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Abstract. Atrial fibrillation (AF) is a common cause of ischemic stroke,
accounting for up to one-third of all cases. Untreated AF can increase the
risk of stroke by up to five times and make stroke recurrence more likely.
Anticoagulation has proven beneficial in reducing stroke risk. However,
AF is often paroxysmal and asymptomatic, remaining undetected and
undiagnosed in up to 30% of cases. The current methods for AF detec-
tion are usually lengthy (cardiac monitoring), expensive (smart devices),
or invasive (implantable cardiac monitors), limiting their routine use. We
present a novel method to screen for AF by analyzing infarct patterns of
stroke patients from brain magnetic resonance imaging (MRI) scans. We
propose EDAF, a novel method based on the segment anything model
(SAM) that leverages the power of a foundational deep learning model
to efficiently analyze brain MRI and identify whether the underlying
stroke etiology is AF. EDAF is trained and validated using a retrospec-
tively acquired dataset of 235 post-stroke patients, achieving an area
under the receiver operating characteristic (AUROC) of 83.08%± 2.96%
in identifying the presence of AF. EDAF can achieve optimal solutions
with minimal training, highlighting its potential for use in low-resource
settings. As MRI is readily available in stroke centers and routinely per-
formed on many patients after a stroke, either during their admission or
as an outpatient, the proposed method can effectively identify patients
for further AF investigation.

Keywords: Ischemic stroke · Atrial fibrillation (AF) · Magnetic reso-
nance imaging (MRI) · Vision transformer

1 Introduction

Atrial fibrillation (AF), the most common type of heart arrhythmia in the world,
characterized by abnormal electrical activity, significantly increases stroke risk
and can lead to multiple, including silent, strokes [7]. AF increases stroke risk
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five-fold compared to the general population and is associated with over two-fold
increased risk of recurrent stroke [19,21]. Detecting AF after a first stroke is vital
for optimizing treatment with oral anticoagulation, preventing recurrent strokes,
uncovering silent AF, and improving long-term outcomes. However, the variabil-
ity in AF manifestation between patients and even within the same patient over
time, along with AF’s paroxysmal and asymptomatic nature, makes detection
challenging.

Current AF detection techniques are through continuous or intermittent car-
diac monitoring. They generally operate by recording electrocardiogram (ECG)
or other physiological parameters associated with heart function. These tech-
niques include hospital ECG recording devices, event recorders, Holter monitors,
implantable cardiac devices (ICDs), and smartphones. The AF identification ac-
curacy in these devices depends on monitoring length and patient compliance,
and they are costly and invasive in some cases [11]. To identify the underly-
ing AF in post-stroke patients, based on the current guidelines, acute ischemic
stroke (AIS) patients often undergo a short-term ECG recording in the emer-
gency room.

Prolonged cardiac monitoring is conducted only when evidence indicates a
higher likelihood of a cardioembolic stroke. However, the absence of a compre-
hensive risk stratification framework results in many AF patients only receiv-
ing short-term monitoring, which leads to numerous undetected AF cases. This
oversight can delay AF treatment or result in incorrect treatment strategies for
stroke, causing irreversible consequences such as secondary strokes, further heart
complications, and unnecessary patient expenses. To address this issue, a robust
risk stratification pipeline must be implemented to identify individuals at el-
evated risk utilizing the existing modalities in stroke diagnosis and treatment
procedures.

