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Abstract. Achieving alignment between vision and language semantics
poses a critical challenge. Prior works have sought to enhance alignment
by incorporating additional supervision, such as tags or object bound-
ing boxes, as anchors between modalities. However, these methods pre-
dominantly concentrate on aligning tangible entities, disregarding other
crucial abstract concepts that elude perception, such as side by side. To
overcome this limitation, we propose a novel approach to Capture various
Concepts through data Comparison (C3) for learning cross-modal rep-
resentations. Specifically, we devise a data mining procedure to uncover
intrinsic information within the database, avoiding the need for external
annotations. Furthermore, we distinctly frame model inputs as triplets to
better elucidate abstract semantics in images. Building upon this formu-
lation, we propose two concept-centric pre-training objectives to signify
concept learning. Extensive experiments show that models trained within
the C3 framework consistently achieve significant enhancements across a
wide range of comprehension and reasoning benchmarks, whether start-
ing from scratch or fine-tuning from an existing model.

Keywords: Vision-and-Language Learning · Concept Learning · Infor-
mation Mining

1 Introduction

Semantic alignment between the domains of vision and language emerges as a
crucial concern for various vision-language (VL) tasks. Consequently, numer-
ous pre-training objectives have been meticulously designed to investigate the
pairing relations between images and texts using large-scale datasets [29,54,58].
However, the information in the two modalities is often inequivalent for most
existing datasets. In other words, textual descriptions often fall short of provid-
ing a comprehensive account of each image [56]. Such a weakly-aligned relation
hinders the e!ective learning of cross-modal representations. Meanwhile, fine-
grained alignments across modalities cannot be naturally achieved due to the
lack of explicit annotations between entities and regions.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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2 YZ Song et al.

Fig. 1: Examples of concepts mined from the database [4]. The concepts could be
abstract and shared across di!erent scenes and subjects. The semantics of the concepts
become clear when comparing multiple images carrying the same concept.

To alleviate this problem, prior works have sought to leverage additional su-
pervision to bridge the gap between images and texts. For example, pre-trained
object detectors are widely adopted. The detectors can be used to extract region-
based features as visual inputs [21, 30, 46, 53, 63], provide detected tags as addi-
tional inputs to enhance alignments [32,61], or create learning targets for knowl-
edge distillations [36]. In addition to object detectors, other works attempt to
obtain visual attributes in linguistic form through entity prompter [28] or noun
phrases of captions [10]. However, prior e!orts leveraging additional supervision
still have limitations. Notably, these approaches focus on aligning data with con-
crete entities such as objects, regions, or attributes, which lack clear indications
for aligning complex concepts that are challenging to precisely depict in the
visual domain, such as “side by side” or “upside down” as shown in Fig. 1.

Another line of research, instead of relying on additional supervision, fo-
cuses on enhancing alignments through modifications to pre-training objectives
or architectures [10,18,25,29,53,55]. For instance, ALBEF [29] adopts an inter-
mediate image-text contrastive loss to align the image and text features before
performing cross-modal interactions in later layers. In addition to cross-modal
alignments, TCL [56] further applies contrastive learning for intra-modal align-
ment by image or text augmentation. Nevertheless, most VL pretrained models
still su!er from two issues. First, the supervision for alignments is limited in
terms of diversity and quantity, often relying on the use of external models or
predefined categories. Second, there is a lack of clear indications for learning
concepts with abstract semantics, a critical requirement for tasks that demand
comprehension and reasoning.

To tackle these challenges, we present a novel approach called Capture Con-

cept through Comparison (C3). The term “concept”, rooted in psychology,
is defined as “the label of a set of things that have something in common” [1].
Inspired by the definition, we posit that a concept shall become more evident
as more examples are provided. Therefore, the core idea of C3 is to leverage
the data comparison to achieve concept-level alignments, thereby enhancing the
comprehension of abstract semantics. To this end, we first propose a mining pro-
cedure to discover the concepts that are intrinsically shared among the database.
Specifically, given an image-text pair, we extract text fragments and compare
them with other texts in the training data. A fragment is identified as a concept
if the same fragment appears in other texts. As such, this mining approach en-
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Capture Concept through Comparison 3

ables us to discover a broader spectrum of concepts without being constrained
by external detectors or linguistic grammar.

