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Abstract. Predicting the instance-level masks of objects hidden in com-
plex contexts is the goal of Camouflage Instance Segmentation (CIS), a
task complicated by the striking similarities between camouflaged ob-
jects and their backgrounds. The diverse appearances of camouflage ob-
jects, including varying angles, partial visibilities, and ambiguous mor-
phologies, further heighten this challenge. Prior works considered clas-
sifying pixels in a high uncertainty area without considering their con-
textual semantics, leading to numerous false positives. We proposed a
novel method called Mask2Camouflage, which simultaneously enhances
the modeling of contextual features and refines instance-level predicted
maps. Mask2Camouflage leverages multi-scale features to integrate the
extracted features from the backbone. Then, a Global Refinement Cross-
Attention Module (GCA) is introduced to complement the foreground
mask and background mask each other to reduce the false positive. Fur-
thermore, by simulating a global shift clustering process, we present the
Global-Shift Multi-Head Self-Attention (GSA), which enables the object
query to capture not only information from earlier features but also their
structural concepts, thereby reducing intra-class issues in the camouflage
object detection task when validated with evaluated data. Compared
with 15 state-of-the-art approaches, our Mask2Camouflage significantly
improves the performance of camouflage instance segmentation. Our code
is available at https://github.com/underlmao/Mask2Camouflage.

Keywords: Camouflage Instance Segmentation · Global-to-Local Re-
finement

1 Introduction

Camouflage is a strategy used by various organisms to evade predators or stealthily
approach prey, often involving changes in pigmentation or illuminative adapta-
tions to blend with their environment, a phenomenon well-documented in evo-
lutionary biology [10, 24]. Humans have also leveraged camouflage to remain
undetected in artistic and military contexts, offering a strategic advantage [9].
In computer vision, Camouflaged Object Detection (COD) and Camouflaged
Instance Segmentation (CIS) have gained popularity, applied in areas ranging
from art and medical imaging to search and rescue operations [9,13,15,48]. While
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2 Phung et al.

Fig. 1: Comparison between Mask2Former [6] and our proposed Mask2Camouflage.

COD focuses on identifying camouflage objects within an image, CIS further de-
lineates instance-level masks, crucial for handling complex scenes and detailed
object identification.

In this paper, we focus on the Camouflage Instance Segmentation (CIS) prob-
lem, which presents significant challenges due to the diversity of concealment
tactics employed by various object classes within the same scene. The com-
plexity of CIS stems from the need to distinguish between multiple instances,
each employing unique camouflage strategies. Traditional approaches to Camou-
flaged Instance Segmentation (CIS), such as those relying on established instance
segmentation frameworks [25] or requiring hand-designed Non-Maximum Sup-
pression (NMS) for effective segmentation of camouflage objects [38], often face
limitations of adaptability and precision in diverse environments. Recently, [12]
uses Transformers with multiple query representations to learn and share mask
and boundary queries. Moreover, [32] proposes a de-camouflaging mechanism,
employing Fourier Transformations to expose hidden characteristics. However,
these methods still struggle with precise pixel-level detection and segmentation
of camouflage objects, which vary greatly in scale, class, and appearance.

Figure 1(a) illustrates how background surroundings can significantly disrupt
the performance of current CIS models, making it challenging to distinguish cam-
ouflage objects from their environments and accurately predict unclear regions.
To effectively address these challenges, our work distills the CIS problem into
two main questions: 1) How can we precisely segment pixels of camouflage ob-
jects, particularly when these objects display subtle appearances and vary in size?
2) How can we enhance the detection of camouflage instances while minimizing
the impact of background noise? Inspired by human perceptual capabilities, we
aim to propose a multi-scale modeling approach that mimics how humans assess
changes in shape and appearance across different scales to identify camouflages
or obscure instances in a scene accurately. By replicating this human-like behav-
ior at the pixel level, we anticipate significant improvements in the accuracy and
reliability of camouflage object detection.

