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Abstract. Contrastive learning (CL) for Vision Transformers (ViTs) in
image domains has achieved performance comparable to CL for tradi-
tional convolutional backbones. However, in 3D point cloud pretraining
with ViTs, masked autoencoder (MAE) modeling remains dominant. This
raises the question: Can we take the best of both worlds? To answer this
question, we first empirically validate that integrating MAE-based point
cloud pre-training with the standard contrastive learning paradigm, even
with meticulous design, can lead to a decrease in performance. To address
this limitation, we reintroduce CL into the MAE-based point cloud pre-
training paradigm by leveraging the inherent contrastive properties of
MAE. Specifically, rather than relying on extensive data augmentation as
commonly used in the image domain, we randomly mask the input tokens
twice to generate contrastive input pairs. Subsequently, a weight-sharing
encoder and two identically structured decoders are utilized to perform
masked token reconstruction. Additionally, we propose that for an input
token masked by both masks simultaneously, the reconstructed features
should be as similar as possible. This naturally establishes an explicit
contrastive constraint within the generative MAE-based pre-training
paradigm, resulting in our proposed method, Point-CMAE. Consequently,
Point-CMAE e!ectively enhances the representation quality and transfer
performance compared to its MAE counterpart. Experimental evalua-
tions across various downstream applications, including classification,
part segmentation, and few-shot learning, demonstrate the e"cacy of
our framework in surpassing state-of-the-art techniques under standard
ViTs and single-modal settings. The source code and trained models are
available at https://github.com/Amazingren/Point-CMAE.
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2 B. Ren et al.

Fig. 1: Illustration of: (a) MAE with MoCo-style contrastive learning [22], requires an
additional queue to store negative samples throughout the pre-training process. (b) MAE
with BYOL-style contrastive learning [17], requires an asymmetric structure with a fully
connected predictor layer to exclude negative samples. (c) The proposed Point-CMAE
employs two identically structured decoders, updated di!erently, to introduce explicit
contrastive properties within the MAE-based generative self-supervised pre-training.

1 Introduction

Understanding 3D scenes is critical for diverse applications, from autonomous
vehicles navigating urban environments to robotic manipulation tasks [2, 5].
Point clouds, representing objects and surroundings precisely, o!er an advantage
due to their easy acquisition and accurate geometry capture [38]. However,
annotating 3D point cloud data is even more resource-intensive compared to
image data, as each point requires labeling. Self-supervised learning (SSL) has
emerged as a key solution, the e!ectiveness of which has already been validated
in natural language processing [4, 11, 49], computer vision [8, 9, 22, 74], and
multimodal learning [27,48,72], enabling informative feature representations from
unlabeled input data. As a result, it is widely utilized in pre-training for 3D point
clouds, demonstrating comparative or even better performance compared to its
supervised counterpart in downstream tasks such as classification, segmentation,
and detection [30,31,36,45,52,69].

Specifically, contrastive (single/cross-modal) and generative-based (recon-
struct/predict) pre-training strategies are widely employed. CL is renowned for
capturing global information to improve the model’s discriminative ability, and
this has been demonstrated to be e!ective in various domains such as 2D images
and point cloud pre-training methods based on convolutional neural networks
(CNNs) [40]. However, deploying single-modal CL to point clouds with ViT
often results in inferior performance compared to MAE-based pre-training. On
the other hand, using MAE with a Chamfer constraint for point cloud recon-
struction can lead to sub-optimal solutions [30], as ground truth points are
sampled from the original point clouds, causing inconsistencies when forcing
predicted points to match them. In addition, the primary concept behind MAE
typically emphasizes local relationships. These challenges collectively hinder
the overall performance of ViTs-based point cloud pre-training. Consequently,
a natural question arises: Can we leverage the strengths of both paradigms?
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Fig. 2: The classification comparison of
di!erent contrastive learning pipelines, in-
tegrated with the baseline method Point-
MAE [42], is conducted on the ScanOb-
jectNN [55] datasets.

In other words, can we harness the
power of contrastive learning to learn
consistent and abstract feature repre-
sentations, while also utilizing MAE
to enhance the model’s ability to cap-
ture local data structures? To explore
this question, we propose to enrich
the MAE paradigm with contrastive
learning ability, where the masked and
the unmasked point cloud tokens are
treated as two augmentations. Based
on this setting, we deploy MoCo [22],
and BYOL [17] style CL with Point-
MAE [42] to point cloud pre-training
with ViTs structure. The illustration
of these two kinds of MAE-based CL
is shown in Fig. 1 (a) and Fig. 1 (b), respectively. Our experimental results,
as shown in Fig. 2, confirm that this approach frequently results in the occur-
rence of a performance drop. This is primarily because making CL e!ective for
ViTs-based point cloud pre-training necessitates a well-designed framework and a
tailored approach to conducting separate data augmentation for point cloud data.
These requirements significantly increase the complexity of the entire problem,
highlighting the non-trivial nature of even bringing contrastive learning to an
MAE-based paradigm.