Equipped with the mined concepts, the next challenge is to harness them
for enhancing cross-modal alignment. An intuitive approach is to employ the
concepts directly as language input and adhere to the conventional VL pre-
training pipeline. However, we have discovered that employing an image-image-
text triplet, i.e., two images with a concept text, can further assist models in
discerning the abstract concept intertwined within images. Such a triplet for-
mulation enables our model to learn a concept by pinpointing the “intersection”
between two images, thereby streamlining the information to be focused in the
visual domain and refining the alignment of concepts. With this input formula-
tion, we design two concept-centric learning objectives, Matched Concept Predic-
tion (MCP) and Matched Concept Contrastive (MCC), to enhance alignments
for both cross- and uni-modal representations. These objectives o!er a direct
learning mechanism for the mined concepts.

Finally, we assess our method under two configurations: continual pre-training
and pre-training from scratch. Experimental results demonstrate that our ap-
proach can e!ectively leverage existing models without full re-training and sig-
nificantly improve general VL behavioral testing. Furthermore, the experiments
of pre-training from scratch highlight the benefits of concept-centric learning on
various downstream tasks. Our main contributions can be summarized as fol-
lows: (i) We propose a novel mining procedure to discover the concepts intrinsic
to the database, which is general and could potentially be leveraged in other
studies as the immediate supervision for fine-grained alignments; (ii) We re-
formulate image-text learning scheme by considering image-image-text triplets,
which facilitates models to identify and learn the abstract semantics in both
modalities; (iii) We design two novel concept-centric objectives, i.e., Matched
Concept Prediction (MCP) and Matched Concept Contrastive (MCC), to learn
the matching of triples for better concept-level alignment; (iv) Extensive exper-
iments and analysis demonstrate that the proposed concept-centric learning can
improve both model capacity and downstream task performances.

2 Related Work

Aligning vision and language representations is a critical challenge in VL pre-
training. Recent works have attempted to address this challenge by leveraging
additional supervision beyond traditional image-text pairs. For instance, [46]
uses Faster R-CNN to extract region of interest (RoI) features, while [32] intro-
duces object tags as the anchors for alignment. [61] improves on this approach by
enhancing the visual representations via better pre-training of object detectors.
Similarly, [53] incorporates object detection objectives [2] into a sequence-to-
sequence VL model, and [36] relies on external detectors for object knowledge
distillation. Other approaches include leveraging object detectors and phrase
generators to learn hierarchical alignment [33] and performing contrastive learn-
ing with patch features and bounding boxes [60]. Additionally, [12] proposes
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aligning vision and language at di!erent semantic levels, i.e., global image, local
region, and ROI features for vision; summarization, caption, and attributes for
language. [8] proposes to teach VL models structure concepts by manipulating
the text input based on pre-defined rules. [3] proposes leveraging synthetic data
to improve alignment.

Another research line focuses on aligning solely with image-text pairs through
modifications in objectives or architectures. [29] introduces an intermediate image-
text contrastive loss on unimodal features to facilitate subsequent cross-modal
alignments. Other approaches suggest additional pre-training objectives, includ-
ing word-region contrastive loss [19,57], pseudo-labeled keyword prediction [24],
weakly-supervised phrase grounding [34], token-wise maximum similarity [58],
and visual dictionary as pixel-level supervision [17]. [9] encodes features into a
shared coding space defined by a dictionary of cluster centers for alignment. [56]
introduces intra-modal contrastive objectives to complement the cross-modal
objectives. The integration of learning across vision, language, and multimodal
tasks has been studied in [45]. A two-stage pre-training strategy has also been
suggested in [6], involving initial coarse-grained training based on image-text
data, followed by fine-grained training on image-text-box data.

In summary, the aforementioned approaches, aimed at enhancing alignments
between vision and language, have showcased significant successes across a range
of downstream tasks. Nevertheless, challenges persist in learning intricate con-
cepts that resist easy specification through perceptual features. Although prior
research has utilized additional supervision with respect to tangible entities like
objects, regions, or attributes, these strategies are constrained when dealing with
more abstract concepts. To overcome these limitations, we propose a framework
that mines hidden concepts in the dataset and reformulates input based on the
philosophy of the mining procedures, thereby enabling more e!ective alignment
between vision and language.

3 Method

In this section, we propose a learning procedure for enhancing the fundamental
abilities of the VL models, which can be e!ectively applied to both continual
pre-training and pre-training from scratch. First, Sec. 3.1 describes the model ar-
chitectures for better illustration. Sec. 3.2 and Sec. 3.3 introduce concept mining
strategy and concept-centric objectives.