Specifically, we introduce Mask2Camouflage, a masked-based network engi-
neered to enhance the performance of camouflage instance segmentation signif-
icantly. To mitigate the risks associated with cascading feature reuse, a preva-
lent issue in this domain, our strategy involves the construction of a parallel
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unified framework that incorporates both global and local cues. Drawing in-
spiration from the human visual system, which is adept at processing images
rich in information content, we classify high-resolution input images into two
distinct categories: distant views that capture global information and close-up
views that focus on local details. Our approach begins with developing a Feature
Aggregation Module (FAM) designed to simultaneously process global semantic
features and local details, leveraging the unique characteristics of the encoder.
This method ensures the precise capture of objects’ camouflage at the pixel
level. By employing this architecture, we effectively circumvent the issue of fea-
ture hybridization that has plagued previous methods, thereby enhancing the
robustness of our model.

Our transformer decoder further incorporates a Global Refinement Cross-
Attention module (GCA) to refine segmentation accuracy in regions with am-
biguous boundaries. This module is specifically tailored to enhance the delin-
eation between foreground instances and their backgrounds, improving the clar-
ity and precision of the segmentation process. Additionally, the transformer de-
coder includes a Global-Shift Multi-Head Self-Attention (GSA) module, which
adopts an information-shift clustering technique. This innovative module dy-
namically adjusts feature weights based on a rich dataset of inter- and intra-
class camouflage information, facilitating more effective instance segmentation.
Overall, our framework boosts segmentation accuracy and provides a robust and
adaptable solution for addressing the complex challenges associated with cam-
ouflaged instance segmentation. As such, Mask2Camouflage effectively handles
a wide range of scenarios, making it a versatile tool in the field of computer
vision. Our main contributions can be summarized as follows:

– We identify the challenge of detecting camouflage instances and propose
Mask2Camouflage. This innovative network harnesses mixed-scale features
to adapt to various pixel-level camouflages adeptly and is designed to per-
form instance-level segmentation by effectively integrating global and local
information. This approach enables the model to identify and segment cam-
ouflage objects across diverse scenarios accurately.

– We propose a Global Refinement Cross-Attention (GCA) module that en-
hances the distinction between foreground and background areas. This mod-
ule uniquely focuses on each region, leveraging intra- and inter-class infor-
mation shifts from the training phase to evaluation, improving the visibility
and differentiation of camouflage instances.

– Experimental results demonstrate that our method outperforms the state-
of-the-art camouflage instance segmentation approaches by at least 3.2% in
terms of AP75 on both COD10K and NC4K datasets.

2 Related Works

2.1 Camouflage Object Detection

COD aims to identify objects that blend into their backgrounds, a challenge that
has intrigued both biologists and artists for decades [17, 40, 46]. Early research
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in this field relied on handcrafted features such as texture, boundaries, and
intensity to distinguish camouflage objects [21, 30, 36, 39]. Recently, the advent
of deep learning (DL) has brought significant advancements to COD, enabling
more effective end-to-end learning approaches [13,14]. Le et al. [26] introduced a
binary classification predictor as an auxiliary task to enhance the primary task of
camouflage object segmentation. Similarly, Lv et al. [33] developed a method that
simultaneously localizes and segments camouflage objects while ranking their
significance. Zhai et al. [47] proposed a differential model-based graph learning
approach to simultaneously learn the mutual feature connections between the
edge and region of an object in graph space. Bio-inspired methods have also
emerged, utilizing multi-scale features from single or multiple views to enhance
model performance [14, 34, 37, 49]. For instance, Pang et al. [37] argued that
single-view input is insufficient for accurate camouflage detection, advocating
for multi-view approaches. Zheng et al. [49] further exploited visual perception
knowledge and semantic cues by aggregating complementary information from
multiple views to improve detection accuracy. Inspired by [37, 49], which utilize
multi-scale features to detect camouflage objects accurately, we introduce the
Mask2Camouflage framework; our methods enhance the camouflage instance
segmentation by reinforcing object mask queries with rich object characteristic
features obtained through multi-view multi-scale information.

