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Abstract. Developing an interpretable system for generating reports in
chest X-ray (CXR) analysis is becoming increasingly crucial in Computer-
aided Diagnosis (CAD) systems, enabling radiologists to comprehend the
decisions made by these systems. Despite the growth of diverse datasets
and methods focusing on report generation, there remains a notable gap
in how closely these models’s generated reports align with the interpreta-
tions of real radiologists. In this study, we tackle this challenge by initially
introducing Fine-Grained CXR (FG-CXR) dataset, which provides fine-
grained paired information between the captions generated by radiolo-
gists and the corresponding gaze attention heatmaps for each anatomy.
Unlike existing datasets that include a raw sequence of gaze alongside a
report, with significant misalignment between gaze location and report
content, our FG-CXR dataset offers a more grained alignment between
gaze attention and diagnosis transcript. Furthermore, our analysis reveals
that simply applying black-box image captioning methods to generate
reports cannot adequately explain which information in CXR is utilized
and how long needs to attend to accurately generate reports. Conse-
quently, we propose a novel explainable radiologist’s attention generator
network (Gen-XAI) that mimics the diagnosis process of radiologists,
explicitly constraining its output to closely align with both radiologist’s
gaze attention and transcript. Finally, we perform extensive experiments
to illustrate the effectiveness of our method. Our datasets and checkpoint
is available at https://github.com/UARK-AICV/FG-CXR.

Keywords: Chest X-ray · CXR Dataset · Intepretability · Deep Learn-
ing · Report Generation · Medical Imaging

1 Introduction

Chest X-rays (CXRs) are commonly used for both screening and diagnostic
purposes, resulting in a substantial daily workload. Additionally, the current
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shortage of trained radiologists in many healthcare systems highlights the need
for automated radiology report generation to help reduce radiologists’ work-
loads [51]. The success of Deep Learning [5, 21, 22, 30–32, 35, 37, 46, 48] has led
people to pursue its application in the medical domain [1, 29]. However, most
existing methods lack explainability, which is a major reason for their limited
adoption. In the safety-critical medical field, a highly accurate but opaque report
generation system may not be adopted if the reasoning behind the generated re-
port is not transparent and explainable [11,12,27]. Therefore, creating and using
an interpretable system should be prefer to black-box system [37].

In the examination process, radiologists carefully examine every anatomy
of CXRs and report their findings. Inspired by this process, we hypothesize
that understanding pixel importance and gaze patterns can improve AI model
explainability and accuracy in CXR diagnosis. However, the use of radiologist
gaze-derived heatmaps in generating descriptive reports during CXR diagnosis
remains underexplored. Recently, Tanida et al. [43] address this challenge by
introducing an interpretable system that uses bounding boxes, which lack detail.
In contrast, Pham et al. [34] propose a diagnosis system directly supervised by
gaze attention. However, this system is limited as it can only predict whether an
anatomical region is abnormal, requiring users to identify the specific findings
themselves, which can be impractical.

To address the aforementioned weaknesses, we introduce Gen-XAI pipeline,
shown in Figure 1. Gen-XAI mimics how radiologists perceive images by de-
coding radiologist’s gaze attention with the Gaze Attention Predictor and then
explaining its observations through the Report Generator. The Gaze Attention
Predictor focuses on learning the regions of interest based on radiologists’ gaze
attentions, ensuring that the system captures the critical areas that a radiolo-
gist would typically examine. The Report Generator then uses this information
to produce an accurate radiology report, which is visually grounded with the
anatomical gaze attention, enhancing the transparency and explainability of the
diagnostic process.

Existing gaze datasets [1, 17] provide raw gaze sequences along with reports
for each patient. However, radiologists typically observe before diagnosing, lead-
ing to a misalignment between the gaze location and the report at the same
timestamp, as illustrated in Figure 2. Therefore, a cleaner dataset is needed
to evaluate this pipeline effectively. To address this, we curate a new dataset
that provides gaze sequences aligned with anatomical attention heatmaps. By
aligning gaze sequences with attention heatmaps, we ensure that the generated
reports are not only accurate but also provide insights into the reasoning process
behind each diagnosis. Our main contributions are summarized as follows:

– We introduce FG-CXR, a curated dataset that provides anatomical segmen-
tation, gaze attention heatmaps annotated by radiologists, and radiology re-
ports that are aligned with the gaze attention heatmaps.