To overcome the above limitations, we propose Point-CMAE, a simple yet
e!ective method that explicitly integrates contrastive properties into the MAE-
based point cloud pre-training paradigm using a ViTs architecture. The main
idea of the proposed Point-CMAE is simplified in Fig. 1 (c). Specifically, for a
given point cloud token, we mask it twice randomly to construct the contrastive
input pairs instead of applying heavy data augmentation. We then perform
MAE for each of the masked input tokens using a weight-sharing encoder and
two identically structured decoders. In this design, each decoder independently
recovers the masked point cloud input token, which naturally forces the encoder
to learn more common and representative features that satisfy the requirements
of both decoders. Though this largely improves the semantic understanding of the
encoder, the reconstruction constraint, the Chamfer distance loss, is usually used
to minimize the distance between the predicted masked points and the ground
truth points regarding the fact the ground truth points are also just one sampling
of the original point cloud, which naturally leads to a sub-optimal problem. Since
there are two di!erent masked input tokens, there is an almost certain probability
that some tokens will be simultaneously double-masked. As a remedy, we propose
that for a token that is masked in both instances, the recovered feature should be
as close as possible in both cases. This naturally introduces an explicit constraint
at the feature level, ensuring that the encoder outputs more informative features
for downstream tasks. As a result, Fig. 2 shows that the proposed Point-CMAE

2036



4 B. Ren et al.

can perform a decent convergence with obvious improvement at the beginning of
the fine-tuning compared to the contrastive counterpart.

In summary, our main contributions are recapped as follows:
1. We experimentally validate that integrating contrastive learning into the MAE

paradigm for point cloud pre-training with ViTs architecture is non-trivial
and often leads to a severe performance drop.

2. To address the aforementioned issue, we propose Point-CMAE, a method that
enhances the MAE paradigm by integrating the advantages of contrastive
learning through a straightforward yet e!ective design. This significantly
enhances the informativeness and representativeness of the encoder.

3. Extensive experimental results on various point cloud downstream tasks
such as object classification, part segmentation, and few-shot classification
demonstrate that our proposed Point-CMAE achieves new state-of-the-art
performance under the standard ViTs setting for single-modal data.

2 Related Work: Self-supervised Learning for Point Cloud

Self-supervised learning (SSL), as one type of unsupervised learning where the
supervision signals can be acquired from the data itself, has attracted more and
more attention to computer vision [17, 21]. As a result, a lot of methods have
been proposed to advance this technique from di!erent perspectives [3, 8, 17,21,
41,51,54,70]. Especially, recent 3D point cloud understanding also embraces a
promising development owing to the SSL. Similarly to the image domain, these
approaches can be mainly divided into two mainstream, i.e., the contrastive
pre-training and the generative pre-training approaches.
Contrastive Pre-training based approaches [9,25,50,64] aim to learn instance
discriminative representations to distinguish one sample from the others. Espe-
cially, PointContrast [64], as the pioneering approach that constructs two point
clouds from di!erent perspectives and compares point feature similarities for
point cloud pre-training. Info3D [53] aims to maximize the mutual information
between the 3D shape and a geometrically transformed version of the same shape
with a MoCo [22]-like memory bank for caching the negative examples. Proposal-
Contrast [68] enhances proposal representations by analyzing the geometric point
relationships within each proposal, achieving this by optimizing for inter-cluster
and inter-proposal separation to better adapt to 3D detection properties. FAC [32]
forms advantageous point pairs from the same foreground segment with similar
semantics and captures feature correlations within and across di!erent point
cloud views using adaptive learning. Note that the above methods that explored
the contrastive training for point cloud are all based on CNN backbones. With
the overwhelming development of ViTs, Point-BERT [69] firstly includes the
classic MoCo-style contrastive learning into ViTs-based pre-training pipeline, but
as a side exploration compared to its generative learning property. MaskPoint [30]
converts the point cloud into discrete occupancy values, using binary classification
to distinguish masked object points and sampled noise points. SoftClu [39] and
CluRender [40] use clustering and rendering for point-level supervision, extracting
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discriminative features without data augmentation. More recently, ReCon [45]
integrated contrastive learning into pre-training to enhance performance within
its generative pipeline. However, their approach employs supervised contrastive
learning with a pre-constructed label set to mitigate overfitting, a prevalent
concern in ViTs-based methods. Nonetheless, developing a self-supervised con-
trastive learning strategy tailored for ViTs-based point cloud pre-training remains
challenging, particularly in e!ectively addressing the overfitting issue, which poses
a significant obstacle in this domain.
Generative Pre-training based approaches are proposed inspired by the success
of mask and reconstruct strategy used in BERT from NLP [11] to MAE [21]
in vision with Transformers [13,52,56]. It prioritizes the encoder’s pre-training
by reconstructing masked information or its 2D projections. Notable examples
include Point-BERT [69] and Point-MAE [30], which are proposed for point
cloud pre-training with the masked reconstruction strategy. Point-M2AE [71]
develops a hierarchical network that e!ectively models geometric and feature
information progressively. The up-following works like TAP [60] and Ponder [24]
focus on generating 2D projections of the point cloud as part of their pre-training
strategies. Joint-MAE [19] addresses the correlation between 2D images and 3D
point clouds, introducing hierarchical modules for cross-modal interaction to
reconstruct masked information across both modalities. PointGPT [7] extends
the concept of GPT [49] to point clouds pre-training with post-pre-training with
larger datasets. PointDif [75] concentrates on refining the training approach with
di!usion models [23]. Despite MAE models exhibiting favorable optimization
properties [61] and delivering promising performance, their focus is on learning
relationships among the tokens within the same input image, rather than modeling
the relation among di!erent samples as in contrastive learning, which results
in less discriminative learned representations [26] or data filling issues [45, 65].
Moreover, in the context of point cloud reconstruction, the commonly used
chamfer loss compels the model to precisely match the ground truth set. However,
the ground truth itself represents just one sample from the true underlying
distribution, posing a challenging optimization problem that often results in
suboptimal performance [30]. To tackle this issue, we propose injecting feature-
level contrastive properties into MAE pre-training.

