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Abstract. Attributes are considered fundamental in zero-shot learning.
By incorporating the correspondences between classes and attributes as
prior knowledge, the model is able to approximate a class prototype
for numerous classes without the need for any visual samples of these
classes. In the majority of prior research, attributes are considered prim-
itives and are not subjected to further subdivision. While the only dis-
tinction between shared attributes across classes is the absolute magni-
tude of their values, this does not adequately reflect the more significant
visual differences between these classes in natural images. To address
this issue, we propose learning the Individual Compositional Attribute
Prototype (InCAP). Specifically, InCAP does not treat attributes as the
sole primitives but uses attribute semantics as objects in compositions,
while class semantics are introduced as a special kind of state description
within these compositions. This approach allows attributes and classes
to form the structure of the composition. To avoid information isolation
between seen and unseen classes, these compositional attributes are not
used for direct contrusting class prototypes. Instead, they serve as spa-
tial composition bottlenecks to suppress potential overfitting caused by
attribute-visual mismatches during training and provide advanced loca-
tion guidance information during testing. Experiments demonstrate that
InCAP achieves leading results on mainstream datasets, validating the
full potential of this strategy.

Keywords: Generalized zero-shot learning · Image classification· Com-
positional attributes· Visual bottleneck

1 Introduction

A shared space connecting seen and unseen classes is considered an essential
factor for a deep learning model to achieve zero-shot classification. Typically,
mainstream zero-shot learning (ZSL) and generalized zero-shot learning (GZSL)
methods [39,?,?] use attributes as priors to form this space. Attributes are spe-
cific descriptions of the classes to be classified, such as outline, color, and state.
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Fig. 1: Illustration of individual compositional attributes. Previous models
trained on seen classes learn attribute prototypes and apply them to new classes
for recognition and classification. However, the visual features of attributes can
vary significantly between different animals, leading to what is known as inter-
class variation of attributes. To address this issue, we propose a further sub-
division of attributes. Instead of using generic attributes, we introduce more
specific compositional attributes such as pig’s tail and rabbit’s ears. This
approach enhances the model’s ability to capture inter-class differences and im-
proves recognition accuracy on unseen classes.

By using attributes as primitives and leveraging the correspondence between cat-
egories and attributes, the model can approximate class prototypes for unseen
classes.

Based on the above knowledge, most current zero-shot learning (ZSL) meth-
ods use generative [31,27,41] or embedded structures [1,47,20] to achieve zero-
shot image classification through attributes. These methods focus on generating
synthetic features that closely resemble the real sample distribution or construct-
ing clearer class boundaries in the common embedding space. While these ap-
proaches have made commendable progress, there is a lack of in-depth research
on the structure of the attributes themselves.

In most of the aforementioned approaches, attributes are treated as the basic
primitives that constitute a class description, differing only in their weight val-
ues. However, we pose two simple questions to the reader: (1) are there consistent
visual representations of shared attributes across classes? and (2) are differences
in the weight values of a single dimension sufficient to indicate these visual repre-
sentational differences? We consider the answer to be no. For example, a rabbit’s
tail differs significantly from a horse’s tail in terms of length, color, morphology,
and other visual characteristics. A single-dimensional weighting value cannot
encapsulate this distributional difference.

As depicted in Figure 1, it is challenging to find an accurate and unique
description of an abstract attribute beyond a class, because the visual depiction
of an attribute varies between classes. Consequently, a singular fixed attribute
description is prone to causing visual-semantic misalignment.
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To address the above issue, this paper proposes learning Individual Compo-
sitional Attribute Prototypes (InCAP) for GZSL. Unlike the previous approach,
InCAP no longer uses the original attributes as minimal primitives for input. In-
stead, we further subdivide to form a compositional structure that includes both
attribute semantics and class semantics, like rabbit tail. InCAP separates the
original shared attributes into individual attributes for each class, using these as
the minimal primitives, and we call them compositional attributes.

