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Abstract. The efficient technique for dealing with severe data-hungry
issues in object detection, known as Few-shot object detection (FSOD),
has been widely explored. However, FSOD encounters some notable chal-
lenges such as the model’s natural bias towards pre-training data and
the inherent defects present in the existing models. In this paper, we
introduce improved methods for the FSOD problem based on DETR
structures: (i) To reduce bias from pre-training classes (i.e. many-shot
base classes), we investigate the impact of decoupling the parameters of
pre-training classes and fine-tuning classes (i.e. few-shot novel classes) in
various ways. As a result, we propose a “base-novel categories decoupled
DETR (DeDETR)” network for FSOD. (ii) To further improve the effi-
ciency of the DETR’s skip connection structure, we explore varied skip
connection types in the DETR’s encoder and decoder. Subsequently, we
introduce a unified decoder module that dynamically blends decoder lay-
ers to generate the output feature. Our model’s effectiveness is evaluated
using PASCAL VOC and MSCOCO datasets. Our results indicate that
our proposed module consistently improves performance by 5% to 10%
in both fine-tuning and meta-learning frameworks and has surpassed the
top scores achieved in recent studies.
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1 Introduction

Few-shot learning (FSL) is designed to create a highly adaptable deep learning
model capable of handling situations where training samples are extremely scarce
and often previously unobserved. This process imitates human infant learning, as
they can rapidly acquire new knowledge with minimal instruction, based on their
already extensive prior knowledge. In practice, few-shot learning has a broad
range of promising applications, such as industrial defect detection, medical im-
age analysis, archaeological research, landform change detection, environmental
protection, etc. [14, 21]

Few-shot object detection(FSOD) is an important task in few-shot learn-
ing and holds practical significance in various scenarios. Since TFA [32], FSOD
has made significant progress based on the Faster RCNN (FRCN) [25] baseline.
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(a) fine-tune (b) meta-learning

Fig. 1: Our decoupled DETR achieves stable improvements under both fine-
tuning and meta-learning paradigms. Histograms demonstrate our experimental
results for average precision of novel categories (nAP50) on the three few-shot
PASCAL VOC data splits.

There are two commonly used training paradigms, namely, meta-learning and
fine-tuning. Current methods utilizing FRCN in meta-learning and fine-tuning
training paradigms have achieved competitive results. The emergence of the de-
tection transformer (DETR) [3] in 2020 has further improved the framework for
general object detection. This end-to-end set prediction-based object detection
framework has not only outperformed traditional anchor-based methods (FRCN,
YOLO [1], etc.) but has also been widely applied to more sub-tasks of object
detection, including instance segmentation and FSOD.

As a result, FSOD based on DETR is considered a new trend, not only due to
the simplicity of the DETR framework but also because of its homology to the
Transformer, which makes it easier to combine with other Transformer-based
tasks, especially for multi-modal language-vision tasks [8]. Meanwhile, recent
literature has demonstrated that DETR has achieved outstanding performance
in FSOD. Meta-DETR [37] was the first to explore FSOD based on the meta-
learning paradigm, while FsDETR [2] was the first to explore FSOD without
retraining. However, the development of FSOD based on DETR is still in its
early stages.

In prior literature, FSL has been described as an issue of extreme sample
imbalance or long-tail due to sufficient base samples in the pre-training stage
but insufficient novel samples in the fine-tuning stage [23]. This makes the model
tend to have a bias towards the base classes, and our goal is to address this issue.
FSCE [29] and FSRC [26] have pointed out that the poor performance of FSOD
is more related to inaccurate classification than inaccurate positioning. We have
observed that this phenomenon occurs not only in RCNN structures but also in
DETR structures. Even with DETR, the focus remains on solving the problem
of inaccurate classification. We argue that the extreme sample imbalance of
FSOD results in the dominance of old knowledge from data-abundant classes in
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Fig. 2: The intermediate layer of decoder may have better outputs comparing to
the last layer of decoder, in terms of classification, boxes regression and predic-
tion confidence.

parameter optimization, even during fine-tuning. This means that the model will
always have a certain bias toward the data-abundant classes. To overcome this
problem, we have proposed a decoupling module (DeMod), which aims to add
an intervene at the low-dimensional feature stage of the model to enhance the
model’s concentration. Specifically, the old and novel classes have independent
feature-extracting modules. Therefore, during training, the basic features learned
by the model for old and new categories will not be mixed together, reducing
the bias towards old categories.