3 Methodology

The overview of the proposed method Point-CMAE is illustrated in Fig. 3. Before
diving into the detailed introduction of the proposed Point-CMAE, we first
provide the point cloud embedding and the masked autoencoder for point cloud
pre-training by ViTs in Sec. 3.1. Then the explanation of why the proposed
method is designed via dual-masking augmentation is introduced in Sec. 3.2.
Building upon the proposed dual-masking framework, we explicitly introduce
contrastive properties into the MAE paradigm, as detailed in Sec 3.3.

2038
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Fig. 3: The framework of the proposed Point-CMAE. The symbols → denote the token
dimension concatenation. The point patch embedding is denoted as "FPS&KNN". The
symbol → denotes the token dimension concatenation.

3.1 Preliminaries

Point Patch Embedding. Di!erent from images that lie on regular grids
which can be naturally divided into patches, point clouds are known to be
irregular and less structured, based on this property, we follow Point-BERT [69]
first to divide the input point cloud (Xi → Rp→3, p denotes the number of the
points) into irregular point patches via Farthest Point Sampling (i.e., FPS(·))
and K-Nearest Neighborhood (i.e., KNN(·)) algorithm and output n center
points c (c = FPS(Xi), c → Rn→3) and the corresponding neighbor points P
(P = KNN(Xi, c), P → Rn→k→3) of each center point. Finally, a lightweight
PointNet [43] (i.e., PointNet(·)) which mainly consists of MLPs is applied to the
point patches (usually only for the visible point patches) to achieve the embedded
tokens T (T = PointNet(P ), T → Rn→C , C denotes the embedding dimension).
Masked Autoencoder for point cloud with ViTs. For the embedded tokens
T , to deploy the MAE strategy requires a mask m applied to T and outputs
the visible tokens Tv → R(1↑r)n→C and the masked tokens Tm → Rrn→C , where
r denotes the mask ratio. Then the MAE of the point cloud [42, 69] can be
summarized as point tokens which are masked with random mask m are fed into
the encoder fε(·), and then the decoder gϑ(·) predicts the original masked points
Xm with distribution D:

min
ε,ϑ

E
X↓D

[M (gϑ(z ↑ Tm), Xm)] , z = fε(Tv). (1)

Here z → Rrn→C denotes the latent feature of visible tokens Tv, M denotes the
similarity measurement, and it was usually set as the Chamfer-Distance (i.e.,
CD(·)) [15]. The symbol ↑ denotes the token dimension concatenation. ω and ε
are the trainable parameters of the encoder and the decoder, respectively.
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3.2 Better Initialization for ViTs Encoder with Dual Masking

Inspired by the conclusion drawn in [28] that the output feature is robust only if
the most significant input part is not masked out. Thereby, we propose to increase
the invariance property of ViTs pre-training by increasing the probability of the
most important input point patch that will not be masked. Unlike the heavy
augmentation strategies (e.g., color jittering) adopted in the image, point clouds
contain only the position information. Moreover, point cloud pre-training is very
sensitive to the geometry data augmentation (i.e., a simple rotation usually
brings a large performance increase) [12, 45], which will lead to ambiguity in
knowing whether the contribution is made by the geometry data augmentation
or the method itself.