– We propose a novel interpretable baseline Gen-XAI to efficiently generate
radiology reports with meaningful attention heatmap.
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Input CXR

Gaze Attention
Predictor

The patient is possibly suffering from pleural effusion and pneumonia in the left lung. The patient
is possibly suffering from pleural effusion and pneumonia in the upper left lung. There is increased
density at the left lung base, which is not specific. Cardiomegaly. The patient is possibly
suffering from pleural effusion and pneumonia in the right lung. The patient is possibly suffering
from pleural effusion and pneumonia in the upper right lung. There is also increased density at the
right lung base, which is more amorphous and probably represents infection, atelectasis or
aspiration. 

Radiology Report Generator

Fig. 1: An overview of our interpretable Gen-XAI framework, generating a diagnosis
report and its corresponding visual attention for each diagnosis in the report.

2 Related works

2.1 Interpretable Deep Learning.

In high-stakes medical settings, understanding the decision-making process is
crucial [38]. A direction to enhance interpretability is to design an architecture
that can learn concepts [20, 34]. In our paper, we follow the interpretable ap-
proach [38] by learning radiologists’ intentions (gaze attention) across anatomi-
cal parts. However, unlike previous works [28, 34, 40] focusing on classification,
we address the less explored task: the model must explain observations via report
generation based on inferred intentions.

2.2 Interpretable-oriented Datasets.

Creating datasets with annotated abnormality localization traditionally involves
manual curation, but this is labor-intensive and often yields limited coverage,
typically 1-2 labels [10, 42]. Recent efforts address this by providing datasets
with anatomy labels in reports. For instance, the Chest ImaGenome dataset
[51] is a dataset containing localized annotations (bounding box), with corre-
sponding reports for the associated CXR images. However, existing datasets
lack the granularity needed, e.g. gaze, to develop models that mimic real radi-
ologist diagnoses. In contrast, our dataset enhances detail by mapping reports
to 7 anatomical locations using radiologist attention heatmaps, providing deeper
insights into the diagnostic process.

2.3 Radiology Report Generation.

Early approaches [15,24] in report generation leveraged CNN-RNN architectures
or transformer inspired by general image captioning. However, medical report
generation differs from image captioning [43] due to varying lengths, complex-
ities, and biases in normal samples. To address these challenges, some models
align visual features with disease tags [53], while others incorporate medical
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Table 1: Overview of CXR datasets. A coarse report describes the whole image. A
fine-grained report is a report associated with individual anatomies.

Gaze Datasets Annotation #Samples NLP ReportsInformation Method

✗

SIIM-ACR Pneumothorax Segmentation [10] Segmentation Manual + augmented 12,047 No
RSNA Pneumonia Detection Challenge [42] Bounding Boxes Manual 30,000 No
NIH CXR dataset [49] Entire CXR Automated 112,120 No
PLCO [45] Entire CXR Automated 236,000 No
Stanford CheXpert [13] Entire CXR Automated 224,316 No
Montgomery County Chest X-ray [14] Segmentation Manual 138 No
Shenzen Hospital Chest X-ray [14] Segmentation Manual 662 No
Indiana University Chest X-ray Collection [8] Entire CXR Automated 3,813 Coarse
MIMIC-CXR [16] Entire CXR Automated 377,110 Coarse
Dutta [7] Entire CXR Manual 2,000 Coarse
PadChest [2] Entire CXR Manual + automated 160,868 Coarse
Chest ImaGenome [51] Bounding Boxes Automated 242,072 Fine-Grained

✓

REFLACX [1] Gaze Automated 3,000 Coarse
EGD [17] Segmentation + Gaze Automated 1,000 Coarse

Our FG-CXR
Atanomies Localization Semi-automated

2,951 Fine-GrainedGaze Attention Heatmap Automated
Gaze Sequence Automated

knowledge graphs [25]. Notably, RGRG [43] tackles interpretability by outlining
abnormal regions and generating captions about them, but it lacks precision in
specifying abnormality areas within bounding boxes. In contrast, our method
simulates radiologists’ focus on important regions and generates insights based
on them.