Furthermore, the inherent defect of the current model poses a significant bot-
tleneck. In DETR, the encoder and decoder are responsible for feature encoding
and object decoding, respectively. This involves a process from shallow to deep
and then back to shallow. In the traditional transformer structure, the feature
transmission from the encoder to the decoder is linear, meaning that the decoder
will only use the output of the last layer of the encoder as input. We hypoth-
esize that this connection is inefficient because a shallow encoder might match
a shallow decoder better, and vice versa. Therefore, we propose a method of
skip connections between the encoder and decoder, which can effectively utilize
the intermediate output of previous encoders at each decoder layer. In addition,
SQR [4] has pointed out that it is not only the final layer of the decoder that pro-
duces the correct prediction results, the output of the middle layer of the decoder
sometimes produces better results. Therefore, we also conduct corresponding ex-
periments in the FSOD scenario and indeed find that the intermediate layer of
DETR predicted better results than the last layer when fine-tuning, as shown in
Fig. 2. Therefore, we attempt to use the decoder output in an adaptive way to
decide which layer to emphasize as the output. Specifically, we design an adap-
tive decoder fusion strategy so that the final output of the decoder module is
determined by the weighting of the middle layer, instead of only relying on the
output of the last layer. With the help of these modules, we could achieve signif-
icant improvement on the commonly used PASCAL VOC and COCO dataset,
as shown in Fig. 1. Overall, our main contributions include:
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– We propose a decoupling module for novel and base categories that could
effectively reduce the biasing influence of the existing categories on the new
class. This approach leads to the most significant and robust improvement.

– To improve the baseline model, We discuss and simplify the skip connections
between the encoder and decoder that does not require an extra learnable
module and is competitive with the full skip connections. Also, We design
an unified adaptive decoder fusion strategy that dynamically determine the
final output based on the weights of all the middle decoder layers without
the need for manual decoder layer selection tactics.

– Our approach has been demonstrated to be effective and reliable in both
fine-tune and meta-learning paradigms, and our results achieve SOTA on
meta-learning.

2 Related works

2.1 Few-shot Object Detection

Few-shot object detection (FSOD) has traditionally been divided into two paradigms:
meta-learning and fine-tuning. In recent years, zero-shot paradigms have emerged
that do not require fine-tuning [2] and those that require retraining [13], both of
which have shown positive results. In this paper, we conduct experiments using
both the fine-tuning and meta-learning paradigms.

TFA [32] has standardized the evaluation system of FSOD: during the fine-
tuning stage, balanced data samples containing both old and new classes are
used. Additionally, three different data divisions are implemented in VOC to
evaluate the model’s stability [32]. Meta-DETR [37] also adopts this category
partitioning approach. However, unlike TFA, which fine-tunes on the balanced
samples, it fine-tunes the novel class while still strictly adhering to the n-shot
settings, with the old class having more samples. In this paper, we also follow
the evaluation system of Meta-DETR, using uneven fine-tuning data. FSCE [29]
and HTRPN [27,28] argues that classification is a more critical bottleneck than
positioning. Our experiments on the DETR baseline confirm this, and therefore,
we are also focusing more on addressing misclassification. FSED [7] introduces a
transformer-based class encoding approach to increase the inter-class distance,
enabling the model to concentrate on the essential feature information. FM-
FSOD [10] discusses the gain from large pre-trained foundation models such
as large language model (LLM) [30]. CD-FSOD [6] proposes an adaptive sup-
port feature fusion for the meta-learning paradigm. Xu et al. [36] develops a
generalized model using variational autoencoder to produce a large amount of
augmented data. Liu et al. [23] proposes that the few-shot problem is an extreme
data imbalance issue, which is one of the causes of misclassification. We concur
with this viewpoint and have developed our base-novel categories decoupling
module.
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2.2 Detection Transformer