Magnetic resonance imaging (MRI), particularly diffusion-weighted imaging
(DWI), is commonly used soon after a stroke. Despite its limitations, such as
long scanning duration and limited availability, it is essential in the acute phase
of stroke to provide detailed diagnostic information, facilitate treatment deci-
sions, and predict outcomes. Ischemic strokes result in distinct infarct patterns
visible on DWI images [23][15], which are associated with stroke severity and
functional outcomes. We hypothesize that the DWI scans of post-stroke patients
can be efficiently analyzed using deep learning models to identify the underly-
ing presence of AF automatically. There are only two published works focusing
on analyzing brain MRI scans using deep learning for investigating stroke etiol-
ogy. In a published abstract [30], a brain MRI dataset of 489 patients was used
to identify the underlying atrial fibrillation, achieving an AUC-ROC of 80%.
However, the model’s reliance on detailed annotation for segmentation and the
absence of comprehensive experiments and discussion makes it difficult to as-
sess its specific contributions. Another study [12] utilized two models for stroke
subtype classification and infarct segmentation, achieving an accuracy of 81.9%.
However, the method is complex and requires costly and time-consuming manual
annotation of infarct regions.
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Through convolutional neural networks (CNN) and transformers [26,6], deep
learning has become the gold standard for challenging computer vision and
medical image analysis tasks. Due to the complexity of medical images and
often access to small-scale datasets, transfer learning is a common approach for
attaining high performance in medical image analysis. The segment anything
model (SAM) [13], a large deep learning model, has recently shown exceptional
performance in image segmentation. Like most transformer models, SAM’s ar-
chitecture is an auto-encoder in which the encoder extracts features from the
input image, and the decoder generates segmentation masks based on these fea-
ture maps. After training, the encoder can function separately as the backbone
of a classification network. While SAM is primarily designed for segmentation,
due to the scale of the dataset used (a dataset containing 11 million images)
and the fine-tuned SAM variants already available in medical image analysis
[9,10,17,18,22,27,28,29], the rich representations from this pre-trained model can
be effectively applied to various downstream tasks, including classification. SAM
is highly effective due to its versatile architecture, zero-shot capability, flexible
prompting, and extensive training on over 1 billion segmentation masks. This
foundation model excels at generalization and has broad applicability across
various domains.

We propose an AF detection methodology by developing a novel 3D image
classification framework that leverages the power of rich pre-trained model repre-
sentations of SAM. This framework integrates it with a custom embedding layer
to classify the stroke etiology from the 3D DWI scans. Our key contributions
include:

– Early AF risk detection without additional procedures and using existing
clinical pathways can potentially improve patient outcomes. Our proposed
novel EDAF framework stratifies AF risks by utilizing only the DWI-MRI
brain images acquired during the acute phase of stroke.

– Developing a robust classification model requires significant model optimiza-
tion. Our novel approach using SAM [13] achieves high performance with
minimal training, making it particularly effective in low-resource clinical set-
tings.

– Unlike existing methods that rely on segmentation masks, we adapt SAM to
directly classify DWI brain scans, eliminating labor-intensive intermediate
steps.

– Although 3D models provide more detailed information, but they consume
higher memory and require longer training times, prohibiting in low-resource
clinical settings. Our approach utilizes 3D to 2D projections, maintaining
high performance while minimizing computational complexity.

– Model robustness is crucial in clinical applications. Our proposed EDAF
framework achieves enhanced generalizability compared to current models.
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2 Methodology

2.1 AF and Brain MRI

Short-term cardiac monitoring [24] often misses AF episodes due to limited dura-
tion, asymptomatic nature, and infrequent episodes. Longer-term tracking, such
as 72-hour ECG or continuous ECG monitoring, significantly increases AF de-
tection rates but faces challenges in patient compliance and resource limitations.
On the other hand, an MRI is readily available in stroke centers and routinely
performed on many patients after a stroke, either during their admission or as
an outpatient. Therefore, an automated MRI-based risk stratification framework
can play a critical role in the early identification of AF patients who are more
likely to benefit from prolonged cardiac monitoring. In this innovative approach,
a deep learning model analyzes the images after a patient undergoes a brain
MRI to estimate the likelihood of AF based on infarct patterns. This estimation
can be used as a risk stratification tool to identify high-risk patients who would
benefit from more extensive cardiac monitoring to diagnose AF definitively.