The translation of compositional attributes from text into embedding repre-
sentations is typically realized through a text embedding model like CLIP [28].
Building on this, InCAP combines similar compositional attributes via clus-
tering, facilitating the sharing of attribute information within a small scope.
However, these enhancements could lead to the isolation of attributes shared
between seen and unseen classes. Inspired by the IAB [16], we retain the origi-
nal shared attributes at the time of classification but utilize a visual bottleneck
to learn compositional attribute prototypes from the text embedding and fur-
nish attribute region localization details for visual features within the common
embedding space, instead of directly applying these to the classification within
the same space. This approach enables InCAP to precisely compress regions in
visual features that are independent of attributes, thereby successfully avoiding
the erroneous allocation of shared attributes into semantically irrelevant areas
of the embedding space.

In summary, our contributions are as follows:

– We propose new minimal primitives in semantic information, compositional
attributes, for a more precise description of the attributes compared to the
original shared attributes.

– Using the visual bottleneck with compositional attributes guides the model
to accurately compress attribute-independent regions of visual features. This
approach prevents attribute-visual matching bias and enhances the model’s
ability to generalize to unseen categories.

– State-of-the-art(SoTA) performance: our approach outperforms existing meth-
ods on three benchmark datasets. Comprehensive experimental analysis val-
idates the model’s effectiveness.

2 Related Work

2.1 Generalized Zero-Shot Learning

Image classification is a significant research direction in computer vision. Tra-
ditional image classification relies on supervised learning methods that require
extensive labeled data. However, data labeling is a time-consuming and costly
process, especially for images in specialized fields. Additionally, in many practical
applications, data distribution is often long-tailed.

To enhance the utility and efficiency of image classification models, zero-shot
image classification task is emerged [18,32]. These tasks require models to recog-
nize and classify entirely new categories that are not present in the training data,
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relying on transferring knowledge from seen classes to unseen classes. General-
ized zero-shot image classification proposes a more realistic scenario, requiring
models to recognize and categorize both seen and unseen classes during testing
[4,36]. Depending on the strategy adopted, these methods can be categorized into
generative methods [35,9,43,23] and embedding-based methods [37,19,38,15,22].

In generative approaches, abstract attribute information is utilized to en-
hance the quality of generated outputs [31,27]. However, some methods suggest
that visual features generated based on generalized class-level attributes may
lack realism [45,42,41]. Embedding-based methods often focus on learning local-
ized attributes that can be transferred from seen classes to unseen classes during
the image feature learning process [39,34]. Semantic information is frequently in-
troduced into the semantic space as auxiliary information to guide the learning of
visual features [38,21,6]. However, some approaches consider the still limitations
of attribute localization and class-level attribute supervision [46,16,7].

2.2 Composition in Language

Composition is a fundamental concept in natural language processing, encom-
passing pairs [11,25,2] such as adjective-noun combinations [5,24,30] and verb-
object interactions [29,44]. Simple combinations of two word vectors are insuffi-
cient for capturing the complexity of relationships and contextual dependencies
between words [11]. In contrast, modeling two independent words as a new whole
entity can effectively enhance text generation’s accuracy and flexibility [26,30].
This approach personalizes the combined features according to the character-
istics of the components, thus generating more precise and diverse linguistic
descriptions. For instance, in attribute-object pairs, the object’s characteristic
representation varies according to the attribute’s content.

Based on this premise, we propose that in GZSL, shared attributes and class
names as textual information can form combinations similar to text pairs. Here,
the class name serves as a description of the attribute, making it more specific
and personalized. Introducing this combination of attributes in the model learn-
ing process can enhance the model’s expressiveness and discriminative power.

3 Methodology

In this section, we define GZSL task and provide detailed information about the
individual compositional attribute prototypes.