The effectiveness of the model directly affects the localization performance on
FSOD task [14]. Complex models can easily be overfitted in the few-shot sce-
nario. Hence, exploring a stronger baseline network for the few-shot scenario
can achieve remarkable results. As a representation of a generalized vision trans-
former, the detection transformer (DETR) is showing its robustness and effec-
tiveness for the object detection task. Recent DETR-based works have surpassed
R-CNN and YOLO works on common object detection benchmarks [38]. DETR
first converts the traditional object detection task from an anchor-based method
into an ensemble prediction problem that no longer needs hand-designed mod-
ules such as non-maximum suppression (NMS) and region proposals (RPN) [3].
Such an integrated approach makes the end-to-end object detection task more
intuitively perceptual. Additionally, its alignment with the transformer structure
brings DETR more potential for expansion into visual-language multi-modal re-
search [8]. The variation works of DETR further promote the development of
object detection and demonstrate competitive and even stronger generalizing
ability compared to R-CNN based methods [38]. Deformable DETR [41] pro-
poses a deformable attention module that significantly improves the perceptual
ability of the model by focusing only on the sampling points near a reference
point instead of all the sampling points. DAB-DETR [20] redesigns a 4D an-
chor to replace the 2D anchor points as the position queries. DN-DETR [18]
addresses the slow converging problem of DETR by adding a denoising loss that
is trained with perturbed ground-truth labels. DINO [38] further improves the
DN-DETR by applying contrastive learning and mixed query selection. Meta-
DETR [37] applies DETR in the FSOD task for the first time under the meta-
learning paradigm. FsDETR firstly tried to realize the non-retraining paradigm
based on DETR [2]. FsDETR [2] explored few-shot DETR in a retraining-free
manner. Since DETR has reached the best performance on general object detec-
tion task, we build our model based on it with both fine-tuning paradigm and
meta-learning paradigm.

DETR, as a strong baseline for object detection, still has some aspects to
be improved, especially the ways of its skip connection. As SQR [4] argues that
the intermediate layers of the DETR decoder may yield better detection results
compared to the last layer. Consequently, it establishes a connection between
the current decoder layer and previous layers, allowing the decoder module to
recollect previous decoder information. Additionally, DINO [38] designs a look
forward twice structure to enable the current DETR decoder layer to connect
with the subsequent two layers. These two strategies are similar but do not
create a fully connected network among all decoder layers, and they do not
offer a unified strategy for determining which layer should serve as the output.
Therefore, we aim to design a unified decoder module that can automatically
determine how to utilize information from different decoder layers.
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Fig. 3: Overview of our DeDETR. Based on the DETR baseline, the decoupling
module is marked in red block. The skip connections operator and the adaptive
decoder are marked in pink.

3 Proposed Methods

3.1 Preliminary

The task of few-shot object detection aims to first pre-train the model on the
base classes (CB) where there are sufficient training samples, and then fine-tune
it on both base and novel classes (CN ) that has only a few training samples for
each class. Finally, the fine-tuned model is evaluated on the entire test dataset
that includes CB ∪ CN . In the PASCAL VOC few-shot training set, categories
containing 1, 2, 3, 5, and 10 instances are named as 1 to 10-shots; 15 categories
are selected as base classes, and the other 5 categories are considered novel
classes. Similarly, in COCO datasets, the base classes contain 60 categories and
the novel classes contain 20 categories under 10 and 30-shot settings. In the meta-
learning paradigm, the n-shot support set means there are n labeled instances
from each few-shot category for training.