2.2 General Instance Segmentation

Instance segmentation is a complex task that predicts pixel-level and instance-
level masks. Current methods can be categorized into two-stage and one-stage
approaches [4, 6–8, 16, 18, 19, 23, 41]. In particular, early instance segmentation
techniques primarily follow a two-stage process: first, generating ROIs by bound-
ing boxes for object localization, and then refining instance masks within these
boxes [3,5,19,22]. Although the two-stage approaches perform well, these works
are barely applicable for near-real-time applications due to their long inference
times. Recently, the one-stage approaches have achieved similar performance as
two-stage approaches while maintaining a faster inference times based on their
simplified detection pipelines [1, 2, 4, 41, 43, 44]. For example, their works typi-
cally generate non-local prototype masks and predict a set of mask coefficients
by grouping per-pixel embeddings into different instances within an input image.
SOLO [43] relies on the classification and mask branches to perform instance pre-
diction masks, eliminating the region proposal network and using a grid-based
positive and negative sample allocation technique, while SOLOv2 [44] directly
decouples the original mask prediction into kernel learning and feature learning
to generate final instance segmentation results. Currently, the transformer-based
methods [6,7] utilize instance-specific prototypes that continuously interact with
pixel features through attention mechanisms, attaining leading performance in
instance segmentation. MaskFormer [7] proposed the cross-attention mechanism
to learn per-pixel classification, bypassing the slow inference time after acquiring
the region proposal by the FPN. Mask2Former [6] employs a transformer decoder
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Fig. 2: The overall architecture of our Mask2Camouflage is based on a backbone con-
sisting of four shared feature layers. From the features extracted by this backbone,
we first reduce the channel size and use the Feature Aggregation Module (FAM) to
identify object locations through a cascading approach. Next, we extract low-level fea-
tures using the Pixel Decoder to enhance texture representation with high-resolution,
per-pixel embeddings for more accurate instance segmentation. Finally, the foreground
and background masks are combined and refined through the Transformer Decoder,
predicting the final refined segmentation.

with masked attention to learn object queries and localize features within pre-
dicted mask regions. Unfortunately, the camouflage objects are highly similar to
the background, so the general instance segmentation methods can not directly
apply to the camouflage instance segmentation task.

2.3 Camouflage Instance Segmentation

Compared with Camouflage Object Detection, Camouflage Instance Segmenta-
tion remains an under-explored area. OSFormer [38] is the pioneering one-stage
framework for camouflage instance segmentation. It tackles the camouflage in-
stance segmentation task by utilizing a localized sensing transformer module
with a coarse-to-fine refinement strategy. Unlike OSFormer, UQFormer [12] sees
the segmentation of camouflage instances from the standpoint of query learning
by fully integrating and interacting between the queries of the boundary of the
object and the region of interest in the object to improve the representation of
the query features. In addition to these approaches, DCNet [32] contends that
a single perspective on input images is insufficient for handling CIS tasks. To
address this, they introduce a dependable Fourier transform based on reference
points to measure similarity accurately and robustly deceptive backgrounds for
camouflage characteristic detection. However, although current works can suc-
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cessfully target the object query during training, it still can not handle the intra-
class variation due to the camouflage dataset distribution shift during inference.
In this paper, we handle the CIS from the perspectives of both object query
learning and feature enhancement by viewing the input images in multi-scale to
strengthen the coarse feature, then a global refinement masked attention is pro-
posed to refine the coarse feature map into finer instance makes by complement
object queries both in the foreground and background masks.

3 Mask2Camouflage

3.1 Overall Architecture

Figure 2 illustrates the architecture of Mask2Camouflage, which consists of three
modules: i) the backbone for extracting features, ii) the pixel decoder that inter-
polates the extracted feature from the backbone to produce the high-resolution
feature per pixel embeddings, and iii) the transformer decoder to associate the
predicted maps with class score embedding to provide the final instance masks.
Specifically, the image features Fi ∈ RC× H

2(i+1)
× W

2(i+1) are extracted from an
RGB image input I ∈ D3×H×W by a backbone encoder (e.g., ResNet-50 [20]),
where i ∈ [1, 2, 3, 4] and C, H, and W respectively represent the channel, height,
and width. We feed these three sets of feature maps from the multi-scale in-
puts into the Feature Aggregation Module (FAM) to aggregate the contextual
information. These features are then projected to a 256-channel representation
using a 1× 1 convolutional layer. Next, the aggregated features are fed into the
pixel decoder, aided by the Feature Pyramid Network (FPN) [27], to extract
fine-grained target information and generate high-resolution pixel-level features
for more precise instance segmentation. Finally, the decoder utilizes these high-
resolution pixel-level feature maps to update the feature maps by refining the
foreground and background masks associated with the object queries in global
and local contexts, predicting the instance mask at each decoder layer. The final
instance mask M ∈ RN×(H×W ) obtained by multiplying the mask embeddings
with their per-pixel embeddings. These masks are trained with focal loss [28] and
dice loss [35] for the class masks and cross-entropy loss with the class scores.