Figure 1 displays sample brain DW-MRI images, highlighting various in-
farct patterns, sizes, and locations in AF and large artery atherosclerosis (LAA)
categories. These variations present challenges in visually distinguishing the un-
derlying etiology based solely on the images. However, as mentioned previously,
clinical studies suggest that these infarct patterns broadly correlate with the
cause of stroke. Due to their ability to learn complex patterns and features, we
speculate that deep learning models can benefit from these subtle differences and
effectively leverage this information to differentiate between these mechanisms,
even though it is not visually apparent.

2.2 Dataset

This study was approved by the Royal Melbourne Hospital Ethics Committee
(QA 2013.072). The dataset consists of 235 brain DW-MRI images acquired ret-
rospectively from AIS patients. The images were acquired at admission during
the acute phase of the stroke. The imaging was performed using various scanners
from Siemens Aera, Siemens Prisma Fit, Siemens Skyra, Siemens Magnetom Es-
senza, and Philips Ingenia. The imaging parameters and protocols are illustrated
in Table 1, and sample images of the dataset are shown in Fig. 1.

Two expert neurologists employed the Causative Classification System (CCS)
to determine whether the underlying stroke etiology is AF [4]. This system pro-
vides a detailed classification to aid in targeted diagnosis and treatment by
identifying the underlying causes of strokes. It is based on a comprehensive as-
sessment of clinical features, imaging findings, and other diagnostic criteria to
categorize strokes into specific etiological groups. Based on information from var-
ious sources such as vascular imaging, cardiac evaluations, and clinical histories,
this system categorizes strokes into five main groups: large artery atherosclero-
sis (LAA), cardioembolism (CE), small artery occlusion (SAO), stroke of other
determined cause (OC), and stroke of undetermined cause (UND). We opt for
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Samples of the brain DW-MRI images from the dataset. The figure illustrates
an axial slice from the MRI scans for three AF patients (a-c) and three LAA patients
(d-f). Different infarct patterns, sizes, and locations can be seen within each category,
leading to challenges in visually differentiating the underlying etiology solely based
on the images. Due to the robust feature extraction capabilities of the deep learning
models, the proposed method aims to deploy these tools to identify the underlying AF
or LAA.

Table 1. Overview of dataset demographics and imaging parameters, including patient
characteristics, imaging protocols, and parameters

Number of patients 235
AF-related strokes 138

Female 83
Age (mean±std) 71.1 ± 14.2

Magnetic field strength 1.5 or 3 Tesla
Repetition time 4100-7920 ms

Echo time 55-104 ms
Flip angle 0-180 degrees
b-values 0 or 1,000 sec/mm2

Slice thickness 0.256-7.474 mm
Slice spacing 2-7.5 mm
Pixel spacing 0.548-2 mm
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the CCS system [4] over the Trial of Org 10172 in Acute Stroke Treatment
(TOAST) [1] and the ASCO (atherosclerosis, small-vessel disease, cardiac source,
and other cause) [2] systems because CCS offers more precise categorization of
stroke causes, with more significant inter-category variability compared to intra-
category variability. CCS reassigns 20-40% of cases from the undetermined cat-
egory in other systems to specific subtypes, providing enhanced discrimination
for clinical, imaging, and prognostic characteristics. The unknown category is
markedly smaller in CCS (33%) compared to TOAST (53%) and ASCO (42%),
highlighting its superior accuracy in categorizing stroke etiologies [3].

Fig. 2. Heatmaps of the infarct regions in the axial plane for (a) LAA patients and
(b) AF patients across the dataset. These maps were generated from the ground-
truth segmentation masks. These ground-truth masks were not used in any steps of
developing EDAF. These heatmaps reveal notable similarities in spatial patterns across
both AF and LAA groups. Despite these common patterns, differences in intensity
highlight distinct variations in the distribution of infarct areas between the groups.