3.1 Problem Definition

In GZSL, the image set X is further divided into seen and unseen classes, i.e.,
X = Xs ∪ Xu, and the corresponding labels are defined as Y = Ys ∪ Yu. The
seen set is strictly disjoint from the unseen set, denoted as Ys ∩ Yu = ∅. We
define the train set as S = {(x, y, z)|x ∈ Xs, y ∈ Ys, z ∈ Z}, where x denotes the
images, y denotes the corresponding labels, and the class-level attribute vector
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Fig. 2: Illustration of the proposed InCAP. The model achieves two primary
tasks: first, it constructs more refined compositional attributes to distinguish at-
tribute descriptions between different classes, addressing inter-class attribute dif-
ferences; second, it integrates abstract semantic information (including original
shared attributes, class names, and compositional attributes) for visual bottle-
neck, which compresses irrelevant attribute regions in the visual space, thereby
enhancing the model’s comprehension and representation of images.

z = ϕ(y) ∈ RK represents K distinct attributes for class y. All class attributes
form a collection Z = {z0, z1, . . . , zn−1}, where n corresponds to the number
of classes (including unseen classes). The primary objective of GZSL task is to
predict the labels of images belonging to the unseen class and seen classes, i.e.,
X → Ys ∪ Yu.

3.2 Preliminaries

Attribute Correlation Map. Attributes constitute the sole learnable knowl-
edge mutually exchanged between seen and unseen classes. APN [39] offers a
direct framework for the prototype learning of attributes, i.e., randomly initial-
ize a set of learnable attribute prototypes P = {p1, p2, . . . , pK}, the Attribute
Correlation Map (AttrCM) from the visual features x can be obtained from the
following equation:

AttrCM(x,P) = ConvP(x). (1)

ConvP represents a convolution operation that is parameterized by employing
the elements within P as the convolution kernel.
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3.3 Model Structure

As shown in Figure 2, the shared attributes, class name information, and image
x are jointly input to the model. Shared attributes and class names are combined
to create new semantic primitives, compositional attributes. The image encoder
extracts visual features F from an image x, which are then embedded in the visual
space following a joint filtering process, and outputs F̄ that contains guidance for
locating attribute regions. This process incorporates multiple levels of attribute-
category compositions.

Consistent with preceding zero-shot methodologies [16,?], our classifier design
employs nearest neighbors from cosine similarity in visual space for classification.
The formula is as follows:

cos(Avg(F̄), z) =
Avg(F̄)∥∥Avg(F̄)

∥∥
2

⊗ ϑ(z)

∥ϑ(z)∥ 2

, (2)

where, ⊗ denotes matrix multiplication and z is the attribute feature correspond-
ing to the image x. The symbols ∥·∥2 and ϑ(·) denote, respectively, the L2 norm
normalization and the mapping function that projects class-level attributes into
the visual space.

During training, the spatial composition bottleneck indirectly guides the
learning of class attributes z mapping. This ensures that class-level attributes
are projected to more appropriate locations in the visual space, achieving a more
accurate visual-semantic correspondence.

3.4 Compositional Attributes

Predefined class-level attributes are crucial for knowledge transfer, but they only
assign attribute scores to each class without describing the specific characteristics
of the attributes. It assumes that shared attributes have the same characteristic
representation across all classes, which is contrary to reality.

In our work, we no longer use the original shared attributes as minimal prim-
itives. Instead, we decompose these shared attributes into separate attributes for
each category, which we refer to as compositional attributes. This approach aims
to expand attribute descriptions to more accurately characterize each category.
As shown in Figure 2, we combine attributes and class names, leveraging natural
language model to generate compositional attributes. There are many language
models that can accomplish this task, such as FastText [3], BERT [8] and CLIP
[28]. In this work, we choose the text encoder in CLIP.

Before processing, we construct the text input. The dataset provides shared
attribute information, such as tail and class information, such as lion, which
can be directly used as input text, denoted as {tai }Ki=1 and {tci}ni=1. To provide
more detailed and precise text information, we use fixed templates to com-
bine textual information about attributes and class names, e.g., {ti}n×K

i=1 =
{class name} with the attribute {attribute}.
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We then use text encoder to generate the compositional attributes as shown
in the following equation:

T = Λ(Etext(ti)), (3)

where, Etext(·) indicates encoding of text, Λ(·) denotes stacking all tensors to-
gether and T ∈ Rn×K×m can be viewed as a characterization of each attribute
across different classes, m is the length of the vector characterizing each at-
tribute. The same process can be applied to texts ta and tc to obtain their
corresponding token tensors Ta ∈ RK×m and Tc ∈ Rn×m, which denote the
attribute embedding and class name embedding, respectively.