3.2 Overview

The overview of our method is in Fig. 3. The input image is first sent to both
the feature pyramid network backbone and a positional embedding layer simul-
taneously to extract the visual and positional feature embedding. These flatten
features are passed through our decoupling modules to generate base-novel-
categories-specified features according to the composition of the current training
batch. Next, the decoupling module features are sent to the vanilla DETR en-
coder layers to obtain layer-wise memories and position queries. The encoder
memories are then processed by our skip connections operator and serve as
the input to the decoder layers. Finally, our proposed adaptive decoder mod-
ule integrates each separate encoder layer to generate the final output features,
which are sent to the prediction head consisting of two multi-layer perceptrons
(MLP) to obtain the classification and box regression results.
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Table 1: The value selection strategies for w. Nb and Nn indicate the number of
base and novel class instances respectively.

w
Training
(Case1)

Training
(Case2)

Training
(Case3) Evaluating

Hard 1 0 Fixed 0 ∼ 1 Fixed 0 ∼ 1
Soft 1 0 Nb

Nb+Nn
Fixed 0 ∼ 1

Learnable 1 0 Learnable Learnable

3.3 Decoupling Modules (DeMod)

We suggest that during the baseline fine-tuning, the undiscriminating feature
fusion of base class and novel class samples will decrease the effect from the
novel class in terms of weights updating. Only a few samples from the novel
class could hardly push a large model like DETR toward a suitable optimum
without any specific operation. Therefore, we propose assigning separate weight
sets to function as customized feature extractors for the novel and base classes,
which we call decoupling modules.

Specifically, we build two separate deformable self-attention modules (struc-
ture from [41]) for the base and novel classes. These are added as input to the
transformer encoder. The visual embedding and position embedding are sent
to DeMod and processed simultaneously through the base and novel feature-
extracting branches. We then check the sample composition of the current train-
ing batch and perform a conditional weighting operation: (Case 1) If the cur-
rent training batch contains only base classes, the output features will come
solely from the base feature extracting branch; (Case 2) if the current training
batch contains only novel classes, the output features will come solely from the
novel feature extracting branch; (Case 3) if the current batch contains both base
and novel classes, the output features will be the weighted summation of base
and novel feature embedding; as shown in Eq.1, where x is the input feature;
fDeMod(x) is the output feature; fbpmt

(x) and fnpmt
(x) are the base and novel

feature embedding respectively; w is the weight of summation.

fDeMod(x) = w · fbpmt
(x) + (1− w) · fnpmt

(x) (1)

The selection of w is based on the occurrence of Case 1, 2, or 3 within a
training batch. The value of w, as shown in Tab. 1, is set to 1 and 0 for Case
1 and Case 2, respectively. For Case 3, we investigate three methods. (1) Hard
coefficient: the weighting w is fixed as a constant between 0 to 1 for both training
and evaluation. (2) Soft coefficient: the weight w is determined by the ratio of
the number of base instances and novel instances during training, and fixed as
a constant during evaluating (here we set it as 0.6 empirically). (3) Learnable
coefficient: w is a learnable parameter between 0 to 1 for both training and eval-
uating through backpropagation. Our experimental results indicate that the soft
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(c) Soft skip connections.

Fig. 4: Three type of connection between encoder and decoder. Block A1 to A6
indicates the parameters as in Eq. 2. Block B refers to the parameters as in
Eq. 4.

coefficient strategy performs best, please refer to Sec. 4.6. For the propagation
of the 3 cases, please see the Appendix.

3.4 Skip Connections Between Encoder and Decoder

The encoder and decoder module of classic DETR are usually composed of 6 self-
attention layers respectively. The output of the encoder’s last layer (i.e. memory
embedding), serves as the input for each decoder layer, as depicted in Fig. 4a.
There have been a lot of works that discuss the possible ways to connect the
encoder layers and decoder layers deeply. As the transformer encoder translates
the low-layer features into high-layer features, and the decoder interprets these
high-layer features back into low-layer features, creating skip connections be-
tween the encoder and decoder would be intuitive and trivial. Lai et al. proposes
skip connections between the encode and decoder by collecting the outputs of all
encoder layers and concatenating them with the output of the decoder layer in a
weighted manner [15]. We follow this setting and explore a comparable structure.