Based on CCS, all patients are assigned one of two labels: stroke due to AF
or stroke due to large artery atherosclerosis (LAA). For AF-related strokes, cases
are identified based on clinical reports or visual analysis from a 12-lead ECG,
excluding new AF diagnoses within 30 days after cardiac surgery and strokes
caused by other cardioembolic sources. For LAA-related strokes, cases involve
infarcts linked to significant parent artery stenosis, with other cardioembolic
sources reasonably excluded per CCS criteria.

Our current work focuses on LAA and AF, two of the most common stroke
subtypes, while excluding other stroke etiologies. These subtypes are particularly
significant in a clinical setting due to their higher rates of recurrence and sever-
ity [5,14]. Diagnosing LAA typically involves vascular imaging, whereas cardiac
evaluation is essential for identifying AF, contrasting with small artery occlu-
sion (SAO), which is often detectable with just brain MRI [4]. Moreover, targeted
preventive measures for high-risk etiologies such as LAA and AF generally yield
more significant risk reductions than those for lower-risk etiologies like SAO [3],
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highlighting their importance for early intervention. Furthermore, the ’other de-
termined cause’ category includes a variety of complex stroke mechanisms that
are difficult to categorize and thus excluded from our work.

Figure 2 shows heatmaps of the infarct regions in the axial plane for both
LAA and AF patients across the dataset. These heatmaps were generated from
ground-truth segmentation masks, which were not used in developing EDAF.
The heatmaps reveal notable similarities in spatial patterns across both AF and
LAA groups. Despite these common patterns, differences in intensity highlight
distinct variations in the distribution of infarct areas between the groups. These
variations can provide valuable insights for deep learning models to distinguish
between AF and LAA mechanisms.
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Fig. 3. Overview of the proposed classification network consisting of three components:
(1) an embedding layer that projects 3D images onto 2D surfaces, (2) a vision encoder
that extracts high-quality feature representations from projected 2D images, and (3)
a classification head producing a probabilistic outcome indicating the likelihood of
underlying AF presence. The customized patch embedding layer enables the processing
of 3D MRI volumes using SAM’s 2D vision encoder.

2.3 Network Architecture

Our proposed approach, a deep neural network method to process brain MRIs
to detect the presence of AF, is shown in Fig. 3. It consists of three primary
components: (1) an embedding layer that projects 3D images onto 2D surfaces,
(2) a vision encoder that extracts high-quality feature representations from pro-
jected 2D images, and (3) a classification head producing a probabilistic outcome
indicating the likelihood of underlying AF presence.

Embedding Layers. Embedding layers, originally introduced for natural lan-
guage processing (NLP) tasks, transform images or image patches into contin-
uous vectors, simplifying their complexity and effectively encoding the image
context for input representations. We investigated two approaches for the em-
bedding layer, focusing on 2D and 3D convolutions.

2D Embedding Layer: First, we use different 3D to 2D projection methods
to transform the 3D MRI images into 2D surfaces. Subsequently, the 2D
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embedding layer of SAM is used to generate embedded input to the vision
encoder. Several projection techniques, including maximum intensity projec-
tion, mean intensity projection, and sum intensity projection, are employed
to convert all the voxels along the depth of the image into a single pixel
within the 2D surface. By utilizing these projection techniques, the result-
ing images possess a depth and number of channels equal to one. We then
construct a 3-channel input for the embedding layer by either copying one
projection output to all three channels or using each one as a channel of the
input.

3D Embedding Layer: We use 3D convolution to convert the 2D embedding
layer in SAM to 3D space. We keep the default kernel size and stride in the
x and y directions and implement a kernel size and stride of 64 (the input
image depth) in the z-direction. The weights of the 2D embedding layer
from SAM are copied to the 3D convolutional layer across the depth. This
convolutional layer produces an embedding of the input image that can be
replicated into three channels for use as an input to the vision encoder.