Compositional attributes refines the inter-class distinctions of attributes.
However, in the real world, some attributes do not significantly differ between
similar classes. Excessive differentiation may lead to model overfitting rather
than learn useful generalization capabilities. Therefore, we perform a clustering
operation on the combined attributes to aggregate the feature representations
of attributes in similar classes. The equation is shown below:

ŷ = KMeans(b,T), (4)

where, ŷ ∈ Rn stores the category labels after clustering and the function
KMeans(·) denotes the clustering using the KMeans algorithm. b is the num-
ber of clusters specified as a hyperparameter to be discussed in detail in Section
4.4. For each cluster, the index of all classes belonging to the cluster is denoted
as Ii = {j|ŷ[j] = i}, i = 1, 2, ..., b.

We compute the maximum value of the tensor within the same cluster to
generate a feature vector representing that cluster:

T̄ = max
j∈Ii

H[j, :, :]. (5)

This results in the final compositional attributes T̄ ∈ Rb×K×m. Subsequently,
we map T̄ to the visual space and and compute the compositional attribute
correlation map with F. The specific operation is shown in the following equation:

Mcps = AttrCM(F, δ1(T̄)), (6)

where, δ1(·) is a map function.
Optimization by minimum entropy. On the basis of Mcps, we compute the
score of each attribute on the image x as shown in the following equation:

Score = softmax(ω(Avg(Mcps))), (7)

where, ω(·) restructures a one-dimensional tensor into a two-dimensional tensor
of dimensions K × b. Hence Score ∈ RK×b denotes the probability distribution
of each attribute across each category.

Each row in Score denotes the probability distribution of attributes across
various categories. We compute the minimum entropy for each row and construct
a loss function by aggregating these entropy values. We constraint the model’s
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output by minimizing entropy during training, promoting a concentration of
attribute probabilities within individual categories. The formula is shown below:

Letp =

K∑
i=0

(min
j

(− Scorei,j × log(Scorei,j)). (8)

3.5 Spatial Composition Bottleneck

Unlike abstract semantic descriptions, visual features usually contain more com-
plexity and detail. To enhance attribute region guidance in the visual space,
previous work often introduces shared attributes as a knowledge supplement for
visual bottlenecks. This approach achieves better correspondence between se-
mantics and vision, but the limited expressiveness of shared attributes restricts
the model’s performance.

Therefore, in our work, based on learning shared attribute prototypes and
category prototypes we utilize the visual bottleneck to learn more precise combi-
natorial attribute prototypes from text embeddings. This process called spatial
composition bottleneck is illustrated in the Figure 2.

First, the learnable shared attribute prototypes and category prototypes are
initialized and introduced into the visual representation F respectively. This
integration generates the corresponding shared attribute correlation map Ma ∈
RK×h×w and class correlation map Mc ∈ Rn×h×w respectively. This process is
illustrated by the following equation:{

Ma = AttrCM(F, δ2(T
a)),

Mc = AttrCM(F, δ3(T
c)),

(9)

where δ2(·) and δ3(·) denote the combination of linear layers and activation
functions that map the token tensor Ta and Tc to visual space, respectively.

Then, the learned prototype completes the attribute region localization in
the image through the visual bottleneck. The localized image is then residually
connected with the initial image embedding. This process enhances the model’s
ability to identify attributes and objects in vision while preserving the integrity
of the original features. The computational formula is as follows:

F̂ = F⊙
K∑
i=0

Ma +F⊙
n∑

i=0

Mc +F, (10)

where, ⊙ indicates element-by-element multiplication.
Finally, the compositional attribute prototype is applied to the outputs of the

initial two visual bottlenecks to achieve more precise attribute region localization
guidance:

F̄ = F̂⊙
bk∑
s=0

(Mcps
sij). (11)
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During training, we optimize the learning of combined attribute prototypes
using minimum entropy loss. Gradient transfer indirectly influences the learning
of shared attribute prototypes and category prototypes. This balanced integra-
tion of the three components enables the model to effectively implement the
composition bottleneck.