We investigate two types of skip connections: learnable connections and soft
connections. The learnable connection method includes a set of learnable param-
eters for the encoder output, as shown in Eq. 2. For each decoder layer, the new
input memory embedding is the weighted combination of the original memory
embedding from all encoder layers, as shown in Fig. 4b, where Mem_new{j} is
the updated encoder memory for decoder layer j, and Mem_ori{i} is the orig-
inal encoder memory from the encoder layer i; Aij represents the normalized
learnable parameter with a 6 x 6 shape. Each decoder layer j has 6 parameters
that weighting the Out_enc{i}.
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Mem_new{j} =

i=6∑
i

Aij ·Mem_ori{i} (2)

For the soft skip connections, the new memory embedding only comes from
one of the intermediate layers and the last layer of the encoder, as shown in Fig. 4.
For example, for a decoder layer Dj , the new memory embedding is a weighted
summation of the last encoder layer E6 and the corresponding intermediate layer
Ei, where i = 6−j. As shown in Eq. 3, in which Mem_new{j} is the new encoder
memory for decoder layer j; Mem_ori{i} is the original encoder memory from
encoder layer i; and weight A = 1 − 0.15li, where li represents an arithmetical
layer number (integer), from 0 to 5. Our experiments indicate that the soft skip
connections has more advantages over the learnable skip connections, please refer
to Sec. 4.6.

Mem_new{j}=A·Mem_ori{6} + (1−A)·Mem_ori{i} (3)

3.5 Adaptive Decoder Selection

As we mentioned in Sec. 1 and Fig. 2, the output of the 5 intermediate layers
of the decoder could possibly get better detection results than the last layer.
Therefore, we intend to design a scheme that could let the model determine which
layer is the final output. Specifically, we design a set of learnable parameters that
could be applied to weighting the decoder layers, as shown in Fig. 4c 4b. In detail,
we assign a set of normalized coefficients to integrate all of the decoder layer
outputs, as shown in Eq. 4, where Dec_new represents the new decoder output;
Dec_ori{j} is the original output from decoder layer j; and Bj is the learnable
coefficient for each decoder layer j. Our experiment results in 4.5 indicate that
our adaptive decoder selection is efficient in improving the model’s performance.

Dec_new =

j=6∑
j

Bj ·Dec_ori{j} (4)

4 Experiments

4.1 Datasets

Following previous works, we evaluate our few-shot object detection model on
the two commonly used datasets: COCO and PASCAL VOC [24,29,32,37]. For
COCO dataset, 60 categories are selected as base categories for pre-training,
while the other 20 categories are novel categories. For PASCAL VOC dataset,
15 categories are base categories while the remaining 5 categories are defined as
novel categories. Specifically, the few-shot PASCAL VOC dataset has three cat-
egory splits for the purpose of eliminating the contingency while evaluating the
model, each data split contains different base and novel category combinations.
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Table 2: Few-shot object detection performance on PASCAL VOC dataset.
The novel classes nAP50 are evaluated on three separate splits. Our pro-
posed DeDETR reaches new SOTA in most of the scenarios of meta-learning.
The highest nAP50 for each column are in black bold text, and
the second highest scores is in blue text with underline. Sign † indicates the
meta-learning paradigm. Sign ⋆ indicates the utilization of an imbalanced few-
shot data set.