Vision Encoder. Vision encoders play a crucial role in classification networks
by converting raw image data into feature maps, which is essential for deep
learning models to make accurate predictions. Vision Transformers (ViTs) [6]
have recently emerged as a popular choice for vision encoders in various computer
vision tasks. ViTs leverage the transformer architecture, initially designed for
natural language processing tasks. The embedding layer output is processed by
the transformer layers, where self-attention mechanisms allow the model to weigh
the importance of each image patch relative to the others. The output of these
transformer layers consists of rich feature embeddings. These embeddings are
subsequently reshaped and transformed into feature maps that can be utilized
for various downstream tasks, including image classification, by feeding them
into a final classification head.

ViTs offer several advantages for vision encoders in classification tasks. One of
the primary benefits is their ability to model global context by treating images as
sequences of patches, enabling them to capture long-range dependencies within
the data. This holistic understanding of the image content often improves per-
formance on complex vision tasks where global context is crucial. Additionally,
ViTs are highly scalable; their performance can be enhanced by increasing the
number of layers or the embedding dimensions, making them suitable for high-
resolution images and large datasets. Moreover, ViTs tend to generalize well
across different datasets and tasks, partly due to their capability to leverage
large-scale pre-training on diverse image collections. This robustness and versa-
tility make ViTs a powerful choice for vision encoders in modern deep-learning
applications.

Our study uses the MedSAM’s vision encoder [17] for feature extraction from
the input embeddings. MedSAM is a refined version of the base SAM with the
same architecture, optimized explicitly for medical image segmentation. Devel-
oped on a substantial dataset containing over 1.5 million image-mask pairs across
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various imaging modalities and pathological conditions, MedSAM demonstrates
superior performance in medical tasks. This makes it an excellent choice for our
brain MRI classification task, where accurately identifying infarct patterns is cru-
cial. To ensure the robustness of our methodology, we performed comparative
analyses using both SAM and MedSAM encoders. By benchmarking MedSAM
results against the SAM encoder, we could evaluate the effectiveness of our cho-
sen approach. We conducted experiments with different scales of SAM (base,
large, and huge) to determine the most effective configuration for our specific
application.

Classification Head. As shown in Fig. 3, the proposed classification head con-
sists of batch normalization, global average pooling (GAP), and a linear layer.
Batch normalization stabilizes and accelerates training by normalizing layer in-
puts. GAP reduces the spatial dimensions of the feature maps, summarizing them
into a fixed-size vector. The linear layer then computes class probabilities based
on this summarized representation. This structure ensures a focused evaluation
of the SAM encoder’s performance within the classification framework.

3 Experiments

For a thorough evaluation of our proposed model, we also used two of the fre-
quently used CNNs, ResNet-101 [8] and ConvNeXt [16], to perform 3D image
classification and compare them with our presented approach. Different depths
of ResNet were experimented with, and ResNet-101 attained the best results,
which are included here. Additionally, we employed pre-trained ResNet variants
on video datasets due to the lack of publicly available pre-trained 3D CNNs on
medical datasets. Transfer learning based on these models led to poor perfor-
mance compared to training from scratch; hence, the results are not included
here.

3.1 Implementation Details

For all experiments, the DWI images were preprocessed following the proce-
dure outlined in [17] and subsequently normalized to account for the variations
in imaging equipment. The intensities were clipped to be within the range of
0.95th and 99.5th percentiles, and then, using min-max normalization, they
were rescaled to [0,255]. For EDAF experiments, all samples were resized to
the shape of (64, 1024, 1024). The images were split into three channels, except
for the 3-channel projection, in which each channel was computed using a differ-
ent projection technique. Since this work aimed to evaluate SAM classification
performance without dependence on other factors, data augmentation was not
used in fine-tuning SAM. When training the CNNs, the images were resized to
(64, 256, 256) to reduce the computational complexity of these models and used
as 1-channel inputs. Data augmentation was applied while training the CNNs
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Table 2. Data augmentation details for 3D CNNs

Augmentation Parameters
Flip in all three directions -

Elastic deformations deformation_limits = (0, 0.5)

90 degrees rotation in the axial plane -
Gaussian noise var_limit = (0, 1)

Random crop shape = (55, 180, 180)

Random scale scale_limit = (0.7, 1.3)

from scratch to achieve results comparable to our proposed method. Table 2
shows the specifics of the augmentations applied to train these CNNs.