3.1 Overall Framework

Fig. 2 depicts an overview of C3, which comprises a text encoder Et, an image
encoder Ev, and a cross-modal encoder Ecross as contemporary vision-language
models [25, 29, 61]. We adopt such a succinct architecture and focus on study-
ing the proposed concept-centric pre-training. A text T is tokenized into a se-
quence of subwords [t1, t2, ...], and two special tokens tcls and tsep are respec-
tively prepended and appended to the sequence. The sequence is then passed
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Capture Concept through Comparison 5

Fig. 2: The proposed concept mining procedure (left) and concept-centric pre-training
architecture and objectives (right). As shown on the left side, we use the n-grams from
the text as the queries to retrieve images also containing the n-grams in their texts.
With the mined n-gram concepts, the inputs are formulated as triplets for pre-training,
shown on the right side.
through Et to obtain the unimodal features. An image I is first divided into
several patches and processed by a convolutional layer to extract patch features
[v1, v2, ...]. These patch features are then flattened and fed into the Ev for fur-
ther feature extraction. We also add a learnable vector vcls to aggregate global
information for the vision modality. For fusing the features from unimodal en-
coders, we apply co-attention modules [7] as cross-modal encoders Ecross for
both vision and language. Finally, for an image-text pair, the vision-language
joint representation z is obtained as follows:

Ht = [ht
cls, h

t
1, ...] = Et([tcls, t1, ...]), Hv = [hv

cls, h
v
1, ...] = Ev([vcls, v1, ...]),

Z = [ztcls, z
t
1, ..., z

v
cls, z

v
1 , ...] = Ecross([Ht, Hv]), z = [ztcls, z

v
cls].

(1)

We pre-train C3 from scratch with the proposed concept-centric objectives
(Section 3.3), i.e., Matched Concept Prediction (MCP) or Matched Concept
Contrastive (MCC), and the widely-used pair-centric objectives, Image Text
Matching (ITM) and Masked Language Modeling (MLM). For the continual
pre-training, we insert trainable low-rank residual adapters (LoRA [16]) into
existing models and learn with the MCC objective to enhance the capacity.

3.2 Concept-centric Learning Formulation

Mutual Information Maximization. Existing works [5, 7, 25, 29, 32, 46, 61]
commonly adopt the combinations of Masked Language Modeling (MLM), Masked
Vision Modeling (MVM), and Image-Text Matching/Contrastive (ITM/ITC) for
VL pre-training. Previous works [29, 47] have shown that many existing objec-
tives can be interpreted as the maximization of the mutual information (MI)
between di!erent views of an image-text pair. For example, ITC treats the im-
age and text as two di!erent views; MLM treats the masked tokens as one view
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and other tokens with the image as another view. In other words, these ap-
proaches aim to learn the multimodal representations invariant across di!erent
views for improving downstream tasks. It is noteworthy that the aforementioned
approaches maximize the MI for each image-text pair independently. Besides,
the views are considered either at the instance-level (ITC) or token-/patch-level
(MLM/MVM). However, we argue that models can be better learned by consid-
ering concepts that are cross-data and diverse in granularity. Therefore, instead
of considering only a single image-text pair, we construct a novel learning for-
mulation by centering a concept that is built from multiple image-text pairs.

Specifically, we define two random variables c1 and c2 as two di!erent views
of a concept, where the views correlate to a concept text and multiple images.
We could maximize a lower bound on MI(c1, c2) by minimizing the InfoNCE
loss [29,38] defined as follows.

LNCE = →Ep(c1,c2) log
exp(f(c1, c2))∑

c→2→B exp(f(c1, c↑2))
, (2)

where f(·) is a scoring function and B is a batch containing one positive sam-
ple with other negative samples. To realize this learning framework, we next
elaborate on the proposed methods for mining concepts in the database.

Algorithm 1: Concept Mining
Data: Image-text database

D = {(Ii, Ti)}
ND
i=1 .

Result: Concept database

Dc = {(Ii, Ii, Ci)}
ND
i=1 .

for (Ii, Ti) → D do
Initial Ci and Ii as empty sets;

k = 0;
Obtain n-grams G from Ti for

n → [N, ..., 1];
for G → G do

Random sample a subset Ds

from D;