Method
Shot Backbone Split1 Split2 Split3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/ cos [32] FRCN-R101 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [35] FRCN-R101 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
FSCE [29] FRCN-R101 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
Retentive R-CNN [5] FRCN-R101 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
DeFRCN [24] FRCN-R101 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
FSOD-UP [33] FRCN-R101 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5
KFSOD [39] FRCN-R101 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9
FSRC [26] FRCN-R101 45.5 43.4 51.1 61.4 64.0 28.4 31.3 45.0 46.1 51.6 38.8 45.1 48.4 55.5 59.0
LVC [13] FRCN-R101 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6

⋆ DETR baseline (Our Impl.) DETR-R101 19.4 29.4 35.0 49.8 54.7 11.1 20.8 20.4 30.4 40.6 10.6 23.9 31.9 37.6 46.3
⋆ DeDETR (Our) DETR-R101 25.3 37.2 46.4 59.1 60.8 15.1 25.6 26.5 36.9 51.4 15.1 30.4 37.3 44.1 52.6

† TIP [16] FRCN-R101 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
† CME [17] FRCN-R101 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
† DC-Net [12] FRCN-R101 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
† CGDP [19] FRCN-R2101 40.7 45.1 46.5 57.4 62.4 27.3 31.4 40.8 42.7 46.3 31.2 36.4 43.7 50.1 55.6
† Meta Faster R-CNN [9] FRCN-R101 40.2 30.5 33.3 42.3 46.9 26.8 32.0 39.0 37.7 37.4 34.0 32.5 34.4 42.7 44.3
† FCT [11] PVTv2-B2-Li 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7
⋆† Meta-DETR [37] DETR-R101 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6
⋆† FM-FSOD [10] ViT-S 41.6 49.0 55.8 61.2 67.7 34.7 37.6 47.6 52.5 58.7 39.5 47.8 54.4 57.8 62.6

⋆† Meta-DeDETR (Our) DETR-R101 44.9 54.5 61.1 65.1 68.5 40.1 41.0 47.5 53.4 56.2 48.8 51.2 55.6 61.1 63.5

As we mentioned in Sec. 2.1, TFA [32] uses balanced n-shot base-novel data
set where the number of instances for the novel and base classes are same; Meta-
DETR [37] evaluates the model based on imbalanced data set where the number
of instances for base classes is larger than n (mostly less than 10n). In our
experiment, we follow the imbalanced fine-tuning data set from Meta-DETR.

4.2 Training Strategy

We follow the same training strategy as Meta-DETR which uses ResNet-101 as
the pre-trained backbone. Our DETR baseline is pre-trained on the base classes
with no weights frozen. Then we fine-tune the model on few-shot novel and
base classes, only freeze the ResNet-101 backbone. We run the training on 6
M40 GPUs with a batch-size of 1 for fine-tuning and 4 for the meta-learning
paradigm. The position query is 900 for fine-tuning paradigm as in DINO [38],
and 300 for meta-learning paradigm as in Meta-DETR [37]. The training epoch
is 60 with an initial rate of 2e-4.
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Table 3: Few-shot object detection performance on COCO dataset. Evaluation
for novel classes AP and AP75 are listed. Our results have the highest scores
above most previous works. The highest AP for each column is in black
bold text, and the second highest scores are in regular text with underline. Sign
† indicates the meta-learning paradigm. Sign ⋆ indicates the utilization of an
imbalanced few-shot data set.

Method
Shot Backbone Novel AP Novel AP75

10 30 10 30

TFA w/ cos [32] FRCN-R101 10.0 13.7 9.3 13.4
FSCE [29] FRCN-R101 11.9 16.4 10.5 16.2
SVD [34] FRCN-R101 12.0 16.0 10.4 15.3
SRR-FSD [40] FRCN-R101 11.3 14.7 9.8 13.5
N-PME [22] FRCN-R101 10.6 14.1 9.4 13.6
FORD+BL [31] FRCN-R101 11.2 14.8 10.2 13.9
FSRC [26] FRCN-R101 12.0 16.4 10.7 15.7

⋆ DETR baseline (Our Impl.) DETR-R101 6.3 10.2 5.9 9.1
⋆ DeDETR (Our) DETR-R101 10.6 14.3 10.2 14.1

† FCT [11] PVTv2-B2-Li 17.1 21.4 - -
† Meta Faster R-CNN [9] FRCN-R101 9.7 11.3 9.0 10.6
⋆† Meta-DETR [37] DETR-R101 19.0 22.2 19.7 22.8

⋆† Meta-DeDETR (Our) DETR-R101 23.2 26.3 20.6 23.1

4.3 Results on PASCAL VOC

We present our experiment results on PASCAL VOC, as shown in Tab. 2. We
distinguish the methods based on fine-tuning and meta-learning. Also, we mark
the evaluation scheme on balanced and imbalanced base-novel data sets.