3.6 Optimization and Inference

Optimization. During the training phase, the model is optimized using a com-
posite loss function. After comparative analysis, we select a combination of min-
imum entropy loss, cross-entropy loss, and regularization loss to form the final
loss function. The calculation of each component of the loss function is detailed
below.

Cross-entropy loss is used for multi-class classification problems. It measures
the discrepancy between the predicted probabilities of a classification model and
the true labels. By minimizing this discrepancy, the model’s predicted probabil-
ities are brought closer to the true distribution. The calculation formula is as
follows:

Lce = −log
exp(cos(Avg(F̄), z))∑

zi∈Z exp(cos(Avg(F̄), zi))
. (12)

Regularization loss enhances model performance by introducing constraints
or penalties. In our approach, we minimize the Euclidean distance between visual
feature and its corresponding attribute z to encourage the model to output higher
confidence in predicting true labels, while simultaneously discouraging overfitting
to irrelevant features. The calculation formula is as follows:

Lreg =
∥∥Avg(F̄)− ϑ(z)

∥∥2
2
. (13)

Ultimately, combining multiple losses yields the model’s final loss function
L, formulated as follows:

L = Lce + λLreg + Letp, (14)

where λ represents hyperparameter that controls the effect of regularization loss
on the overall loss function. We discuss them in detail in Section 4.4.

Inference. In GZSL, both seen and unseen classes are contained at inference
time, but the model merely learns about the knowledge from seen classes dur-
ing training. Therefore, we apply Calibrated Stacking (CS) [4] to jointly define
the category. The classifier searches for the class embedding with the highest
compatibility via:

ȳ = argmax
y=∈Ys∪Yu

(cos(Avg(F̄), z))− γI(y ∈ Ys), (15)

where, I(y ∈ Ys) = 1 if y is a seen class and 0 otherwise, γ is the calibration
factor for balancing the seen and unseen classes [4].
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4 Experiments

4.1 Datases and Metrics

Datasets. AWA2 comprises 37, 322 images that encompass a diverse range of
animals. These images are distributed across 50 distinct animal categories, each
is characterized by 85 attributes. There are 40 seen classes and 10 unseen classes.

CUB is a standard dataset for bird identification, featuring approximately
11, 788 images drawn from 200 different bird classes, including 150 seen classes
and 50 unseen classes. It includes 312 attributes, with around 30 images per
bird.

SUN comprises roughly 14, 340 images depicting a wide variety of natural
scenes, spanning 717 different scene categories including 645 seen classes. It
includes 102 attributes, encompassing indoor and outdoor environments, natural
landscapes, and more.
Evaluation Metrics. Evaluation of GZSL performance employs the widely used
harmonic mean AH introduced by [36]: AH =

(
2×AS ×AU

)
/
(
AS +AU

)
,

where AS and AU denote the classification accuracy on seen and unseen classes,
respectively. In our experiments, we also report AS and AU .
Implementation Details. Our model employs the pre-trained ResNet-101 on
ImageNet as the backbone. The training process consists of two stages: initially
learning parameters with the frozen backbone network, followed by unfreezing
the backbone for fine-tuning to better adapt the pre-trained model to the task
requirements. The entire training process is conducted on a 2080Ti GPU with a
batch size of 32. For the dataset AWA2, the learning rate is set to 1×10−4 in the
first stage and 1 × 10−7 in the second stage; for the dataset CUB, the learning
rates are 1× 10−5 and 5× 10−7, respectively; for the dataset SUN, the rates are
5 × 10−4 and 1 × 10−7, respectively. Throughout the model, we configure two
hyperparameters: λ and b. Here, λ assign weights in the loss function, while b
represents the number of clusters in the KMeans algorithm. In section 4.4, we
perform ablation experiments on these hyperparameters.

