDP improves Avg RQ1 by 10% and Cycle@1 by
19%, with further gains over more clips.

5.4 Examples

Fig. [f] shows qualitative examples on egocentric footage. The unique captions
generated by CDP are displayed to the right of each clip. shows three clips
captioned as “climbs the stairs”. CDP is able to predict that all clips can be
distinguished by the item the person is holding, and that there is no need to
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Q_ Climbs the stairs [Unique search] Q Looks around the shelves [Unique search]
O\Climbs the stairs Q Looks around the shelves

>>> >>> >>>

Climbs the stairs, and
holds the phone

Looks around the shelves, and
+0s the other man picks up a packet of
biscuits from the shelf with his left hand.

Looks around the shelves, and
looks at the list

p Climbs the stairs, and
picks up the drill

B Looks around the
shelves, and then
picks up a packet of
cough rubs.

Climbs the stairs, and
P> holds a tape measure

+10s

(a) Climbs the stairs (b) Looks around the shelves.

Fig. 5: Qualitative egocentric examples. CDP is able to caption the set in (a) uniquely.
The third clip in (b) advances 10s to generate a unique caption.

Q_ Aman sits up. [Unique search] Q A man sits up.

. A 3 U] A man sits up, and then
| 2 N B S8l a red double decker tourist bus with a large
+65 2 ; i ! poster advertising a festival, street performers,

and military soldiers on a bus.

Aman sits up, and then
a group of soldiers in uniform walking
B through an airport terminal

Aman sits up, and then

a young woman holding a
yellow backpack while
standing in a dark room
with a black pole in it

+8s

A
timeloop moment £

Fig. 6: Unique captioning example on Edge of Tomorrow (2014).

advance through the video. [5b] shows a more challenging example, where the
original query is “looks around the shelves”. CDP captions the first two clips
uniquely. For clip 1, CDP predicts the discriminative prompt “the other man...”,
which conditions the captioner to describe what the other person in the scene is
doing. Clip 2 uses the discriminative prompt “looks at...”, indicating the shopping
list being read as unique for this clip. For clip 3, CDP cannot find a discriminative
prompt at +0s or +5s, as captions would also apply to clip 2, and thus would
not be unique. At +10s, it predicts uniqueness with the prompt “picks up”.

Fig. [f] shows unique captioning examples on three out of the eight instances
of Tom Cruise sitting up in Edge of Tomorrow, when a timeloop begins. None
of the clips can initially be distinguished. CDP finds uniqueness using the bus
in clip 1 at 6s. In clip 2, the other soldiers in the scene at 4s. In clip 3, at 8s the
woman with the backpack is not present in the other clips, resulting in a unique
caption.

Fig. [7] shows examples on the seminal timeloop movie Groundhog Day. We
show unique captions generated for three out of the nine loops which start with
“a man wakes up”. At 2s, clip 1 is the only one where the man is still lying down.
After 6s, clip 2 is uniquely identified by the objects in the scene (windows). After
10s, CDP identifies that the other characters and location make it unique.
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Q Aman lies in the bed. [Unique search] QA man lies in the bed.

A man lies in the bed, and then
a man is standing in a room with
windows.

/Ml Aman lies in the bed, and then
Bl a man, a woman, and an older

[l woman stand at a table in the

middle of a dining room.

A
timeloop moment 4‘__.l

Fig. 7: Unique captioning example on Groundhog Day (1993).

Max Prompts
Prompts V—-T T—-V
T # clips Method Max | Chosen R@1 R@1 Avg R@1 CQ1
L 0s 1 1 1 45 63 54 37.2
s LaViLa VCLM + CDP 2 14 47 65 56 39.6
3 1.6 49 69 59 40.2
L 10s 3 1 1 59 74 67 54.0
s LaViLa VCLM + CDP 2 1.5 66 83 75 60.6
3 1.9 66 82 74 60.4

Table 3: Ablation on «, the maximum number of prompts. The Fig.8: Cycle@Q1
LaViLa VCLM baseline is shown for comparison. visualisation.

5.5 Ablations

Ablations are performed on 50 egocentric sets of 10 clips.

Max allowed prompts «a. We chose the maximum number of prompts per clip
as @ = 3 for the main experiments as a reasonable trade-off between caption
conciseness and retrieval accuracy. Table [3| shows results with T = +0s (one
clip) and +10s (access to two subsequent clips) as we reduce «. We also record
the average number of prompts chosen, as not every clip will require as many as
« prompts. On just the first clip (T = +0s), o = 3 provides the best results as
expected, but with with access to more clips, performance saturates at a = 2,
as visualised in Fig. |8 With more time, it is more likely that unique properties
will become available. Notably, CDP with one prompt outperforms the baseline.
Prompt ablation. To investigate the impact of each prompt, [0a] shows when
each prompt was chosen (adding up to > 100% due to combinations being cho-
sen). [9b| shows the performance of CDP with each prompt individually. Prompts
relating to active object are chosen the most, and do best individually, as they
are frequently the focus of egocentric videos.

Margin threshold \. in Fig. [[0a] we vary A, and record the percentage of
clips which have a margin > A. As expected, a higher A means fewer clips are
predicted as unique. Naturally, the number of unique predictions for a fixed A
is greater for +10s than +0s, as CDP has more footage to identify uniqueness.
We measure the Cycle@1 of clips with margin > X in Fig. where higher A
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Fig. 9: Prompt ablations, given at T= +0s and +10s.

100

(a

~

75

50

Cycle@1

25

% clips predicted as unique

® +0s @ +10s

0@ *0s @ +10s

0.0 0.1 02 03 0.0 0.1 02 03
Lambda Lambda

(a) Effect of A on % clips predicted as unique. (b) Effect of A on Cycle@1 of clips predicted as unique.
Fig. 10: Ablation on the margin threshold A, on T= +0s and T= +10s.

gives a higher Cycle@1. These results demonstrate that A is a useful parameter
to control the decision to advance time, and a proxy for prediction confidence.
Long video case study. Instead of our 300K clips, we experiment on one
continuous long video, for the task of uniquely captioning every clip in that
single video. We demonstrate the effectiveness of the captions produced by
CDP by captioning every 5s clip in 10 long
egocentric videos from Ego4D (40 mins and  Methed R@1 RO2 R@3 R@5
436 clips on average), and measuring text —  2Vil® Xgﬁ& opp o onn
video recall. Tab. [4] shows CDP delivers sig-

nificant improvements. Full experimental de- Taple 4: Text — Video retrieval on
tails are in the supplementary. long (40 min) egocentric videos.

6 Conclusion

In this paper, we introduced the problem of unique video captioning, to reflect
the repetitive nature of daily life, the way repetitions are depicted in film, and the
shortcomings of current methods to distinguish between these repetitive events.
We developed a framework, Captioning by Discriminative Prompting (CDP),
based around observing all clips to be captioned. We introduced two benchmarks
for unique captioning, based on egocentric footage and the repetitive moments
in timeloop movies, and found CDP provides significant improvements on both.
There are a number of possible directions for future work. One would be
learning prompts vs the fixed set used here. Another would be to explore unique
captioning across whole datasets. A third would be to incorporate multiple cap-
tioners with different specialisms.
Acknowledgements. Research is supported by EPSRC Programme Grant Vi-
sual AT (EP/T028572/1) and EPSRC UMPIRE (EP/T004991/1). This project
acknowledges the use of the EPSRC funded Tier 2 facility, JADE-II.
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