For the meta-learning paradigm, we compared our method with previous
SOTA, the results indicate that our method could outperform the previous works
in most cases. For the fine-tuning paradigm, we not only report the results of
our method but also report our implementation of the DETR baseline on FSOD.
Our results could outperform the baseline by up to 10% in all cases.

Even though we could not beat the latest SOTA in the fine-tuning paradigm
(based on DINO [38]), our result in the meta-learning paradigm (based on Meta-
DETR [37]) could reach the SOTA. This is due to a relatively complex DETR
baseline we rely on for the fine-tuning paradigm [38], which has more parameters
and is easier to overfit (please see Appendix for model complexity and compu-
tation overhead). However, more importantly, we have achieved significant im-
provements in both paradigms. Specifically, we have improved the fine-tuning
paradigm by 10% and the meta-learning paradigm by 5%. These improvements
strongly demonstrate the generalization and robustness of our method. Surpris-
ingly, the 10% improvement in the fine-tuning paradigm, even with the complex
DINO baseline, suggests that our method is effective in reducing overfitting.
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Table 4: Ablation study on our proposed modules based on the fine-tuning DETR
baseline and meta-learning Meta-DETR baseline. The decoupling module (De-
Mod) module gets the highest gain, up to 5%; then the skip connections (Skip-
Con) module and the adaptive decoder (AdptDec) could get the second and
third highest improvement respectively.

Model nAP50
1-shot 5-shot

DETR baseline (Our Impl.) 19.4 49.8
DETR baseline+DeMod 22.6 (+3.2) 55.3 (+5.5)
DETR baseline+DeMod+SkipCon 24.1 (+1.5) 57.5 (+2.2)
DETR baseline+DeMod+SkipCon+AdptDec 25.3 (+1.2) 59.1 (+1.6)

Meta-DETR baseline (Our Impl.) 40.3 58.9
Meta-DETR baseline+DeMod 43.6 (+3.3) 63.4 (+4.5)
Meta-DETR baseline+DeMod+SkipCon 44.3 (+0.7) 64.3 (+0.9)
Meta-DETR baseline+DeMod+SkipCon+AdptDec 44.9 (+0.6) 65.1 (+0.8)

4.4 Results on COCO

Our experimental results on COCO dataset are listed in Tab. 3. We evaluate
our model on both fine-tuning and meta-learning paradigms, including AP and
AP75 for the novel categories. We could observe that our method could get
steady improvement on both fine-tuning and meta-learning networks, and we
have reached the SOTA results.

4.5 Ablation Study

In this part, we mainly discuss the accuracy gain from each of our proposed
three modules. The experiments are implemented on the PASCAL VOC 1-shot
and 5-shot dataset based on the fine-tuning paradigm. As shown in Tab. 4, we
accumulate our proposed modules on the DETR and Meta-DETR baseline. We
want to highlight that our decoupling module provides the highest gain for the
nAP50, while the skip connections module and the adaptive decoder module
could achieve moderate improvement.

We assume that compared with the generalized class-agnostic feature extrac-
tion capability enhanced by skip connections and adaptive decoder, the decou-
pling module can focus more on the distinction between novel and old categories.
As mentioned in the introduction, the misclassification of FSOD is to a large ex-
tent because it is easy to confuse some categories between the novel and old
classes. However, our proposed decoupling module can effectively distinguish
the feature embedding of the old and novel classes from the source by physically
isolating them at the model weight level during training. Thus the maximum
accuracy gain is achieved. This can be seen in more detailed experimental data.
We take PASCAL VOC 5-shot split1 as an example and list the respective AP
for each novel class, as shown in the Tab. 5, in which the improvement on ‘bus’
and ‘motorbike’ is prominent. This situation align with the analysis in FSRC [26]