4.2 Comparison with State-of-the-Art Methods

As shown in Table 1, we present a comparative analysis of our model against
two kinds of SoTA methods: embedding-based methods and generative meth-
ods. Generative methods utilize attribute information of unseen classes during
training, whereas embedding methods do not require this prerequisite. Since our
approach falls under the category of embedding-based methods, we include the
results of some generative methods for reference in this section, but the primary
comparison is made with embedding methods.

The experimental results demonstrate the superior performance of our model.
The SoTA results of our model on the AWA2 and SUN datasets are 79.4% and
45.4% respectively. These results represent improvements of 3.1% and 0.7% over
the IAB method, and 4.6% and 0.9% over the DPN method. It can be seen
that our approach achieves excellent results on coarse-grained datasets. This is
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Table 1: Results of GZSL on three classification benchmarks. We compare our
model with state-of-the-art models on the CUB, AWA2, and SUN datasets. In
this context, † and ‡ denote generative methods and embedding-based methods,
respectively. We evaluate the model’s performance using top-1 accuracy(AS and
AU ) as well as their harmonic mean (AH) for both seen and unseen classes in
GZSL. The table highlights the optimal AH on each of the three datasets in red
and the second-best AH in blue. ‘-’ means not reported.

Method Reference
CUB AWA2 SUN

AU AS AH AU AS AH AU AS AH

†

GCM-CF [42] CVPR(2021) 61.0 59.7 60.3 60.4 75.1 67.0 47.9 37.8 42.2
CE-GZSL [12] CVPR(2021) 63.9 66.8 65.3 63.1 78.6 70.0 48.8 38.6 43.1

ICCE [17] CVPR(2022) 67.3 65.5 66.4 65.3 83.2 72.8 - - -
SCE [13] IJCV(2022) 66.5 68.6 67.6 64.3 77.5 70.3 45.9 41.7 43.7

CMC-GAN [40] IJCV(2023) 52.6 65.1 58.2 - - - 48.2 40.8 44.2
DFCA [33] TCSVT(2023) 70.9 63.1 66.8 66.5 81.5 73.3 48.9 38.8 43.3

‡

RGEN [38] CVPR(2019) 73.5 60.0 66.1 76.5 67.1 71.5 31.7 44.0 36.8
DAZLE [15] CVPR(2020) 56.7 59.6 58.1 60.3 75.7 67.1 52.3 24.3 33.2
DVBE [22] CVPR(2020) 64.4 73.2 68.5 62.7 77.5 69.4 44.1 41.6 42.8
APN [39] NIPS(2020) 65.3 69.3 67.2 56.5 78.0 65.5 41.9 34.0 37.6

GEM-ZSL [21] CVPR(2021) 64.8 77.1 70.4 64.8 77.5 70.6 38.1 35.7 36.9
TDCSS [10] CVPR(2022) 44.2 62.8 51.9 59.2 74.9 66.1 - - -
TransZero [6] AAAI(2022) 69.3 68.3 68.8 61.3 82.3 70.2 52.6 33.4 40.8
AS-ZSL [46] PR(2023) 65.8 78.2 71.5 66.5 78.3 71.9 39.5 37.2 38.3
DPN [14] TCSVT(2024) 63.7 80.6 71.2 65.2 87.6 74.8 48.3 41.4 44.5
IAB [16] IJCV(2024) 70.1 78.5 74.0 70.0 83.8 76.3 46.9 42.7 44.7
InCAP ours 69.6 75.2 72.3 73.5 86.4 79.4 49.2 42.2 45.4

because these datasets contain classes with inherently greater variation, making
the differences in attributes across classes more critical. The experimental results
underscore the feasibility and importance of attribute refinement.

On the CUB dataset, our model achieves the second-best AH of 72.3%,
outperforming the DPN method by 1.1%. Our model performs slightly worse
on the CUB dataset compared to the other two datasets. We believe this is
due to two reasons: 1) CUB, as a fine-grained dataset, contains only different
species of birds, resulting in negligible differences between most attributes; and
2) CUB contains 312 attributes, whereas AWA2 and SUN have only 85 and
102 attributes, respectively. Thus, the CUB dataset already provides a detailed
description of attributes.