3.2 Features Aggregation Module

To acquire fine-grained target information for more accurate segmentation, we
screen through different scale features to combine scale-specific information after
getting multi-scale features from different views. Before scale integration, the
global features F glo

i and the local features F loc
i , generated by scaling factors

of 1.5 and 0.5 from the input images, are first resized to be consistent with
the original scale resolution. Specifically, a hybrid structure consisting of Max-
pooling and Average-pooling is employed as a down-sampling function to preserve
efficacy and diversity of responses for camouflage object characteristics in high-
resolution features. The designs aim to selectively aggregate the scale-specific
information to explore subtle but critical semantic cues at different scales.
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Fig. 3: Illustration of the Feature Aggregation Module (FAM).

First, for F glo
i , a parallel structure of Max-pooling and Average-pooling is

utilized to obtain the global camouflage characteristic as follows:

F out
glo = CBR(MaxPool(CBR(Fglo))⊕AvePool(CBR(Fglo))), (1)

where ⊕ represents addition function, and CBR denotes a sequence of Conv +
BatchNorm + Relu to normalize output features layer after the computation.
Then, for the F loc

i , a bi-linear interpolation is applied to up-sample with the
original feature size as follows:

F out
loc = CBR(Interpolate(CBR(Floc))). (2)

Finally, the features with different scales are concatenated as follows:

F out = concat(F out
glo , Fori, F

out
loc ). (3)

3.3 Global Refinement Cross-Attention Module

A key factor in achieving state-of-the-art segmentation results with Mask2Former [6]
is replacing the cross-attention (CA) layer in the transformer decoder with
masked attention (MA). Masked attention targets only the pixels within the fore-
ground region of the predicted mask for each query, operating on the premise
that local features are adequate for updating the query object features. The
output of the T -th masked-attention layer can be expressed as follows:

softmax(MF
l ⊕QKT )⊗ V ⊕Xin, (4)

where Xin ∈ RN×C is the N C -dim query features from the previous decoder
layer. The input queries Q ∈ RN×C are obtained by linearly transforming the
query features with a learnable transformation. In contrast, the keys and values
K, V are the image features under learnable linear transformation wk(.) and
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Fig. 4: The overall framework of our Global Refinement Cross-Attention Module
(GCA) is built upon the cross-attention module as in [6]. We further introduce our
foreground and background-masked attention to refine the high-resolution pixel-level
feature from the Pixel Decoder. Finally, we proposed the Global-Shift Multi-Head Self-
Attention (GSA), which adopts an information-shift clustering technique to facilitate
more effective instance segmentation.

wv(). Finally, MF
t is the predicted foreground attention mask that at each pixel

location (i,j) as follows:

MF
t (i, j) =

{
0 if Mt−1(i, j) ≥ 0.5,

−∞ otherwise,
(5)

where Mt−1 is the output mask of the previous layer. By focusing solely on
foreground objects, masked attention enables faster convergence and improved
instance segmentation performance compared to cross-attention. However, focus-
ing only on the foreground region constitutes a challenge for camouflage segmen-
tation, as camouflage objects can also appear in background regions. Omitting
background information can result in failure cases where camouflage objects in
the background are completely overlooked. To ameliorate camouflage detection
in the high uncertainty areas, we extend the masked attention with an additional
term focusing on the background region.

Xout = softmax(MF
t ⊕QKT )⊗ V ⊕ softmax(MB

t ⊕QKT )⊗ V ⊕Xin, (6)
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where MB
t is the additional background attention mask that complements the

foreground object mask MF
t , and it is defined at the pixel coordinates (i,j) as:

MB
t (i, j) =

{
0 if Mt−1(i, j) < 0.5,

−∞ otherwise.
(7)

The global masked attention in Equation (7) differs from the masked atten-
tion by additionally attending to the background mask region. Yet, it retains
the benefits of faster convergence w.r.t. the cross-attention.