Initial Ik as empty sets;

for (Ij , Tj) → Ds do
if G → Tj and |Ik| ↓ K1

then
Assign G to Ck; Add

Ij to Ik;

end
if Ik is not empty and
|Ii| ↓ K2 then

Add Ck to Ci; Add Ik to

Ii; k += 1;
end

end

Concept Mining. Drawing inspi-
ration from the field of psychology,
which defines a concept “as the la-
bel of a set of things that have some-
thing in common” [1], we propose to
mine the concepts by exploring the
commonality between pairs of data.
Our approach is based on the iden-
tification of overlapping n-grams [20,
50] between pairs of data, specifi-
cally image-text pairs in a database
D = {(Ii, Ti = {ti1, ti2, ...})}ND

i=1. In
each iteration i, we extract all n-
grams in the associated text Ti as
{(ti1, ..., tin), (ti2, ..., tin+1), ...}. Next,
we treat each n-gram as a query to
retrieve images carrying the same n-
gram in their texts. If there is any
matching, the n-gram is defined as a
concept shared across these data. We
retrieve at most K1 pairs for a con-
cept and early terminate the current
iteration if K2 pairs are obtained for
Ti. To allow for concepts of varying granularity, we consider di!erent n ↑ [1, N ]
and mine the concepts with a descending order of n since the longer concept
covers the shorter one. In the end, each image may involve multiple concepts,
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Capture Concept through Comparison 7

and each concept correlates to multiple di!erent images. Let Ci and Iik = {Iikj}
respectively denote the matched concept set for i-th sample and the matched
image set of k-th concept Cik. Accordingly, the concept database is constructed
as follows:

Dc = {{(Ii, Iik, Cik)}|Ci|
k=1}

ND
i=1. (3)

The mining procedure is further presented in Algorithm 1.

3.3 Concept-centric Pre-training

Based on the concept database, we propose to maximize the mutual information
across an n-gram concept and two corresponding images. The input formulation
is therefore transformed from pair-based (i.e., image-text) to triplet-based (i.e.,
image-image-text). In the following, we present two concept-centric objectives
to explore this formulation.
Matched Concept Prediction (MCP). Di!erent from prior works, MCP
takes a concept text and a pair of images as the input. This objective aims to
predict whether the concept C is shared between the two images (Ii, Ij), which
provides explicit supervision to learn the semantics of concepts across modalities.
An image could encapsulate numerous concepts in di!erent granularity, and the
contrasts of two images help capture and identify the specified concept more
e"ciently. For a triplet (Ii, Ij , C), we divide it into (Ii, C) and (Ij , C) to encode
them respectively. Let zcij denote the concatenation of joint representations from
(Ii, C) and (Ij , C). To obtain the negative examples for learning, we investigate
two strategies. The first one is to replace one of the images in a positive triplet
with a mismatched image I

↑
j , i.e., (Ii, I ↑j , C), while the other is to replace the

concept with another concept C
↑, i.e., (Ii, Ij , C ↑). As such, we could define the

objective as:

L̂MCP = →Ep(Ii,Ij ,C)[log
exp(ω↔

z
c
ij)∑

(I→
j ,C

→)→B exp(ω↔zc
→

ij→)
], (4)

where ω is a learnable matrix. However, since the objective utilizes multimodal
representations, it requires forwarding all triplets in a batch independently de-
spite some images or concepts being shared, making the optimization memory-
intensive in practice. Therefore, we adopt the local NCE [14,15] to approximate
the loss [26,35] as:

LMCP = →Ep(Ii,Ij ,C)[y
c
ij log εMCP(z

c
ij) + (1→ y

c
ij) log(1→ εMCP(z

c
ij))], (5)

where y
c
ij is the label and εMCP is a network producing a value as probabil-

ity. This formulation in another way leverages a binary classifier to distinguish
matched samples from the noisy ones.
Matched Concept Contrastive (MCC). Apart from utilizing cross-modal
representations for learning the alignment of concepts, we could extend such an
idea with the unimodal ones. Specifically, we use the outputs of the image and
text encoders to learn the matching of triplets before the cross-modal layers.
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8 YZ Song et al.

This strategy could be beneficial for the cooperated objectives to leverage the
aligned representation in an early stage. The objective is presented as:

LMCC = →Ep(Ii,Ij ,C)[log
exp(s(ω↔

c hi,ω
↔
c hj))∑

(I→
j ,C

→)→B exp(s(ω↔
c→hi,ω

↔
c→hj→))

], (6)

where s(·) is cosine similarity, hi = h
Ii
cls ,ωc = εMCC(hC

cls), and εMCC is an MLP-
based network. In this formulation, we use the concept to generate a projection
matrix ωc that transforms the two images into a space that is conditioned on
the concept.