Our FG-CXR dataset closely simulates radiologists’ real-life diagnostic pro-
cess by providing detailed annotations, including anatomical localization, gaze
attention, and corresponding medical reports. A comparison between our FG-
CXR with the existing CXR datasets is given in Table 1, while a visualization
of the comparison of gaze-based annotations is shown in Fig. 2.

Existing Gaze-CXR Datasets Our FG-CXR dataset

Cardiomegaly. Possibly
suffering
from edema,
atelectasis
in the left
lung.

The upper
right lung is
possibly
normal.

Elevated left
lung base.

The upper
left lung is
possibly
normal.

Minimal patchy
opacity at the
right base
probably
atelectasis.

Possibly
suffering
from edema,
atelectasis
in the right
lung.

Elevated left lung base.
Cardiomegaly. Minimal patchy
opacity at the right base
probably atelectasis.

CXR

Elevated left lung
base. 

Align timestamp of transcript
and timestamp of gaze sequence

Fig. 2: Annotation comparison between prior gaze-CXR datasets (left) which face
challenges in aligning gaze location with textual description and our FG-CXR (right),
given a CXR (middle).
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Table 2: Keywords for Anatomical Regions. The keywords are chosen by listing
all sentences from the radiology reports and picked based on their meaning.

Anatomical Region Keywords

Heart cardiomegaly, enlarged and chest, heart, cardiac, mediastinum
Left Lung left
Right Lung right
Upper Left Lung upper and left, apex and left, mid and left, apical and left,

top and left
Upper Right Lung upper and right, apex and right, mid and right, apical and right,

top and right
Lower Left Lung lower and left, base and left, bottom and left
Lower Right Lung lower and right, base and right, bottom and right

3 Dataset: Fine-Grained CXR (FG-CXR)

3.1 Anatomy Localization.

According to radiologists, their focus can be divided into seven key areas of
CXR: heart, left, right, upper left, upper right, lower left, and lower right lungs.
Therefore, we create anatomical masks for seven regions. Leveraging CXRs and
gaze sequences from EGD [17] and REFLACX [1], we apply techniques from [34]
to generate detailed masks for the heart and lungs, segmented into upper and
lower regions. Finally, images with extreme brightness are filtered out.

3.2 Anatomical-aware Gaze Attention.

Given the gaze coordinates G = {g1, g2, . . . , g|G|} ∈ N|G|×2 of a CXR, our
filtering process as the follows: For a report T = {s1, s2, ...s|T |}, we identify all
si that include keywords pertinent to the area of interest, select the latest end
time and remove all gaze points after that timestamp. The list of keywords is
described in Table 2. If transcript lacks keywords indicating anatomy, we use
the entire gaze sequence. Finally, we filter out any gaze points that fall outside
the segmentation masks corresponding to the anatomical areas of interest. The
final gaze sequence of a ith sample is represented in two forms: gaze sequence in
a temporal order Gi ∈ N|Gi|×2 ⊆ G, and gaze attention heatmap A ∈ RH×W ,
which is created by creating gaze frequency map and applying Gaussian blurring
as in [17].

3.3 Anatomical-aware Report

For every anatomical region, we associate it with a brief report. For instance,
we link “the heart is normal” with the heart area. However, a report from RE-
FLACX [1] or EGD [17] might only include certain anatomical regions. To ad-
dress this, we use a template to generate reports for any missing anatomy. If
a diagnosis for any region is absent after keyword filtering (Section 3.2), we
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(a) Regional report lengths. (b) Heatmap to mask area ratios.

(c) Heatmap to bounding box area ra-
tios.

(d) Heatmap to full image size ratios
per region.