3.4 Global-Shift Multi-Head Self-Attention

Here, we introduced our Global-Shift Multi-Head Self-Attention (GSA) and its
difference compared to the Scaled Dot-Product Attention (SA) [42]. For the SA,
the formula is defined as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
× V =

exp
(

QKT

√
dk

)
Cn

× V, (8)

where Q ∈ RN×Dk , K ∈ RM×Dk , and V ∈ RM×Dv denotes the N Dk-dim
query vectors, M Dk-dim key vectors, and M Dv-dim values vectors, respectively.
This function computes the affinity between the query Q and key K, determining
the attention weights assigned to the values V to produce the weighted sum
of the values. However, traditional segmentation frameworks that use masked
attention often struggle with their reliance on local features for updating queries,
depending heavily on multi-head self-attention (MHSA) for context gathering.
Our GSA module addresses this challenge by introducing object queries as cluster
centers within the feature embedding space of each decoder layer. Utilizing the
Von Mises-Fisher clustering algorithm [45], these cluster centers are refined by
employing the attention mask to guide cross-attention towards the local regions
surrounding them in each iteration. When the object queries converge to their
maxima, they are transformed into mask embeddings. These mask embeddings
then generate pixel similarities through multiplication with pixel embeddings,
forming the final object masks from pixels exhibiting positive similarities. The
update for the cluster center is performed as follows:

ωt+1 =

∑N
i ρi × exp(γωT

t ρi)∥∥∥∑N
i ρi × exp(γωT

t ρi)
∥∥∥ , (9)

where ρi is the i-th sampling point from a dataset, the density function is
defined as P (ρ;ω, γ) = Cd(γ)exp(γω

T ρ), Cd(γ) is a normalization constant, ω
is a unit vector representing the mean direction of the distribution and γ is
the concentration parameter that controls the concentration of the distribution
around the mean direction. The SA and the updated clustering algorithm in
Equation (8) and Equation (9) represent the similarity that scaled by the factor
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(γ and 1√
dk

) before normalized. By incorporating this factor into the scaled
dot-product attention, we can discern the differences between various sampling
points provided as object queries. The formula for Global-Shift Multi-Head Self-
Attention can then be expressed as follows:

GSAttention(Q,K, V ) = g(softmax(γg(Q̃)× g(K̃T ))× V ), (10)

where Q̃ and K̃ are the unit vectors that normalized by the L2 function
from these vectors. As demonstrated in Equation (10), the process begins by
calculating the dot products of the normalized query vectors and key vectors,
treating these as cosine similarities between Q and K. These similarities are
then scaled by a factor of γ. Following this, the weights for the value vectors are
computed using the softmax function. The output is subsequently obtained by
normalizing the weighted sum of the value vectors.

4 Experiments

4.1 Experiment Setup

Datasets. Two datasets are used to train and evaluate the performance of the
proposed approach. (1) COD10K [14] contains 5066 images, including 3040 im-
ages for training and 2026 images for evaluation. (2) NC4K [33], which comprised
4,121 images collected from the internet with full annotations. We follow the set-
tings in previous works [12, 32, 38] to adopt the COD10K-Train set for model
training and COD10K-Test and NC4K for evaluating the generalization of the
trained model.
Evaluation Metrics. For the task of CIS, we utilize AP , AP50, and AP75 as
the evaluation metrics. These metrics comprehensively assess the model’s per-
formance by measuring its precision and recall under different conditions. While
the AP50 and AP75 consider a prediction positive if the IoU between the pre-
dicted segmentation and the ground truth is at least 50% and 75%, respectively.
AP combines metrics over multiple IoU thresholds, typically ranging from 50%
to 95% in 5% increments.
Implementation Details. For fair comparisons, we follow previous works to
utilize the ResNet-50 [20] pre-trained on ImageNet [11] as the encoder to extract
features. We train our model with Adam optimizer [31] with batch size 2 for
90K iterations. In the transformer decode module, we followed DCNet [32] to
set the number of object queries to 10 while keeping all the hyper-parameters
and configurations the same as Mask2Former [6].