4 Experiments

4.1 Experimental Settings

Datasets and Benchmarks. We conduct pre-training on four image-caption
datasets: COCO [4], Visual Genome (VG) [27], Conceptual Captions (CC) [43],
and SBU Captions [39].3 Our model evaluations encompass a range of vision-
language benchmarks, including vision-language behavior assessment (VL-
Checklist [62]), visual entailment (SNLI-VE [52]), natural language visual rea-
soning (NLVR2 [48]), and image-text retrieval (Flickr30k [40]).
Training Configurations.

We evaluate our methods in two configurations: continual pre-training and
pre-training from scratch. In the case of continual pre-training, our goal is to
assess the advantages of applying concept-centric learning to existing models
without necessitating a full model re-training. Leveraging pre-trained knowledge
can prove both e!ective and cost-e"cient. Specifically, we select CLIP [41] as our
base model, which has undergone pre-training on 400 million image-text pairs
and has been applied to a wide range of tasks. In this context, we introduce
LoRA [16] to enhance the base model’s capacity while keeping all base model
parameters fixed, allowing only the parameters of LoRA to be trainable. For
the pre-training from scratch scenario, we follow the setup of METER [7], given
its relatively manageable pre-training scale, utilizing 4.0 million images and 5.1
million image-text pairs for pre-training.
Implementation Details. For continual pre-training, we initialize the model
with CLIP-ViT-B/32 or CLIP-ViT-B/16 and train it for 1 epoch using COCO,
VG, CC, and SBU, respectively. The trainable parameters constitute approx-
imately 1.2% of the entire model. The concept mining procedure is executed
within each dataset, considering n-grams with n ranging from 1 to 5 as concept
candidates. To ensure comprehensive coverage, we set the hyperparameters K1

and K2 to 5 and 80, respectively. When pre-training from scratch, our model
undergoes training for 50k steps on COCO, VG, CC, and SBU, which is half
the number of learning steps compared to our baseline METER [7] (pre-trained
3 Notably, VQAv2 [13] is omitted due to its lower abstractness relative to other bench-

marks, diverging from our paper’s primary focus.
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Capture Concept through Comparison 9

Table 1: Performance comparison on VL-Checklist [62]. C/V/O/S refers to the
CC/VG/COCO/SBU dataset. The arrow → indicates the performance change from
models w/o C3 to models w/ C3. For CLIP architecture, the model w/o C3 is an
ablation of MCC.

Base Model Dataset
VL-Checklist

Attribute Object Relation Average ω

Continual Pre-training

CLIP-ViT-B/32

- 69.09 81.94 63.30 71.44 -

S 69.09 → 70.87 81.24 → 81.99 60.62 → 63.68 70.32 → 72.18 -1.12 → 0.74

C 68.63 → 71.18 80.32 → 82.04 53.75 → 55.72 67.57 → 69.65 -3.87 → -1.79

V 71.59 → 72.31 87.28 → 87.16 62.86 → 64.77 73.91 → 74.75 2.47 → 3.31

O 71.43 → 75.26 85.38 → 87.36 57.66 → 61.11 71.49 → 74.58 0.05 → 3.14

CLIP-ViT-B/16

- 70.37 82.94 61.98 71.76 -

S 70.68 → 71.13 82.85 → 83.40 61.52 → 62.64 71.68 → 72.39 -0.08 → 0.63

C 69.66 → 70.18 81.54 → 87.56 55.86 → 62.86 69.02 → 73.53 -2.74 → 1.77

V 68.40 → 69.98 87.34 → 87.75 60.80 → 62.98 72.18 → 73.57 0.42 → 1.81

O 71.30 → 75.87 86.94 → 88.48 53.98 → 61.75 70.74 → 75.37 -1.02 → 3.61

Pre-training from Scratch

METER C+V+O+S 81.65 → 84.28 84.72 → 89.04 71.94 → 73.90 79.44 → 82.41 2.97

with 100k steps). For ablation and analysis purposes, we train the models from
scratch for 2.6k steps on COCO, enabling extensive experimentation. All images
are resized to 224↓224 through center-cropping during the pre-training process.