Fig. 3: Dataset distributions for FG-CXR.

create a default sentence based on MIMIC-CXR annotations: “the {area} is
possibly normal” for no findings, or “the patient is possibly suffering
from {findings} in the {area}” for specific findings. For example, if a pa-
tient’s current report lacks information for the left lung area, we refer to MIMIC-
CXR and find that the label for this patient is “no finding”. We then generate
the sentence “the left lung is possibly normal” for this patient’s left lung.

3.4 Dataset Statistics

Our dataset contains 2,951 CXRs in total, with 20,657 pairs of {attention heatmap,
report}. Figure 3 provides deeper insights into our dataset.
Reports are mostly concise. In Figure 3a, we observe that the majority of
reports are concise, particularly those describing the heart, with most reports
comprising fewer than 10 words. Reports on other anatomical regions tend to be
longer, though a significant number still fall within the 5 to 10 words range. This
indicates a prevalent practice among radiologists of using succinct sentences.
Radiologist’s attention versus segmentation mask. Figure 3b reveals that
most gaze heatmaps typically cover a smaller area than the full anatomical seg-
mentation mask. Notably, many heatmaps in the lower left and right lungs en-
compass a larger area (resulting in a ratio greater than 1). This can be attributed
to the presence of dense gaze sequences that extensively cover a particular re-
gion, and this is further amplified with the Gaussian filtering process. Such a
phenomenon is particularly evident in the lower right and lower left regions,

946



FG-CXR 7

Table 3: Dataset splits for training, validation, and testing sets. From the data
in Section 3, we create these splits for training, validating, and testing our method in
Section 5.

Set Number of Samples Percentage

Training Set 2,074 70%
Validation Set 295 10%
Testing Set 582 20%
Total 2,951 100%

likely due to radiologists’ meticulous examination of the diaphragm, which ex-
tends beyond the lower masks. Furthermore, the base of the left lung mask is
typically smaller than that on the right side, attributed to occlusion by the heart.
Radiologist’s attention versus bounding box. In Figure 3c, most heatmaps
are confined to a portion of their bounding box, which is computed by taking
the top left and bottom right corners of the non-zero heatmap values. A notable
observation is that many gaze attention heatmaps utilize less than 20% of the
bounding box area, especially in the left and right lungs.
Radiologist’s attention versus the whole image. In Figure 3d, most heatmaps
use little information from the whole image. This is true even for the left and right
lungs, where one might expect a higher coverage area; however, most heatmaps
occupy only about 10% of the image’s total area.

For benchmarking in Section 5, we randomly split our dataset into 70% for
training, 10% for validation, and 20% for testing. The number of samples is
shown in Table 3.

3.5 How will our FG-CXR benefit the community?

We anticipate that the release of our FG-CXR will drive advancements in these
promising areas:
– Gaze-Interpretable Report Generation: While report generation is a growing

research topic, enhancing and evaluating report generation with explainabil-
ity using radiologist gaze data remains relatively unexplored.

– General Medical Tasks: The FG-CXR dataset, enriched with segmentation
masks for critical anatomical areas, serves as a valuable resource for devel-
oping and benchmarking Anatomical Segmentation algorithms [23, 47]. The
reports of FG-CXR dataset, validated by experts, is also richer and more
informative than the original REFLACX [1] and EGD [17] datasets, making
it a potential benchmark for Radiology Report Generation [25,55].

4 Methodology

In this section, we introduce a novel framework for Gaze-interpretable Report
Generation. Given a CXR image I, our goal is to produce gaze-based heatmaps A
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Fig. 4: The detailed architecture of our framework consisting of three key modules:
Gaze Attention Predictor, Spatial-Aware Attended Encoder, and Report Decoder.

and generate a report R of the attended region A. To ensure interpretability, the
gaze attention A has to be closely aligned with expert observation and the report
R has to be consistent with what gaze attention A. Our Gen-XAI architecture,
detailed in Figure 4, comprises three key modules: (i) Gaze Attention Predictor
(GAP) to predict seven gaze-based heatmaps A; (ii) Spatial-aware Attended
Encoder (SAP) to generate attended features V; and (iii) Report Decoder to
generate diagnosis reports for seven anatomies.