For all experiments, the dataset was split into training (70%, 97 AF, and 68
control), validation (10%, 14 AF, and 10 control), and testing (20%, 27 AF, and
19 control) set for evaluation of the proposed method. To ensure consistency of
the distribution of the classes in all subsets, stratified sampling was used for data
splitting. The initial EDAF experiments during the model development were
performed using the same seed for data splitting. After selecting the final EDAF
model, the same experiment with a consistent setup was repeated five times
using different seeds to ensure the reliability of the model’s performance. All the
CNN experiments were repeated five times using the same seeds as the EDAF
experiments. The models were implemented using PyTorch [20] and trained on
an NVIDIA A100 GPU using the stochastic gradient descent (SGD) optimizer
(learning rate for head = 0.1, learning rate for backbone = 0.01, decay rate
for step scheduler = 0.1, scheduler step size = 50). The learning rate for the
CNN experiments was set to 0.01 for both the backbone and the classification
head. The binary cross-entropy (BCE) loss function was selected for our binary
classification task. The maximum number of epochs was set to 300, and the
batch size to 4. Early stopping (based on the validation loss with a patience of
5 epochs), and L2 regularization (weight decay = 0.001) were implemented to
prevent overfitting. Later on, the final model was evaluated on the unseen test
set.

3.2 Evaluation

Comparative Evaluation. We compared our method of identifying AF from
brain MRI with similar studies. The comparison results are shown in Table 3. Our
strategy was most effective when we used the MedSAM as the encoder, updated
only the classification head weights in the network, and used the mean of the
intensity values along the depth for 3D to 2D projections. The Area Under the
Curve–Receiver Operating Curve (AUC-ROC) value is 83.08 ± 2.96, indicating
a powerful discriminating ability.

Our model outperforms [30] even though we used a smaller set of MRI images
with 235 samples compared to 489 and did not use radiomic features extracted
from segmentation masks. However, there is not enough information in [30] to
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compare our models regarding computational complexity. In [12], a segmenta-
tion model is utilized to enhance the performance of the classification network
using two distinct models. Their goal is to classify stroke subtypes, achieving an
accuracy of 81.9%, but their approach requires annotating the infarct regions
for ad hoc training. On the other hand, our proposed method uses only binary
class labels to train a single 2D classification model, demonstrating its efficiency
in terms of human labor and computational resources.

EDAF proves to be a superior choice for our brain MRI binary classification
task compared to the two CNNs trained from scratch. ResNet-101 [8] and Con-
vNeXt [16] required extensive data augmentation for generalizability and good
performance, but our presented approach outperformed them without additional
data augmentation. Its effectiveness is notably remarkable, requiring significantly
fewer epochs for fine-tuning (<20 across all experiments), while CNNs required
200-300 epochs to converge to optimal performance.

Moreover, leveraging the pre-trained model benefits from prior knowledge
and enhances performance even with limited data. Using MedSAM results in
a smaller variation in the AUC-ROC across different data splits compared to
CNNs, showcasing that the model’s performance is less dependent on data split-
ting or variations in the data. These factors collectively underscore EDAF’s
effectiveness and efficiency in tackling the challenges posed by medical image
analysis tasks like ours.

Table 3. Comparison with other methods. The experiments demonstrate the efficacy of
our methodology, surpassing previous research and 3D CNNs while being more efficient
to train.