To this end, we propose using two masks, m1 and m2, that share the same
mask ratio r but incorporate di!erent sources of randomness (i.e., m1 ↓= m2) as
the augmentation operation. The same encoder fε is then used to process the
visible tokens Tv1 and Tv2 , outputting the encoded features z1 and z2. Next, two
separate decoders, g1ε and g2ε , which share the same architecture but have weights
that are updated di!erently based on their own inputs, are used. The main idea of
the proposed method is illustrated in Fig. 3. Finally, the output of each decoder is
projected back to the point cloud space for two separate reconstruction chamfer
losses. Based on Eq. 1, the loss function can now be rewritten as follows:

Lre = Lrecon1 + Lrecon2

= CD(RP(g1ϑ(z1)), Xm1) + CD(RP(g2ϑ(z2)), Xm2),
(2)

here RP(·) is a fully connected layers-based projection head aiming to reconstruct
masked point patches via projecting only the masked features back to the point
coordinate cloud space. This simple yet e!ective design brings three advantages
for point cloud pre-training: i) It decreases the possibility that a significant
input part will be masked out (e.g., though this token will be masked via m1,
now we have the possibility that it will not be masked out in m2). ii) Two
separate decoders force the encoder to learn better representations since two
decoders for two di!erent masks m1 and m2 require the encoder’s output to be
more informative to meet the requirements of both g1ϑ and g2ϑ. iii) It naturally
enriches the MAE paradigm with contrastive properties that largely improve the
classification performance. Both i) and ii) are supported by the experimental
results in Sec. 4 while the analysis of iii) is provided in Sec. 3.3.

3.3 Explicit Feature Level Contrastive Constraint

Given the ground truth points for the point cloud that are also one of the samplings
of the original point cloud, directing using the Chamfer loss to minimize the
di!erence between the ground truth points and the predicted points usually leads
to a sub-optimize issue [30], especially for point cloud data that contains the
position of each point that is largely di!erent from the MAE in image domain
where the pixel-level contraction is naturally more informative to reconstruct.
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With the same masking ratio r for masks m1 and m2 in the dual-masking
pipeline, there is a substantial probability that a token in the embedded tokens
T → Rn→C could be masked simultaneously by both masks. The probability of
this occurring can be calculated as:

p = 1↔ (1↔ r2)n. (3)

In particular, given an example that r = 0.6, n = 64, p ↗ 0.945 >> 0. Based
on this observation, we propose to let the features h1 and h2 from both the
decoders g1ϑ and g2ϑ of a certain point token that can be as close as possible to the
feature level. Specifically, because in point-cloud MAE pretraining, the visible
token after the encoder fε is directly concatenated with its corresponding masked
token before passing through the corresponding decoder, and as the results, the
output of the decoder still follows the same [visible, masked] order. This makes
it non-trivial to find a token that was masked by both m1 and m2. As a remedy,
we first recorded the output features from both decoders based on the indices
when conducting the masking operations before fε:

h↔
1 = R(Indices1, h1), h

↔
2 = R(Indices2, h2), (4)

here R(·) indicates reorder operation. Then the contrastive constraint can be
written as:

Lcontras =
m1 ↘m2

|m1 ↘m2|

n∑

i

(1↔M(h↔
1i, h

↔
2i)), (5)

here |m1 ↘m2| denotes the number of the co-masked point tokens by both m1

and m2. M is the cosine similarity measurement. Then the total optimization
objective can be written as follows:

L = Lre + ϑLcontras, (6)

Lcontras here serve as a regularization term of Lre, and ϑ is the regularization
weight. As a result, the feature-level regularization, Lcontras, brings MAE explicit
contrastive properties to ease the sub-optimize issue that was inherited from the
MAE-based point cloud pre-training induced by the Chamfer loss [30].

4 Experiments

4.1 Self-supervised Pre-training Setups

Pre-training. We pre-train the proposed method ShapeNet [6]. ShapeNet is a
synthetic 3D dataset that contains 52,470 3D shapes across 55 object categories.
We pre-train our model only on the training set, which contains 41,952 shapes.
For each 3D shape, we sample 1024 points to serve as the input for the mode, We
set n as 64, which means each point cloud is divided into 64 patches. Furthermore,
the KNN algorithm selects the k = 32 nearest point as a point patch. Following
[30, 42], the proposed method is pre-trained for 300 epochs using an AdamW
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Table 1: Classification results on ScanObjectNN. DA: rotation data augmentation is
used during fine-tuning. The overall accuracy, i.e., OA (%) is reported.