297



Decoupled DETR FSOD 13

Table 5: Class level comparison between our model and baseline.
Model Bird Bus Cow Motorbike Sofa

DETR baseline 42.4 57.7 66.1 48.6 34.3
DeDETR (our) 48.9 (+6.5) 69.4 (+11.7) 74.1 (+8.0) 61.8 (+13.2) 41.1 (+6.8)

Table 6: Effect of different w strategies.
w 0.0 0.2 0.4 0.6 0.8 1.0

Hard (train and eval) 39.7 53.4 52.9 39.6 38.7 35.2
Soft (eval) 35.4 41.3 47.2 55.9 51.5 48.8
Learnable 40.2

and FSCE [29] that ‘bus’ (novel) and ‘train’ (base) are easily confused, while
‘motorbike’ (novel) and ‘bicycle’ (base) are easily confused. Such improvements
can be also seen in Fig. 5f to Fig. 5l. Thus, our proposed decoupling module is
effective in improving the model’s ability to recognize novel classes.

4.6 Effect of Hyper-parameters

Different coefficient w for decoupling module are list in Tab. 6, the ex-
periment is implemented base on PASCAL VOC 5-shot. We observe that the
soft coefficient of w could reach the highest nAP, while the hard and learnable
coefficients of w are weaker. The principal differences are: when a training batch
contains both base and novel samples, the hard and learnable coefficients are un-
able to perceive the ratio of novel and base samples directly, and therefore hard
to assign the proper gradient to the novel and base feature extractor respectively,
which makes the model harder to converge. However, the soft coefficient directly
assigns the loss energy according to the number of samples, which could achieve
better convergence.
Comparison between soft and learnable skip connections are listed in
Tab. 7. We implement this experiment on PASCAL VOC 1-shot and 5-shot, and
we could observe that the gap between the soft and learnable skip connections
is negligible. Therefore, to some extent, as the input of the ith decoder layer, the
weighted combination of the last layer and corresponding (6 − i)th layer of the
encoder is sufficient. Even though the learnable full skip connections that utilize
all of the encoder layers could achieve higher AP50, considering the newly in-
troduced extra model parameters, such marginal improvement is not a desirable
trade-off. Therefore, we recommend that future works use our explored soft skip
connections, which are simple yet effective.

4.7 Detection Results

We conduct the inference on the PASCAL VOC test set, as illustrated in Fig. 5
with the confidential threshold set as 0.3 for all images. Fig. 5a to Fig. 5c display
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Table 7: Comparison to the soft and learnable skip connections.
Soft Learnable

1-shot nAP 24.0 24.1 (+0.1)
5-shot nAP 57.3 57.5 (+0.2)

DETR 
baseline

DeDETR 
(our)

DETR 
baseline

DeDETR 
(our)

(a) (b) (c) (d) (e)

(g)

(f)

(i) (j) (k) (l)(h)

Fig. 5: The visualization of our detection results comparing to the DETR baseline
on PASCAL VOC test set.

our improvements concerning missing detection. Fig. 5d and Fig. 5e demonstrate
our improvement in terms of incorrect box regression. Additionally, our progress
on misclassification is demonstrated in Fig. 5f through Fig. 5l.

5 Conclusion

To further improve the accuracy of few-shot object detection, we propose im-
provements targeting sample imbalance and feature propagation. To counter
model bias towards pre-existing knowledge, our decoupling module demonstrates
that the weight separation strategy effectively reduces bias from data-abundant
classes. For an improved model structure, we also introduce simplified soft skip
connections between the encoder and decoder, offering competitive performance
against dense skip connections. Additionally, we propose the effective utilization
of each decoder layer by adaptively fusing intermediary decoder layers for output
generation. After testing on popular datasets like PASCAL VOC and MS COCO,
our model consistently outperformed its counterparts with a performance boost
of 5-10%.
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