4.1 Gaze Attention Predictor (GAP)

Given a CXR image I and Anatomical Intention Token TInt., this module pre-
dicts the radiologist-like attention heatmap A ∈ [0, 1]7×H/16×W/16×1. Inspired
by [34], we adopt the idea of training a deep adapter on a pretrained CLIP [36]
to predict heatmaps. Initially, we extract four intermediate features from the
middle layers (i.e. {0, 3, 6, 9} according to [34]) of the CLIP’s visual encoder
from the I. Subsequently, I is split into H/16 ∗W/16 patches with size 16× 16
and projected into an embedding space Ie to prepare for the fusion stage via
a Linear Projection layer. In the fusion stage, we fuse Ie with the extracted
CLIP’s visual features V and TInt.. Finally, a Predictor module, consisting of
an MLP followed by a sigmoid activation, predicts seven gaze heatmaps for the
seven parts of the lung. To create TInt., we use CLIP’s text encoder to extract
seven textual features from: “heart”, “left”, “right”, “upper left”, “upper
right”, “lower left”, and “lower right”; and we stack them into a tensor
TInt. of size 7×D. This allows simultaneous prediction of all seven parts, rather
than individually.
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4.2 Spatial-aware Attended Encoder (SAP)

This module produces an attended feature V that contains information from its
patch and neighbors, crucial for focusing on relevant areas while retaining essen-
tial spatial context. Given CXR’s grayscale nature, distinguishing areas like the
lung from the background requires understanding their spatial relation to adja-
cent patches. This spatial information only exists in the encoded feature [21,50].
Unlike previous works [18, 34] that apply attention to pixel level that may re-
move vital details, our approach applies attention to the latent visual features
V ′. The effectiveness is empirically proven and included in Section 5.3. Specifi-
cally, we first extract the patches’ visual feature V ′ ∈ RH/16×W/16×D by using
a Visual Encoder (i.e. CvT [50]). Then, we create the spatial-aware attended
feature by performing element-wise multiplication between A and ′ to create
the reweighted feature V. To further guide the model, we also concatenate the
token of the current area of interest into the feature, for example concatenat-
ing the intention token of looking at the heart to the feature that is masked
by the heart heatmap. Mathematically, we compute V ∈ R7×(H/16∗W/16+1)×D

with V(i) = [V ′ ⊙ A(i), TInt.(i)],∀i ∈ [0, 6], where i indicates ith region, [·] is
concatenation and ⊙ is the Hadamard product.

4.3 Report Decoder

We utilize GPT2 [36], an auto-regressive network for text generation, as our tex-
tual report decoder architecture. The token embedding is the embedding of pre-
vious tokens, for example, “[BOS],the,patient,is, possibly,suffer,from”
to predict the next word “lung”, where [BOS] is the beginning of sentence token.
For every area i, we use V(i) as key (K) and value(V), and the output feature
from self attention of token embedding as query (Q)of the cross-attention module.
After predicting all sentences, we concatenate them to create the final report.

4.4 Learning Objective

We train our model with the training loss L = (1 + λc)Lc + (1 + λh)Lh, where
λc,Lc, λh,Lh are the report penalty, cross-entropy loss for the generated report,
heatmap penalty, and L2 loss for predicted heatmap, respectively. To enhance
the model’s focus on predicting correct anatomy, we introduce two dynamic
coefficients as penalties: gaze attention prediction (λh) and report generation
(λc). During the heatmap prediction, we use Intersection over Union (IoU) with a
threshold of 0.5 to identify instances where the model inaccurately focuses. Each
incorrect prediction increases λh by 1. Agt is the ground truth gaze attention
map.

λh =
∑
i

10.5(IoU(A(i),Agt(i))), where 10.5 =

{
1 if x ≥ 0.5

0 otherwise
(1)

At the report generation, we want the model the model explicitly predict
directions while minimizing incorrect directional words. Thus, if the model fails
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Table 4: Performance comparison between our method and other SOTA methods on
natural language generation (NLG) metrics for the full report generation task.