Method Accuracy Precision Recall F1 score AUC-PR AUC-ROC

Kim et al. [12] 81.9 - - - - -

Zhang et al. [30] 70 63.8 92.5 75.5 - 79.9

ResNet-101 69.78 ± 6.22 78.28 ± 7.12 68.99 ± 6.17 72.90 ± 2.89 87.71 ± 2.48 79.31 ± 6.28

ConvNeXt 74.46 ± 8.18 83.64 ± 7.80 72.21 ± 8.03 77.07 ± 5.73 88.15 ± 2.03 80.54 ± 5.51

Ours 72.21 ± 7.93 71.90 ± 10.90 95.91 ± 4.27 81.67 ± 6.82 92.56 ± 2.58 83.08 ± 2.96

Fine-Tuning SAM Variants. We investigated four variations of SAM with
available pre-trained weights. This includes three different sizes of the original
SAM and a fine-tuned version of SAM on medical images (MedSAM) [17]. We
evaluated different knowledge transfer methods to our target domain and incor-
porated five strategies. These approaches were evaluated for all four variants of
SAM mentioned above. Only the following modules were updated during train-
ing in these five strategies, and the rest of the model’s parameters were frozen.
For example, only the classification head was updated in Strategy 1 (S1). Like-
wise, the other strategies include S2 (classification head and embedding layer),

1979



12 M. Shokri et al.

S3 (classification head and vision encoder), S4 (classification head and vision
neck), and S5 (classification head, embedding layer, and vision encoder). For
these experiments, the 3D embedding layer was used.

The results of these tests are shown in Fig. 4. The MedSAM, huge SAM, and
large SAM achieve the highest AUC-ROC (82.03) following different strategies,
whereas MedSAM has the same size as base SAM. Furthermore, the results
from different tuning strategies indicate that updating the encoder in parts or
its entirety leads to inferior results compared to using a frozen one. Generally,
updating the embedding layer improves the classification performance.

1

Base SAM Large SAM Huge SAM MedSAM

78

79
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81

82
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S1
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S3
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Fig. 4. Results of five fine-tuning strategies (S1-S5) for the four variants of SAM. In
each strategy, only the following modules were updated during the training: S1 (classi-
fication head), S2 (classification head and embedding layer), S3 (classification head and
vision encoder), S4 (classification head and vision neck), and S5 (classification head,
embedding layer, and vision encoder). The best-performing models achieved AUC-ROC
of 82.03% by updating the classification head and embedding layer for (1) MedSAM
and (2) large SAM and updating the classification head for (3) huge SAM.

Embedding Layer. We explored different approaches for integrating the 3D
input into an acceptable input for SAM. As discussed in the methodology (Sec-
tion 2), we used 2D and 3D embedding techniques for our experiments. The
MedSAM encoder served as the foundation for these experiments, and only the
parameters of the classification head were updated during training. As shown in
Table 4, using SAM’s default embedding layer along with sum (82.03%) or mean
(83.59%) intensity projection approaches achieves better results than using a 3D
embedding layer (81.25%) in AF identification. These static approaches proved
effective in our application, reaching the highest performance without requiring
any changes to the architecture.
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In contrast to prior studies such as M2Net [31] that have shown poorer perfor-
mance with projections compared to methods using interpolated 3D approaches
like MMMNA-Net [25], our approach demonstrates improved results due to the
unique characteristics of infarct regions in DW-MRI images. In stroke etiologic
classification, the decision-making process for the underlying cause is associated
with the infarct regions in the brain, which typically exhibit hyperintensity, and
projections like mean or sum effectively preserve essential information from these
regions. Whether this approach applies to other tasks or modalities should be
investigated.

Table 4. Comparing different embedding methods using frozen MedSAM’s encoder
and updating the classification head: employing SAM’s default 2D embedding layer
along with sum or mean projection outperforms custom 3D embedding layer. However,
all three approaches perform better than 3D CNNs and previous works in the literature.