4.2 Vision-Language Behavioral Testing

We first assess the fundamental vision-language capability of C3 from di!erent
angles with the VL-Checklist benchmark. The comparison with the base model
under di!erent configurations is shown in Table 1. The results reveal that directly
continuing the pre-training may deteriorate performance, while our methods can
significantly and consistently improve the VL capability across diverse aspects.
Notably, the enhancement in the object aspect is evident across various data
sources. This could result from the fact that most concepts would naturally in-
volve objects, contributing more to this aspect. Besides, the improvement in the
attribute aspect is particularly pronounced in COCO, signifying that COCO
includes more attributed-related descriptions, such as the size, color, and ma-
terial, which C3 can e!ectively identify and leverage. VG includes abundant
region descriptions, which enables C3 to grab the concept of objects and their
relations by comparing data even without using the structured annotations in
this dataset, which is hard to learn by image-caption pairs. The diverse charac-
teristics of data sources also underscore the idea that di!erent data sources may
cover di!erent concepts, which can be successfully exploited by C3 to enhance
the model’s overall capabilities. Importantly, our methods prove beneficial for
both continual pre-training and pre-training from scratch settings, highlighting
the generalizability of the proposed approach.
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Table 2: Performance comparison on SNLI-VE [52] and NLVR2 [48].

Model Images Iters Params
SNLI-VE NLVR

2

dev test dev test

ALBEF(14M) [29] 14M 420M 500M 80.80 80.91 82.55 83.14

SimVLMHUGE [51] 1.8B 4.1B 632M 86.21 86.32 84.53 85.15

BEIT-3 [49] 36M 6.1B 1.9B - - 91.51 92.58

PixelBERT [18] 207K 8.3M 170M - - 76.5 77.2

Visual Parsing [54] 221K 8.8M 308M - - 77.61 78.05

OSCARLARGE [32] 4M 512M 380M - - 79.12 80.37

ViLT [25] 4M 819M 114M - - 75.70 76.13

UNITERLARGE [5] 4M - 343M 79.39 79.38 79.12 79.98

VILLALARGE [11] 4M - 343M 80.18 80.02 79.76 81.47

UNIMOBASE [31] 5.7M 1.5B 165M 80.00 79.10 - -

VinVLBASE [61] 5.7M 1B 290M - - 82.05 83.08

CLIP-ViL [44] 4M 184M 330M 80.61 80.20 - -

ALBEF(4M) [29] 4M 154M 500M 80.14 80.30 80.24 80.50

METER [7] 4M 410M 384M 80.86 81.19 82.33 83.05

C3 (our) 4M 205M 384M 81.30 81.34 82.36 83.35

4.3 Vision-Language Reasoning

To compare with prior works, C3 uses the same framework as our primary base-
line model, METER. Given the resource-intensive nature of VL pre-training,
learning e"ciency is of utmost importance. Therefore, we compare C3 with mod-
els of similar data scales and learning steps. Our goal is to achieve state-of-the-art
performance with fewer training steps, as the model tends to improve with in-
creased data and learning steps [42]. As shown in Table 2, C3 attains superior
performance in NLVR2 and SNLI-VE, requiring fewer training iterations than
METER, and surpasses ALBEF. These results suggest that learning concepts
through image comparison can enhance a model’s inference capabilities.4

4.4 Ablation Study

Pre-training Objectives. We investigate diverse pre-training settings by re-
stricting the learning steps to 2.6k and using CLIP-ViT-224/32 as the vision
encoder. Table 3 demonstrates that incorporating MCP (row 4) enhances all
tasks compared to the METER baseline (row 1), particularly for image-text re-
trieval and the VL-Checklist, owing to the improved representations learned with
multi-grained concept alignment. Furthermore, our approach naturally meets the
requirements of NLVR2, where models must assess the accuracy of descriptions
between two images, bringing in additional benefits. Notably, the ablation study
demonstrates that ITM is critical for retrieval tasks and the VL-Checklist but
not for semantic inference tasks (row 3), while MLM greatly impacts the perfor-
mance of the reasoning task (row 2). Thus, each objective covers distinct aspects,
4 Additionally, we evaluate C3 on the zero-shot and fine-tuned image-text retrieval

tasks to assess cross-modal representation quality, as shown in the appendix.
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Capture Concept through Comparison 11

Table 3: Ablation study of C3. The first row is METER [7]. All models are trained for
2.6k steps on 224↑224 images with patch size 32. I /C refers to constructing negative
samples by misaligned images/concepts. PW refers to the pairwise formulation for the
MCP objective.