Methods B1↑ B2↑ B3↑ B4↑ M↑ R↑ C↑ Div@2↑ R@4↓
R2Gen [4] 0.690 0.576 0.502 0.459 0.326 0.607 3.302 0.357 0.459
R2GenCMN [3] 0.688 0.572 0.513 0.472 0.326 0.612 3.355 0.437 0.174
CvT2DistilGPT2 [33] 0.708 0.647 0.585 0.552 0.352 0.618 2.936 0.486 0.149
RGRG [44] 0.715 0.598 0.583 0.550 0.351 0.532 3.300 0.624 0.075
M2 Transformer [6] 0.694 0.613 0.533 0.476 0.333 0.623 3.097 0.672 0.065
Ours 0.729 0.658 0.606 0.561 0.386 0.692 4.026 0.854 0.055

Table 5: Performance comparison between our method and other SOTA methods on
clinical efficacy (CE) metrics.

Methods Pmic ↑ Rmic↑ F1mic↑ Pmac↑ Rmac↑ F1mac↑ Pex↑ Rex↑ F1ex↑
R2Gen [4] 0.415 0.249 0.319 0.259 0.135 0.151 0.370 0.237 0.254
R2GenCMN [3] 0.423 0.256 0.341 0.257 0.134 0.152 0.373 0.291 0.309
CvT2DistilGPT2 [33] 0.275 0.255 0.337 0.261 0.135 0.153 0.376 0.294 0.313
RGRG [44] 0.430 0.272 0.361 0.270 0.142 0.160 0.401 0.436 0.427
M2 Transformer [6] 0.467 0.429 0.459 0.283 0.171 0.197 0.436 0.461 0.440
Ours 0.495 0.515 0.505 0.311 0.256 0.256 0.515 0.503 0.497

Table 6: Performance comparison between our method and other SOTA methods for
attention generation.

Methods fgIoU↑ bgIoU↑ fwIoU↑ SSIM↑ PSNR↑ L1↓ L2↓
R2Gen [4] 15.87 56.03 45.08 0.35 9.12 0.840 0.200
R2GenCMN [3] 18.84 64.55 51.72 0.37 10.81 0.179 0.049
CvT2DistilGPT2 [33] 17.73 66.48 48.61 0.41 11.09 0.271 0.065
RGRG [44] 21.53 66.98 55.65 0.41 12.44 0.210 0.055
M2 Transformer [6] 23.19 69.06 60.22 0.45 14.51 0.120 0.031
Ours 30.15 89.08 80.69 0.60 17.41 0.084 0.022

to predict anatomical keywords or mentions the wrong direction, λc increases
by 1. For every CXR, both λh and λc are initialized to 0, indicating that they
are not accumulated across all samples in an epoch. The ablation study on the
effect of penalty terms is included in Section 5.3.

5 Experiments

5.1 Implementation details

Architecture details. GAP comprises an FCN layer for an input patch size
of 16 × 16 as the Linear Projection, 4 fusion layers, each with the Add Fusion
block [34], and the Self-attention block with a hidden dimension of 240 and
6 attention heads. A BiomedCLIP [54] is used as CLIP and an MLP with 3
hidden layers of 256 neurons each as the Predictor. The Report Decoder is a
GPT2 [36] initialized with DistillGPT2 [39] that has 12 heads, 6 layers, and a
hidden dimension of 768. The SAP’s Visual Encoder is a CvT [50] initialized
with ImageNet [9] and |V| ∈ R768. We train Gen-XAI with a learning rate of
5e− 5, batch size of 32, 6, 000 iterations, and AdamW optimizer [26].
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Fig. 5: Qualitative comparison. The blue text highlights consistent content with ground
truth. The red text indicates incorrect content.

Metrics. Follow [34,41,43], we evaluate our method based on three criteria:
– Natural Language Generation (NLG) metrics: BLEU (B), METEOR (M),

ROUGE-L (R), and CIDEr (C) for matching generated report with the refer-
ence report; Div@2 [41] and R@4 [52] for diversity generated reports because
we observe that report generation model can suffer heavily from generating
only one sentence for all samples.

– Clinical Efficacy (CE) metrics: we use all micro-, macro-, and example-based
Precision, Recall, and F1 score described in [13] because NLG metrics alone
are ill-suited for measuring clinical correctness [43].