4.2 Comparison with State-of-the-arts

Quantitative Results.For quantitative comparison, we evaluated our method
against various general instance segmentation approaches using ResNet-50 [20]
as the encoder for a fair comparison. As demonstrated in Table 1, our proposed
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Methods Years
COD10K-Test NC4K

Params(M) GFLOPs
AP AP50 AP75 AP AP50 AP75

Two-stages

Mask R-CNN [19] ICCV17 25.0 55.5 20.4 27.7 58.6 22.7 43.9 186.3
MS R-CNN [22] CV PR19 30.1 57.2 28.7 31.0 58.7 29.4 60.0 198.5
Cascade R-CNN [3] TPAMI19 25.3 56.1 21.3 29.5 60.8 24.8 71.7 334.1
HTC [5] CV PR19 28.1 56.3 25.1 29.8 59.0 26.6 76.9 331.7

One-stage

YOLACT [2] ICCV19 24.3 53.3 19.7 32.1 65.3 27.9 - -
BlendMask [4] CV PR20 28.7 56.3 26.4 29.4 56.7 27.2 35.8 233.8
CondInst [41] ECCV20 30.6 63.6 26.1 33.4 67.4 29.4 34.1 200.1
SOLOv2 [43] NIPS20 32.5 63.2 29.9 34.4 65.9 31.9 46.2 318.7
QueryInst [16] ICCV21 28.5 60.1 23.1 33.0 66.7 29.4 - -
SOTR [18] ICCV21 27.9 58.7 24.1 29.3 61.0 25.6 63.1 476.7

MaskFormer-based

MaskFormer [7] NIPS21 38.2 65.1 37.9 44.6 71.9 45.8 45.0 174.2
OSFormer [38] ECCV22 41.0 71.1 40.8 42.5 72.5 42.3 46.6 324.7
UQFormer [12] MM23 45.2 71.6 46.6 47.2 74.2 49.2 37.5 221.0

Mask2Former-based

Mask2Former [6] CV PR22 39.4 67.7 38.5 45.8 73.6 47.5 43.9 241.0
DCNet [32] CV PR23 45.3 70.7 47.5 52.8 77.1 56.5 53.4 207.0
Ours 46.8 72.5 49.0 53.8 77.6 58.3 65.5 221.0

Table 1: Comparison of state-of-the-arts based COD10K-Test and NC4K datasets.
The best and second best results are respectively highlighted in bold and underline,
respectively, while "-" means “not available”.

Mask2Camouflage consistently outperforms state-of-the-art methods by a signifi-
cant margin on both datasets. On the COD10-Test dataset [14], Mask2Camouflage
surpasses the previous best method, DCNet [32], by approximately 3.0% in both
AP50 and AP75 metrics, even without using additional Non-maximum Suppres-
sion (NMS) to eliminate redundant predictions, it reflects the superiority of our
designed module FAM in case of feature enhancement and GCA for feature map
refinement. For the NC4K dataset [33], Our model yields an accuracy of 58.3%
in AP75, making an obvious performance improvement by 3.2% in AP75 com-
pared to the best-performing method DCNet [32]. Since the model is trained
with the COD10K-Train dataset, the high performance on NC4K indicates that
our methods also have better generalization ability. In addition, our GFLOP is
slightly higher than the previous state-of-the-art methods, which is a trade-off
for enhancing instance map prediction with different scale features.
Qualitative Results. As shown in Figure 5, our proposed method is capable
of improving the instance mask in different cases of subjects by utilizing the
multi-scale extracted features from different scale cascade features at the pixel
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Fig. 5: Visual comparison of our prediction maps with state-of-the-art methods. Our
proposed method shows natural improvement compared to other methods.

level and also able to identify the accurate locations of target camouflage objects
at the instance level. Compared to the previous methods, our Mask2Camouflage
performs better at whole object instances of camouflage objects, suppresses dis-
tracting background regions, and distinguishes multiple instances (the 1-5, the
2-6, and the 3-4 columns in Figure 5 from left to right). Note that the qualitative
comparisons with DCNet [32] and UQFormer [12] are not provided since their
predicted instance segmentation maps are unavailable.