Method #Params(M) DA OBJ_BG OBJ_ONLY PB_T50_RS

Supervised Learning Only

PointNet [43] 3.5 - 73.3 79.2 68.0
SpiderCNN [66] - - 77.1 79.5 73.7
PointNet++ [44] 1.5 - 82.3 84.3 77.9
DGCNN [58] 1.8 - 82.8 86.2 78.1
PointCNN [29] 0.6 - 86.1 85.5 78.5
BGA-DGCNN [55] 1.8 - - - 79.7
BGA-PN++ [55] 1.5 - - - 80.2
DRNet [46] - - - - 80.3
GBNet [47] 8.8 - - - 80.5
SimpleView [16] - - - - 80.5±0.3
PRANet [10] 2.3 - - - 81.0
MVTN [20] - - - - 82.8
PointMLP [37] 13.2 - - - 85.4±0.3

with Standard ViTs and Single-Modal Self-Supervised Learning (Full)

Transformer [56] 22.1 ↑ 79.86 80.55 77.24
OcCo [57] 22.1 ↑ 84.85 85.54 78.79
Point-BERT [69] 22.1 ↑ 87.43 88.12 83.07
MaskPoint [30] 22.1 ↑ 89.30 88.10 84.30
Point-MAE [42] 22.1 ↑ 90.02 88.29 85.18
Point-CMAE (Ours) 22.1 ↑ 90.02 88.64 85.95

Point-CMAE (Ours) 22.1 ↭ 93.46 91.05 88.75

with Hierarchical ViTs / Multi-Modal/Post-Process Self-Supervised Learning (Full)

Point-M2AE [71] 15.3 ↑ 91.22 88.81 86.43
Joint-MAE [19] - ↑ 90.94 88.86 86.07
ACT [12] 22.1 ↭ 93.29 91.91 88.21
PointGPT-S [7] 29.2 ↭ 93.39 92.43 89.17

with Standard ViTs and Single-Modal Self-Supervised Learning (MLP-Linear)

Point-MAE [42] 22.1 ↑ 82.58 ± 0.58 83.52 ± 0.41 73.08 ± 0.30
Point-CMAE (Ours) 22.1 ↑ 83.48 ± 0.31 83.45 ± 0.35 73.15 ± 0.11

with Standard ViTs and Single-Modal Self-Supervised Learning (MLP-3)

Point-MAE [42] 22.1 ↑ 84.29 ± 0.55 85.24 ± 0.41 77.34 ± 0.12

Point-CMAE (Ours) 22.1 ↑ 85.88 ± 0.53 85.60 ± 0.35 77.47 ± 0.13

optimizer [35]. In the autoencoder’s backbone, the encoder has 12 Transformer
blocks while the decoder has 4 ViTs encoder blocks. Each Transformer block
has 384 hidden dimensions and 6 heads. MLP ratio in Transformer blocks is set
to 4. The batch size was set to 128 during the entire pre-training. The initial
learning rate was set to 0.0005 with cosine learning rate decay (the decay weight
was 0.05) employed. More details regarding our experimental configuration and
implementation are provided in our supplementary materials (i.e., Supp. Mat.)
Transfer Protocol. Similar to [12, 45], we adopt three variants of transfer
learning protocols for classification tasks during fine-tuning. i.e., (a) Full: Fine-
tuning pre-trained models by updating all backbone and classification heads. (b)
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Table 2: Classification results on the ModelNet40 dataset. The overall accuracy, i.e.,
OA (%) is reported. [ST]: standard Transformer architecture. →: The reproduced results.

Method [ST] #Point OA (%)

Supervised Learning Only

PointNet [43] - 1k P 89.2
PointNet++ [44] - 1k P 90.7
PointCNN [29] - 1k P 92.5
DGCNN [58] - 1k P 92.9
DensePoint [33] - 1k P 93.2
PointASNL [62] - 1k P 92.9
DRNet [46] - 1k P 93.1

Point Trans. [14] ↑ 1k P 92.8
PCT [18] ↑ 1k P 93.2
PointTransformer [73] ↑ 1k P 93.7
NPCT [18] ↭ 1k P 91.0

Method [ST] #Point OA (%)

with Self-Supervised Representation Learning (Full)