– Attention Similarity metrics: we report all foreground IoU (fgIoU), back-
ground IoU (bgIoU), frequency-weighted IoU (fwIoU), Structural Similarity
(SSIM), Peak signal-to-noise ratio (PSNR), L1, and L2. Note that, these
metrics can also indicate interpretability because when a model’s predicted
areas of focus closely match those of expert radiologists, it suggests that the
model’s decision-making process is more understandable and interpretable.

Baselines. We compare Gen-XAI with state-of-the-art methods: R2GenCMN
[3], R2Gen [4], CvT2DistilGPT2 [33], M2 Transformer [6], and RGRG [44] on
FG-CXR. For each method, we maintain the default hyperparameters as speci-
fied by the authors and train all models on our dataset. For previous works, we
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Table 7: Ablation study on applying attention (TInt) to pixels vs. features.

Settings TInt
Attention NLG CE

fwIoU↑ PSNR↑ L1↓ B4↑ C↑ Div@2↑ Pex↑ Rex↑ F1ex↑

On pixel
✗ 62.07 13.50 0.122 0.428 3.004 0.678 0.400 0.416 0.410
✓ 73.35 15.97 0.094 0.464 3.300 0.734 0.434 0.453 0.447

On feature
✗ 79.11 17.24 0.085 0.545 3.947 0.837 0.505 0.498 0.487
✓ 80.69 17.41 0.084 0.561 4.026 0.854 0.515 0.503 0.497

use the attention scores of the generated sentences as predicted attention. Since
RGRG employs a single vector to represent each region, we use its predicted
bounding box for evaluation.

5.2 Experimental results

Quantitative results. Tables 4 to 6 demonstrates the effectiveness of our in-
terpretable approach, which outperforms other methods across all criteria. For
example, Gen-XAI has a high advantage in attention prediction and outshines
the runner-up [6] by +20.47 in fwIoU. The improvement in attention similarity
is understandable as our method is explicitly constrained by the heatmap loss
while other methods are not designed for Gaze-Interpretable Report Genera-
tion. However, Gen-XAI also outperforms other black box methods, designed
specifically for radiology report generation. For example, in NLG, Gen-XAI sig-
nificantly surpasses other models by a large margin, i.e. +0.671 on CIDEr metric
compared to the runner-up [3], and +0.182 on Div@2 metric compared to the
runner-up [6]. On example-based CE metrics, our model also achieves a higher
score of 0.497, +0.057 on F1ex respectively compared to the runner-up [6]. One
of possible reason is that previous works are not supervised by radiologist’s gaze
attention, and thus they fail to learn and use incorrect visual information. This
will be further confirmed in Figure 5, where looking at the wrong location causes
the model to fail in producing reliable diagnosis, and in Section 5.3, where our
model also encounters the same issue when trained with a traditional attention
mechanism.
Qualitative results. Figure 5 compares our Gen-XAI with leading methods,
showcasing superior performance in generating precise attention heatmaps and
diagnosis reports. CvT2DistilGPT2 produces unreliable and mostly incorrect
reports due to inaccurate focus, despite occasional recognition of pleural effusion.
On the other hand, the M2 Transformer often misidentifies lungs as normal,
although accurately diagnosing the heart. This highlights the effectiveness of
our approach and the crucial role of precise anatomical focus in addressing the
Gaze-Interpretable Report Generation challenge.
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Table 8: Ablation study on the penalty effects.

Settings
Attention NLG CE

fwIoU↑ PSNR↑ L1↓ B4↑ C↑ Div@2↑ Pex↑ Rex↑ F1ex↑

w/o. penalty 78.12 16.58 0.088 0.515 3.763 0.849 0.490 0.479 0.478
+ λc 77.41 16.74 0.088 0.534 3.871 0.837 0.500 0.493 0.483
+ λh 79.74 17.07 0.085 0.524 3.834 0.837 0.500 0.488 0.478
+ λc + λh 80.69 17.41 0.084 0.561 4.026 0.854 0.515 0.503 0.497

Table 9: Ablation study on training with the proposed anatomical gaze attention vs.
anatomical segmentation vs. traditional attention.