ITM MLM MCP
VL-Checklist Flickr30K-ZS NLVR

2
SNLI-VE

Att / Obj / Rel ω IR / TR ω dev / test ω dev / test ω

n-gram

↭ ↭ - 54.13 / 73.45 / 54.80 -6.2 55.82 / 62.17 -5.2 72.83 / 74.35 -1.2 76.98 / 77.31 -0.5

↭ - ↭ 62.57 / 77.70 / 53.20 -2.5 60.55 / 67.49 -0.1 69.47 / 71.47 -4.4 76.41 / 76.58 -1.1

- ↭ ↭ 50.70 / 46.77 / 45.38 -19.4 2.95 / 6.23 -59.6 73.79 / 74.78 -0.6 77.62 / 77.57 0.0

↭ ↭ ↭ 64.52 / 76.53 / 60.05 0.0 60.45 / 67.87 0.0 74.27 / 75.40 0.0 77.55 / 77.67 0.0

↭ ↭ I 61.21 / 76.98 / 57.86 -1.7 58.98 / 64.87 -2.2 74.01 / 74.49 -0.6 77.31 / 77.53 -0.2

↭ ↭ C 61.66 / 77.30 / 57.26 -1.6 60.07 / 66.20 -1.0 73.33 / 74.52 -0.9 77.47 / 77.66 0.0

↭ ↭ PW 61.44 / 77.48 / 58.23 -1.3 58.87 / 65.67 -1.9 73.91 / 74.90 -0.4 77.16 / 77.46 -0.1

noun phrase

↭ ↭ ↭ 62.03 / 77.22 / 53.74 -2.7 58.50 / 64.53 -2.6 73.97 / 75.25 -0.2 77.23 / 77.52 -0.2

and the best performance can be achieved by combining them.
Training Sample Formation. We investigate the impacts of two methods for
constructing negative samples of MCP (row 4 & row 5-6). We refer to the mis-
aligned image method as type-1-negative and the misaligned concept method
as type-2-negative. Results indicate that type-2-negative is relatively e!ective
since it is more challenging, forcing models to learn semantics without relying
on spurious clues. Comparatively, type-1-negative is formed by replacing the
matched image with a random one, where the image pairs mostly do not have
clearly shared concepts. Therefore, models might be able to make predictions
solely by comparing visual features. Nevertheless, the combination of both types
still yields the best performance. Furthermore, to understand the e!ectiveness
of the triplet input formulation, we compare it with pairwise input. By altering
the input from triplet to pairwise, the MCP objective aims to predict whether a
concept is present in an image. The results (row 7) show that triplet training still
outperforms pairwise training across all metrics. This is likely because an image
can contain multiple concepts, making direct alignment via pairwise training
ambiguous and ine"cient. In contrast, triplet training explicitly provides two
references for each mined concept, reducing the number of potential concepts
to be considered in the visual domain and enabling more precise alignment.
Additionally, pairwise training still improves upon the baseline model (row 1),
highlighting the e"cacy of learning with concepts.
Concept Mining Strategy. We propose extracting overlapped n-grams to form
concepts, which can identify a wider range of concepts compared to previous
works limited to specific scopes such as object tags [32] or verb-/adj-nouns [22].
To evaluate the benefits, we learn a baseline model on a restricted concept
database by performing the proposed mining procedure but only considering
noun phrases. As shown in the bottom row of Table 3, the results demonstrate
that our approach (row 4) outperforms the baseline across all tasks, indicating
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that the proposed mining procedure is critical and can serve as a general method
for exploring concepts in learning.

4.5 Analysis for Di!erent Semantic Complexity

Fig. 3: The performance of NLVR2 under varying
levels of semantic complexity.

The proposed C3 model
aligns concepts to enhance
inter-modality semantic rela-
tionships, thereby improving
its reasoning capabilities for
complex semantics. To val-
idate the claim, we analyze
the models’ performance
under various levels of se-
mantic complexity in the
challenging NLVR2 visual
reasoning task. We define
the semantic complexity of
data from three perspectives,
i.e., the constituency parsing
tree, character length, and
token length. The maximum
depth of the constituency
parsing tree is selected as the measure of semantic complexity since deeper
trees generally indicate more intricate text structures, while longer text or word
lengths suggest richer contexts. Fig. 3 consistently demonstrates that the C3
model’s performance is negatively correlated with semantic complexity across
all three definitions and experimental settings. Furthermore, our proposed
matched concept prediction shows to be particularly e!ective for challenging
instances, highlighting its practical value.

4.6 Visualization

To provide a clearer understanding, we visualize the attention maps from the
final attention layer of the cross-modal encoder. To gain insights into the mod-
els’ comprehension of challenging concepts, we randomly select concepts with
4- or 5-gram attributes from the validation dataset. Figure 4 displays these vi-
sualizations for both C3 and our baseline model, METER. Notably, the results
illustrate that C3 exhibits the ability to focus on specific regions in accordance
with the text fragments, while METER tends to distribute attention more evenly
across the entire space. This di!erence may stem from the distribution gap be-
tween concept texts and captions. Concept-specific learning helps models better
identify meaningful regions, improving their overall capacity.