4.3 Ablation Experiment

We evaluate the contribution of various visual bottleneck combinations and min-
imum entropy loss functions to the model’s performance through ablation ex-
periments.

We establish a baseline to to provide a comparison. The baseline includes a
simple linear layer that maps attribute information to the visual space to com-

4605



12 Yuyan Shi et al.

0.5 1 1.5 2 2.5
 x 10

10
20
30
40
50
60
70
80

Ha
rm

on
ic 

M
ea

n

78.3

44.8

71.5

79.4

45.4

72.3
77.9

45.2

71.9
77.2

43.9

71.0
78.3

44.2

70.5

AWA2 SUN CUB

10 20 30 40 50 60 70 80
b

0
10
20
30
40
50
60
70
80

Ha
rm

on
ic 

M
ea

n

78.5

43.8

69.3

79.4

44.9

69.5

79.1

44.2

70.3

78.1

45.1

71.9
78.3

45.0

72.3

0

45.4

70.5

0

45.2

69.8

0

44.8

69.1

AWA2 SUN CUB

Fig. 3: Ablation results for hyperparameters λ and b. This figure describes ab-
lation experiments involving the coefficients, λ and b. λ plays a crucial role in
weighting the loss function, aimed at balancing the cross-loss and regularization
loss. b is the number of cluster when clustering compositional attributes.

pute the similarity between semantic and visual embeddings for classification.
And baseline is optimized using a cross-entropy loss and a regularization loss.

The experimental results are shown in Table 2. In the ablation experiments,
different combinations of visual bottlenecks are incrementally added to the base-
line to verify their effect on the model’s classification performance. The visual
bottleneck in the compositional attributes show a significant effect improving by
7.8%, 12.6% and 6.9% on the three datasets, respectively. And its combination
with either tc or ta also demonstrate notable enhancement. On the CUB dataset,
performance improvement is 8.2% and 8.8%; on the AWA2 dataset, performance
improvement is 13.2% and 14%; and on the SUN dataset, performance improve-
ment is 6.6% and 8.2%. However, the combined bottleneck involving all three
elements achieves the optimal effect improving by 9.7%, 15.6% and 9.5% on the
three datasets, as the model find a balance among them during the training
process.

Furthermore, for the compositional attributes we introduce a minimum en-
tropy loss. This loss function encourages the model to concentrate the proba-
bility distribution of each attribute within a single category, thereby reducing
the ambiguity of the attribute representation and further improving the model’s
classification performance. We experimentally verify the impact of this loss on
model optimization. As shown in Tabel 2, adding the minimum entropy loss to
all combinations containing compositional attributes improves AH .

In summary, this section provides an in-depth evaluation of the contribution
of various visual bottleneck combinations and minimum entropy loss functions.

4.4 Hyper-Parameter Analysis

In the proposed model, we set two hyperparameters, λ and b, to balance the
model’s performance.

The hyperparameter λ assigns weights in the loss function and controls the
effect of regularization loss on the overall loss function. By tuning λ, we can
strike a balance between fitting the training data and preventing overfitting, thus
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Table 2: Ablation study for InCAP. We experimentally verify the effect of dif-
ferent combinations of visual bottlenecks and conduct comparative experiments
for the minimum entropy loss function. In our notation, t, ta, and tc represent
composition attributes, shared attributes, and class names, respectively. The “+”
symbol indicates the addition of corresponding visual bottlenecks in the module,
while “

√
” denotes optimization using the corresponding loss function.