Settings
Attention NLG CE

fwIoU↑ PSNR↑ L1↓ B4↑ C↑ Div@2↑ Pex↑ Rex↑ F1ex↑

Traditional attention 69.71 14.59 0.148 0.395 3.113 0.656 0.399 0.411 0.406
Anatomical segmentation 79.95 17.11 0.090 0.551 3.998 0.849 0.485 0.490 0.488
Anatomical gaze attention 80.69 17.41 0.084 0.561 4.026 0.854 0.515 0.503 0.497

5.3 Ablation Study

Applying gaze attention on pixel vs. features. In Section 4, we apply the
predicted gaze attention on the features based on the intuition that the encoder
may extract important context information to represent a patch feature besides
the patch pixels. For example, the shape or spatial information can be in the
feature. This ablation alters only the attention choice, keeping penalty terms
and other components as initially proposed. Therefore, we design an ablation
study: Instead of applying the gaze attention on the feature, we apply it to the
image input, then feed the masked image into the encoder again. Every other
setting is kept the same. The results are shown in Table 7. Indeed, the findings
indicate that incorporating gaze attention directly into the input detracts from
model performance. As mentioned in Section 4, this approach can obscure spatial
details, leading to confusion. For instance, a heatmap centered on the left lung
may not clarify enough whether it targets the left or right side due to uniform
coloration. This issue is amplified when training the model without an intention
token (w/o. IT), as shown in our table’s first row. On the other hand, attending
to the latent feature improves the performance, and applying the intention token
can slightly boost the performance.
Anatomical gaze attention vs. anatomical segmentation vs. traditional
attention. Interpretable model is often mistakenly thought to be harmful to
the performance [37]. To demonstrate that this is not the case for our proposed
model. We design an ablation study with two more settings:
– Traditional attention. We remove the Gaze Attention Predictor (GAP) mod-

ule and instead use a simple self-attention module to flexibly weigh the impor-
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tance of every patch feature. In other words, we let the model automatically
decide the importance of every patch.

– Anatomical segmentation. Instead of supervising our model on gaze atten-
tion ground truth, we supervise the GAP with our anatomical segmentation
masks. Then we mask out patches that are not in the predicted mask. In
other words, we let the GAP module be an anatomical mask predictor, and a
patch is important, i.e. its weight is 1.0 if it is inside the anatomy of interest.

Table 9 shows that our proposed anatomical gaze attention supervision is effec-
tive and outperforms other settings. For the traditional attention setting, the
black-box and unconditional training pipeline causes the model to not know
where to look, i.e. low scores on Attention criteria, and hence, it fails to give sat-
isfaction diagnosis, i.e. low NLG and CE scores. One of the possible reasons for
this is because self self-attention mechanism is well-known for its data-hungry
nature [19]. On the other hand, training the GAP module with segmentation
masks slightly decreases the performance. One possible reason is that we let the
model use too much information, which can confuse the model in some cases.
The gain from correctly weighing important patches further confirms our hy-
pothesis in Section 1. Moreover, this suggests that our framework can also be
used for segmentation prediction.
Effectiveness of penalty terms. The intuition behind the penalty terms is
simple, yet effective. We design an ablation study: we train the model without
penalty terms to demonstrate the effect of every penalty. As a result, we find that
our penalties based on the idea of looking at the correct anatomy are beneficial
to the model, as shown in Table 8.

6 Conclusion

In this work, we have introduced FG-CXR, a curated dataset for gaze inter-
pretable radiology report generation. Our dataset contains CXR images with
aligned gaze sequence, gaze attention heatmap, and the reports associated with
seven anatomical parts of the lung. We then presented a novel method for gen-
erating descriptive reports of chest X-ray images, using heatmaps based on ra-
diologist annotations to focus the model’s attention and reduce the likelihood of
misinterpreting irrelevant regions. Our main contribution is the successful appli-
cation of a radiologist-informed attention mechanism that guides a generative
model, thereby enhancing the accuracy, reliability, and interpretability of au-
tomated CXR report generation. We hope that the release of our dataset will
advance more research on interpretable report generation.
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