Embedding method Accuracy Precision Recall F1 score AUC-PR AUC-ROC
3D embedding 66.66 68.18 93.75 78.94 92.23 81.25

Sum projection 66.66 66.66 100 80 92.76 82.03
Mean projection 66.66 66.66 100 80 93.37 83.59
Max projection 75 72.72 100 84.21 90.13 76.56

3-Channel projection 62.5 68.42 81.25 74.28 88.44 72.65

3.3 Discussion

Due to several key advantages, SAM and its variants were chosen as the encoder
for the classification task. SAM was trained on the largest segmentation dataset
to date, comprising over 1 billion masks on 11 million images. SAM’s training on
this large dataset enhances its robustness and generalization capabilities. It gen-
eralizes well across diverse visual data, from underwater to microscopy images,
which is crucial for applications involving varied data distributions. As a foun-
dation model, SAM is adaptable to a wide range of downstream tasks, extending
its utility beyond segmentation. Its strong zero-shot transfer capabilities across
multiple tasks, such as edge detection and object proposal generation, high-
light its potential effectiveness in classification without extensive task-specific
training. Besides these capabilities of SAM, MedSAM has been specifically op-
timized for medical images using a comprehensive dataset of over 1.5 million
images, enhancing its suitability for our task. These inherent strengths of SAM
and MedSAM make them compelling choices for classifying brain MRI images.
We utilized the rich semantic information from pre-trained SAM and MedSAM
models to propose a novel computationally efficient 3D medical image classifi-
cation pipeline. Our model outperforms existing works in the literature, even
with small-scale datasets and without using segmentation masks. Furthermore,
we have shown that a large segmentation model (such as SAM) can be used
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to develop a classification model that is computationally efficient for learning
environments with limited resources.

We acknowledge that focusing on LAA and AF limits our study to specific
stroke subtypes. Nevertheless, this study marks the first effort to create a fully
automated deep classification framework for early identification of AF as the
stroke etiology from brain MRI scans. We ensure a solid foundation with re-
liable ground truth data by beginning with these categories, which offer clear
clinical and imaging markers. This approach allows us to develop robust diagnos-
tic models within a manageable scope and, later on, expand our methodology to
include other stroke mechanisms to enhance the framework’s clinical relevance
and utility.

Additionally, this study did not include clinical variables commonly used for
AF risk assessment in patients. In the future, we will develop a multi-modal
framework to aggregate the imaging and clinical information to create a per-
sonalized AF risk assessment pipeline. Moreover, DWI, apparent diffusion co-
efficient (ADC) maps, fluid-attenuated inversion recovery (FLAIR), and often
perfusion imaging are commonly integrated into clinical practices for stroke eval-
uation. This study uses only DWI images due to the unavailability of ADC maps
and other imaging modalities. Future research can incorporate them to enhance
stroke etiologic classification and identification of AF-related strokes.

4 Conclusion

Atrial Fibrillation (AF) is a common cause of ischemic stroke. Having AF can
increase the risk of stroke by up to five times and the risk of recurrent stroke
by 2.1 times. Therefore, identifying AF in the early stages of a stroke is crucial
for establishing preventive strategies and optimizing treatment approaches. We
presented the EDAF framework, which is a non-invasive, cost-effective screening
tool and demonstrated the potential of utilizing post-stroke DWI-MRI images for
early detection of underlying AF. The proposed deep learning method effectively
harnessed the power of a foundational model trained on millions of samples,
demonstrating an efficient pipeline for adapting it to analyze brain MRI.

It should be noted that the purpose of this model is to prioritize patients
based on their AF risk. This model does not replace the current methods of
AF detection, nor is it a tool for conclusive AF diagnosis. Patients with higher
AF risk should undergo extensive cardiac monitoring to diagnose AF and start
anticoagulation if clinicians deem it necessary. External validation is critical to
assess the generalizability and reliability of the proposed method’s performance
across diverse datasets and clinical settings.
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