Loss CUB AWA2 SUN

Lce Lreg Letp AU AS AH AU AS AH AU AS AH

Baseline
√ √

51.8 78.8 62.5 52.7 79.2 63.3 46.1 29.0 35.6
+ta

√ √
63.3 76.6 69.3 63.2 84.5 72.3 51.1 34.4 41.1

+tc
√ √

60.8 77.6 68.2 66.2 76.1 70.8 52.2 30.7 38.6
+ta + tc

√ √
65.5 74.3 69.6 65.2 83.9 73.4 50.8 34.7 41.2

+t
√ √

66.4 74.7 70.3 68.3 85.3 75.9 49.2 37.4 42.5
+t

√ √ √
66.3 75.5 70.6 69.7 84.2 76.2 49.4 37.9 42.9

+t+ ta
√ √

67.6 75.5 71.3 71.6 84.0 77.3 51.2 38.3 43.8
+t+ ta

√ √ √
69.4 74.4 71.8 69.4 87.6 77.5 50.1 39.6 44.2

+t+ tc
√ √

67.3 74.3 70.7 68.3 87.1 76.5 51.0 36.0 42.2
+t+ tc

√ √ √
69.2 73.5 71.3 68.7 88.5 77.4 49.6 39.5 43.9

+t+ tc + ta
√ √

70.3 74.1 72.2 71.9 87.4 78.9 48.1 42.5 45.1
InCAP

√ √ √
69.6 75.2 72.3 73.5 86.4 79.4 49.2 42.2 45.4

enhancing the model’s generalization ability. In Figure 3, the harmonic mean AH

of the three datasets with different λ settings are prominently displayed. The
figure shows that when λ is set to 0.1, the harmonic mean reaches its maximum
value across all three datasets. This suggests that λ = 0.1 effectively controls
the overfitting problem. Therefore, we conclude that 0.1 is the most appropriate
value for λ in our model.

The parameter b indicates the number of clusters when clustering composi-
tional attributes. Choosing an appropriate value for b effectively captures the
differences between fine-grained attributes, improving the model’s classification
accuracy and generalization performance. Figure 3 visualizes the effect of the
b value on classification accuracy. The optimal b value varies across the three
datasets: 50 for CUB, 20 for AWA2, and 60 for SUN. This variation is due to
the different characteristics of each dataset.

4.5 Visualization Analysis

Our approach proposes an attribute refinement method that focuses on inter-
class differences in attributes. We verify the efficiency of this approach through
visualization experiments. The control groups include the visualization results
from the baseline model and the results from introducing initial shared attributes
into the visual features. These experiments are conducted on the AWA2 dataset.

The visualization based solely on the baseline yields the poorest results; with-
out the aid of textual information, the model’s attention can not focus on the
key information in the image. After introducing attribute information, the vi-
sual features learn some attribute localization. However, the visualized images
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original
picture

baseline

compositional
attributes

shared
attributes

Fig. 4: Illustration of visualization comparison. We present visual comparison
results to verify the effectiveness of compositional attributes in capturing key
information in images. Initial, shared attributes are introduced into the visual
features for comparison, with the baseline results serving as a reference.

still show unsatisfactory results, with the model’s attention incorrectly focusing
on some irrelevant attributes. We believe these results are due to the mismatch
between the attribute text information provided by the dataset and the image
content, as a single attribute text is often inconsistent with a variable visual
image.

Our approach mitigates the problem of visual semantic mismatch due to
inter-attribute differences Visualization results confirm that the compositional
information better aligns with the image content, capturing critical information
with minimal influence from irrelevant features.

5 Conclusion

In this paper, we introduce Individual Compositional Attribute Prototypes (In-
CAP) for GZSL, a method for constructing compositional attributes that dis-
tinguish attributes between attribute classes. We propose a spatial composi-
tion bottleneck that improves the accuracy of attribute-visual correspondence
by compressing attribute-independent regions in the visual space. Extensive ex-
periments conducted on three popular datasets yields SoTA results. The abla-
tion study results also demonstrate that compositional attributes enhances the
model’s classification performance by focusing on inter-class differences com-
pared to traditional shared attributes.
Acknowledgements This work was supported in part by the National Natural
Science Foundation of China under the Grant Nos. 62371235, 62076132 and
62072246, and in part by the Key Research and Development Plan of Jiangsu
Province (Industry Foresight and Key Core Technology Project) under Grant
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