Examples a & b, as well as examples c & d, demonstrate that C3 adapts
its attention to di!erent regions according to the input concepts. Furthermore,
C3 outperforms METER in appropriately attending to regions for ambiguous
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phrases, as exemplified in examples e, f, and g. These visualizations suggest that
C3 holds significant potential for tasks involving visual-linguistic grounding [23,
37, 59], opening up promising avenues for future research. Additional examples
can be found in the appendix.

Fig. 4: Visualization of attention maps for abstract concepts randomly selected from
examples containing 4- or 5-gram concepts, providing insight into the model’s under-
standing of abstract semantic relationships. Examples a & b and examples c & d show
that C3 can attend to di!erent regions depending on the input concepts. Examples e,
f, and g show that C3 can process ambiguous sentence fragments.

4.7 Examples of Concepts

In this section, we present the findings of our investigations into mined concepts
using the proposed n-gram strategy and the baseline noun-phrase strategy, which
are showcased in Table 4. Our analysis reveals that the n-gram approach provides
a higher degree of diversity in captured concepts as compared to the baseline
noun-phrase strategy. Specifically, in the first example (row 1), the n-gram ap-
proach identifies a wider range of concepts, including “to swing a baseball bat”
and “while standing on top of,” whereas the baseline strategy is more limited.
Similarly, in the second example (row 2), the n-gram approach identifies the con-
cept of “a grassy field,” not captured by the baseline approach. The greater diver-
sity of concepts captured through our n-gram approach enhances our model’s
ability to learn concept-level alignments without being confined to predefined
categories or part-of-speech. These examples underscore the potential of the n-
gram strategy as a powerful tool for mining concepts in the vision-language
domain.

5 Conclusion

This paper presents Capture Concepts through Comparison (C3), a novel frame-
work designed to enhance the core capabilities of vision-language (VL) models by
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Table 4: Concept examples from COCO [4]. An example includes five captions for
each image.

Image Captions Concepts by n-gram min-
ing

Concepts by noun phrase
mining

(1) An old picture of a base-

ball player holding a base-

ball bat. (2) A black and

white image depicting a man

preparing to swing a base-

ball bat. (3) A man holding

a bat while standing on top

of a field. (4) An old fash-

ioned picture shows a base-

ball batter in uniform. (5)A

black and white picture of a

baseball player.

black and white picture of,

a black and white picture,

old picture of a baseball, an

old fashioned picture shows,

a bat while standing on,

holding a bat while stand-

ing, a black and white im-

age, picture of a baseball

player, to swing a baseball

bat, baseball player holding

a baseball, player holding a

baseball bat, a man prepar-

ing to swing, man holding

a bat while, man preparing

to swing a, a man holding a

bat, while standing on top of

a black and white picture,

a black and white image, a

baseball bat, an old picture,

a bat

(1) In a grassy field is a

puppy and a cat who are

rubbing noses. (2) A small

puppy standing next to a

small kitten. (3) The puppy

and kitten are in a field

of grass. (4) A dog and a

cat that are standing in the

grass. (5) A kitten is touch-

ing noses with a puppy out-

side.

that are standing in the,

standing next to a small, are

standing in the grass, in a

grassy field, field is a, are in

a field of, in a field of grass,

a grassy field is, a small kit-

ten, a small puppy, a cat

that are, a dog and a cat,

and a cat that

a small kitten, a puppy, who,

the puppy, noses

strengthening the semantic alignment between the realms of vision and language.
To begin, we introduce a mining procedure aimed at uncovering latent concepts
within the database, all without the need for predefined scopes or external anno-
tations. Building upon these mined concepts, we put forth two innovative learn-
ing objectives tailored for di!erent architectural choices for the model, where in-
puts are formulated as triplets comprising a concept and images. These settings
align with the psychological insight that concepts are shaped by shared charac-
teristics. Finally, our comprehensive experiments conclusively demonstrate that
C3 e!ectively boosts model capacity for multi-modality and enhances perfor-
mance on downstream tasks, both in the context of continual pre-training and
pre-training from scratch. These findings underscore the e"cacy and versatility
of our concept-centric learning approach. Building upon this research, we plan
to extend our approach to more complicated foundation models and additional
modalities in future endeavors.
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