Transformer [56] ↭ 1k P 91.4
OcCo [57] ↭ 1k P 92.1
Point-BERT [69] ↭ 1k P 93.2
Point-MAE [42] ↭ 1k P 93.8
Point-MAE→ [42] ↭ 1k P 93.5
Point-CMAE (Ours) ↭ 1k P 93.6

with Self-Supervised Representation Learning (Mlp-Linear)

Point-MAE [42] ↭ 1k P 91.22±0.26
Point-CMAE (Ours) ↭ 1k P 92.30±0.32

with Self-Supervised Representation Learning (Mlp-3)

Point-MAE [42] ↭ 1k P 92.33±0.09
Point-CMAE (Ours) ↭ 1k P 92.60±0.19

MLP-Linear: The classification head is a single-layer linear MLP, and we only
update these head parameters during fine-tuning. (c) MLP-3: The classification
head is a three-layer non-linear MLP (i.e., the same as the one used in FULL),
and we only update these head parameters during fine-tuning.

4.2 Transfer Learning on Downstream Tasks

To assess the e"cacy of the pre-trained model, we gauged its performance on
various fine-tuned tasks using numerous real-world datasets.
3D Real-Word Object Classification. We use the scanned ScanObjectNN [55]
dataset to evaluate the shape recognition ability of the pre-trained model of our
method. The ScanObjectNN [55] dataset covers around 15K real-world objects
from 15 categories, and it is divided into three subsets: OBJ-BG (objects and
background), OBJ-ONLY (only objects), and PB-T50-RS (objects, background,
and artificially added perturbations). For a fair comparison, we report the results
without voting strategy [34]. The results in Tab. 1 demonstrate that: (i) Without
increasing parameters, the proposed Point-CMAE significantly improves accuracy
using standard ViT architecture under the single-modal full-tuning protocol, even
surpassing supervised methods. Notably, it achieves a 0.77% improvement under
the challenging PB_T50_RS setting. (ii) When fine-tuning with rotation data
augmentation, as used by ACT and PointGPT, Point-CMAE still outperforms
ACT on OBJ_BG (by 0.17%) and PB_T50_RS (by 0.54%), despite both ACT
and PointGPT using multi-modal information. (iii) The performance of Point-
CMAE on MLP-Linear and MLP-3 further highlights the enhanced generalization
of the pre-trained model, even when only fine-tuning the classification head.
3D Synthetic Object Classification. We also evaluate 3D shape classification
on the synthetic ModelNet40 dataset [63], which contains 12,311 clean 3D CAD
models across 40 object categories. Following the standard protocols of [42,69], we
split ModelNet40 into 9,843 training instances and 2,468 testing instances. Data
augmentation during training includes random scaling and random translation.
The results, presented in Tab.2, use the voting strategy for fair comparison
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Table 3: Few-shot classification on ModelNet40, overall accuracy (%) is reported.

Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Representation Learning

PointNet [43] 52.0 ± 3.8 57.8 ± 4.9 46.6 ± 4.3 35.2 ± 4.8
PointNet-OcCo [57] 89.7 ± 1.9 92.4 ± 1.6 83.9 ± 1.8 89.7 ± 1.5
PointNet-CrossPoint [1] 90.9 ± 4.8 93.5 ± 4.4 84.6 ± 4.7 90.2 ± 2.2
DGCNN [59] 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
DGCNN-CrossPoint [1] 92.5 ± 3.0 94.9 ± 2.1 83.6 ± 5.3 87.9 ± 4.2

with Self-Supervised Representation Learning (Full)

Transformer [56] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
OcCo [57] 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6
Point-BERT [69] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
MaskPoint [30] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
Point-MAE [42] 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0

Point-CMAE (Ours) 96.7 ± 2.2 98.0 ± 0.9 92.7 ± 4.4 95.3 ± 3.3

with Hierarchical ViTs/Multi-Modal/Post-Process Self-Supervised Learning (Full)

Point-M2AE [71] 96.8 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.0 ± 3.0
Joint-MAE [19] 96.7 ± 2.2 97.9 ± 1.8 92.6 ± 3.7 95.1 ± 2.6
Point-GPT [7] 96.8 ± 2.0 98.6 ± 1.1 92.6 ± 4.6 95.2 ± 3.4
ACT [12] 96.8 ± 2.3 98.0 ± 1.4 93.3 ± 4.0 95.6 ± 2.8

with Self-Supervised Representation Learning (Mlp-Linear)

Point-MAE 91.1 ± 5.6 91.7 ± 4.0 83.5 ± 6.1 89.7 ± 4.1

Point-CMAE (Ours) 90.4 ± 4.2 94.1 ± 3.9 89.2 ± 5.5 92.3 ± 4.5

with Self-Supervised Representation Learning (Mlp-3)