4.3 Ablation Studies

Here, we conduct comprehensive ablation studies on COD10K and NC4K to
verify the effectiveness of each module in the proposed Mask2Camouflage.
Effectiveness of the Feature Aggregation Module. We implement differ-
ent scale input features integrated with the original input image to evaluate the
performance in Table 2 and Figure 6. Among (1), (2), and (3), the approach that
cascades the original input with the local information yields better performance,
showing the significance of the local information in terms of AP75. This is be-
cause local information is more important in cases where masks overlap between
prediction and the ground truth.
Effectiveness of the Global Refinement Cross-Attention Module. As
shown in (4) and (5) of Table 2 and Figure 6, the performance of the GCA in all
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Baseline Local Global GCA GSA
COD10K-Test NC4K
AP AP50 AP75 AP AP50 AP75

(1) ✓ ✓ 45.3 70.3 47.4 51.8 75.3 55.7
(2) ✓ ✓ ✓ 46.3 71.4 49.3 53.4 77.3 57.2
(3) ✓ ✓ ✓ 45.8 70.9 47.9 52.1 75.9 56.0
(4) ✓ ✓ 45.0 70.5 47.1 51.9 76.1 55.8
(5) ✓ ✓ ✓ 44.8 70.0 46.7 52.4 76.6 56.3
(6) ✓ ✓ ✓ 46.1 71.3 48.3 53.0 76.6 57.3

Ours ✓ ✓ ✓ ✓ 46.8 72.5 49.0 53.8 77.6 58.3
Table 2: Comparison of different ablation experiments to reflect the performance of
our Mask2Camouflage. The best performance is highlighted in bold.

Fig. 6: Visual comparison of different ablation studies. Our proposed method shows
natural improvement compared to other ablation experiments. The number in the
bottom belongs to the experiments as shown in Table 2.

metrics during the two evaluated datasets showing the importance of the global
refinement cross-attention module, especially the foreground and background
masked complement to each other to refine the coarse pixel-level mask from the
pixel decoder.
Effectiveness of the Global-Shift Multi-head Self-Attention. For the re-
flection of our GSA, we can observe the decrease all over the metric in both
datasets COD10K-Test and NC4K (tasks (4) and (6) in Table 2 and Figure 6),
showing not only how well our model deals with the data distribution shift from
the COD10K-Train to the COD10K-Test but also the generalization in new cir-
cumstance for the NC4K dataset.
Effectiveness of different backbones. Table 3 shows the results using dif-
ferent encoders as the backbone. When using the ResNet backbone, it achieves
46.1% on the COD10K-Test and 53.0% on the NC4K dataset for the convolution
depth of 50 and increases 0.7% and 0.5% when applied the convolution depth
equals to 101, respectively. Furthermore, Swin-Transformer [29] showed their ca-

2331



14 Phung et al.

Methods Backbone COD10K-Test NC4K

DCNet
ResNet-50

45.3 52.8
Ours 46.8 53.8
DCNet

ResNet-101
46.8 53.5

Ours 47.7 54.0
DCNet

Swin-T
50.3 56.3

Ours 52.9 60.2
DCNet

Swin-S
52.3 58.4

Ours 54.0 61.1
Table 3: Comparison of our method in the metric AP with the DCNet [32], the state-
of-the-art method in different backbones.

pability when utilized as the encoder. Indeed, the AP metric improves by around
7% in both evaluated datasets.

5 Conclusions

In this paper, we present Mask2Camouflage, a novel mask-based network de-
signed to enhance the performance of camouflage instance segmentation. To
overcome the challenges of cascading feature reuse, we propose a parallel unified
framework that seamlessly integrates global and local cues. Mask2Camouflage in-
corporates a feature aggregation module to enrich pixel-level decoding and intro-
duces the Global Refinement Cross-Attention Module (GCA) to improve mask
refinement using foreground and background attention masks. Additionally, the
Global-Shift Multi-Head Self-Attention (GSA) adjusts feature weights dynami-
cally, optimizing instance segmentation by leveraging inter- and intra-class cam-
ouflage information. Our framework significantly improves segmentation accu-
racy and robustness when handling the complexities of camouflage instances, as
demonstrated through extensive qualitative and quantitative evaluations. While
multi-scale input learning further enhances our model’s performance, it comes
with a slight increase in training cost. Moving forward, we plan to develop a
more streamlined and efficient approach to camouflage instance segmentation.
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