Point-MAE 95.0 ± 2.8 96.7 ± 2.4 90.6 ± 4.7 93.8 ± 5.0
Point-CMAE (Ours) 95.9 ± 3.1 97.5 ± 2.0 91.3 ± 4.6 94.4 ± 3.7

when reproducing Point-MAE [42] and Point-CMAE under the Full evaluation
protocol. Key findings include that Point-CMAE demonstrates e!ectiveness on
the synthetic dataset, with slight improvements over baseline methods. This
e!ectiveness is further confirmed under the MLP-Linear and MLP-3 protocols,
where the pre-trained backbone is frozen.
Few-shot Classification. We follow previous works [30, 42, 45, 69] to con-
duct few-shot learning experiments on ModelNet40 [63], adopting num_cls-way,
num_sample-shot setting, where num_cls is the number of classes that ran-
domly selected from the dataset and num_sample is the number of objects
randomly sampled for each class. We use the above-mentioned num_cls ≃
num_sample objects for training. During testing, we randomly sample 20 un-
seen objects from each of num_cls classes for evaluation. The results with the
setting of num_cls in 5, 10 and num_sample in 10, 20 are presented in Tab. 3.
Following all three protocols, we conduct 10 independent experiments for each
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Table 4: Part segmentation on ShapeNetPart. The class mIoU (mIoUC) and the
instance mIoU (mIoUI) are reported, with model parameters #P and FLOPs #F.

Method mIoUC (%) ↓ mIoUI (%) ↓ #P (M) ↔ #F (G) ↔

Supervised Representation Learning

PointNet [43] 80.4 83.7 3.6 0.5
PointNet++ [44] 81.9 85.1 1.0 1.7
DGCNN [58] 82.3 85.2 1.3 2.4
Transformer [56] 83.4 85.1 22.1 4.8
PointMLP [37] 84.6 86.1 13.2 31.4

with Self-Supervised Representation Learning

Transformer [56] 83.4 85.1 22.1 4.8
OcCo [57] 83.4 84.7 22.1 -
PointContrast [64] - 85.1 37.9 -
CrossPoint [1] - 85.5 - -
Point-BERT [69] 84.1 85.6 22.1 4.8
MaskPoint [30] 84.6 86.0 22.1 4.8
Point-MAE [42] 84.2 86.1 22.1 4.8
Point-CMAE (Ours) 84.9 86.0 22.1 4.8

with Hierarchical ViTs / Multi-Modal/Post-Process Self-Supervised Learning

Point-M2AE [71] 84.8 86.5 12.8 3.6
PointGPT-L [7] 84.8 86.6 29.2 6.4
ACT [12] 84.7 86.1 22.1 4.8
Recon [45] 84.8 86.4 43.6 5.3

setting and report mean accuracy with standard deviation. Tab. 3 shows that: (i)
Besides the truth that our self-supervised Point-CMAE outperforms the super-
vised solutions by a large margin, Point-CMAE brings significant improvements
of +8.8%, +4.7%, +8.1%, +5.9% respectively for the four settings over from
scratch FULL transferring baseline [56]. (ii) Our Point-CMAE not only consis-
tently achieves the best performance compared to our baseline [42], but it is
also worth pointing out that with the standard ViTs architecture pre-trained
with only point cloud data, Point-CMAE achieves competitive or even better
performance compared to other state-of-the-art methods which were proposed
either with complex hierarchical ViTs structure (i.e., Point-M2AE) or trained
with multi-modal information (i.e., Joint-MAE, Point-GPT, and ACT). (iii) For
the MLP-Linear and MLP-3 transfer protocol, we observed that the Point-CMAE
achieves obvious improvements (e.g., 2.4%, 5.7%, and 2.6% for the 5way20shot,
10way10shot, and the 10way20shot under the MLP-Linear protocol) compared
to Point-MAE with smaller deviations.
3D Part Segmentation. We evaluate the segmentation performance of the
proposed Point-CMAE on ShapeNetPart [67] dataset. It contains 16,881 objects
of 2,048 points from 16 categories with 50 parts in total. The segmentation head in
our method is the same as in Point-MAE [42], which is relatively simple and does
not use any propagating operation or DGCNN [58]. We use the learned features
from the 4th, 8th, and 12th layers of the Transformer block, and concatenate the
three levels of features. Then an average pooling and a max pooling were applied
separately to obtain two global features. For Transformer, we used per-category
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Fig. 4: (a) The classification results on the ScanobjectNN [55] (PB_T50_RS) dataset
cross di!erent masking ratios. The corresponding average results across the entire
masking ratios are depicted with the dashed lines. (b) Both the classification on the
ScanobjectNN [55] (PB_T50_RS) and the part segmentation results on the ShapeNet-
Part [67] are provided to study how the depth of the decoder a!ects the pre-traing.

mean IoU (mIoUC) and mean IoU averaged over all test instances (mIoUI) to
assess performance. The part segmentation results provided in Tab. 4 show that
the proposed Point-CMAE archives the best per-category mean IoU and the
second-best mean IoU averaged over all test instances. Especially, a significant
improvement 0.7% compared to Point-MAE [42] on mIoUC . When compared to
other state-of-the-art methods that adopt hierarchical ViTs architecture (i.e.,
Point-M2AE), utilize post-training on extra-large datasets (i.e., PointGPT-L), or
incorporate multi-modal information (i.e., ACT and Recon), our Point-CMAE
still slightly outperforms these methods in terms of the evaluation metric mIoUC .

4.3 Ablation Study

The sweet spot of the mask ratio. The mask ratio has been validated
significantly for MAE-based self-supervised learning in both the image and point
cloud domains [21, 42,69]. To determine a suitable masking ratio for our method,
we varied the mask ratio from 0.1 to 0.9. The corresponding results are depicted
in Fig. 4 (a). Specifically, using a pre-trained Point-CMAE model, we followed
Recon [45] and evaluated the model checkpoints from epochs 250, 275, and 300.
We found that the checkpoint from epoch 275 performs well for our method, as
indicated by the average results across mask ratios shown with dashed lines in
Fig. 4 (a). A mask ratio of 0.6 consistently produced the best results compared
to other ratios. Therefore, we adopted a mask ratio of 0.6 throughout this paper,
which is also consistent with findings in related works [42,45].
The e!ect of the depth of the ViTs decoder. Fig. 4 (b) shows the fine-tuning
performance for both the classification and the part segmentation tasks with
di!erent numbers of the ViTs layers within the decoder. It can be seen that
the performance increase when the depth is in increased from 2 to 4, while it
decrease when the depth is further increased from 4 to 6. We set the decoder 4
ViTs transformer layers throughout our work based on this observation. This
setting is also consistent with our baseline method Point-MAE [42].
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Table 5: The e!ect of each component on ScanObjectNN [55] and ShapeNetPart [67]
datasets for classification (OA) and part segmentation (mIoUC).

Methods Dual-masking Same Encoder Same decoder Contrastive OA(%) ↓ mIoUC (%) ↓

Baseline [42] ↑ - - - 85.18 84.20

(a) ↭ ↑ ↑ ↑ 85.51 84.32
(b) ↭ ↑ ↑ ↭ 85.60 84.45
(c) ↭ ↑ ↭ ↑ 85.23 84.33
(d) ↭ ↑ ↭ ↭ 85.32 84.51

(e) ↭ ↭ ↑ ↑ 85.70 84.65
(f) ↭ ↭ ↑ ↭ 85.95 84.85
(g) ↭ ↭ ↭ ↑ 85.43 84.50
(h) ↭ ↭ ↭ ↭ 85.37 84.43

The e!ect of each component. The ablation studies regarding how each
component a!ects both the classification and the part segmentation performance
of the proposed Point-CMAE are shown in Tab. 5. It mainly uncovers that:
(i) When just using the proposed dual-masking strategy (Sec. 3.2) from (a),
an obvious improvement can be achieved for both the classification and the
segmentation. (ii) Using one same encoder during pre-training is better than
using two separate encoders. (iii) Using the same decoder to reconstruct the
point cloud from two masks degenerates the overall performance for both the
classification and the segmentation tasks. (iv) The contrastive learning strategy
proposed in our paper brings obvious improvements. In particular, built upon
the same encoder and two separate decoders during pre-training, (f) archives the
best results compared to the rest, and we set (f) as our full model.

5 Conclusion

We propose Point-CMAE, a self-supervised method that integrates the MAE pre-
training paradigm with explicit contrastive properties for point clouds. Specifically,
we experimentally demonstrate that directly combining classic contrastive learning
with generative MAE degrades the SSL performance. To address this, we propose
a simple dual masking strategy that e!ectively introduces explicit contrastive
properties. The feature-level contrastive constraint enables Point-CMAE to
achieve notable improvements over the baseline method, even surpassing some
state-of-the-art methods that use complex hierarchical architectures, post-training
techniques, or multi-modal information. Additionally, our findings indicate that
masking plays a significant role in MAE-based SSL, highlighting the importance
of careful attention to masking strategies, especially for point clouds.
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