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Abstract. Most of the existing dictionary learning models are based
on linearly learned dictionaries, which have weak performance in non-
linear signal representation, thus driving a research boom in nonlinear
dictionary learning (NLDL). In this paper, we propose a deep nonlinear
dictionary learning model for dictionaries and coefficients with full-layer
sparse regularizations to access deep latent information. We apply ℓ1
regularization on the model to improve the efficiency of extracting key
features hierarchically. We investigated the proposed algorithm using the
Lifted Proximal Operator Machine (LPOM), by which a nonlinear model
is transformed into a linear convex optimization problem to be solved.
Then Nesterov’s acceleration is introduced to speed up the convergence,
called Accelerated DNLDL_ℓ1. We verify the feasibility of the proposed
algorithm through numerical and application experiments. The results
show that the acceleration scheme improves the convergence speed of the
algorithm, and the proposed method has excellent performance on image
classification and image denoising tasks.

Keywords: Deep nonlinear dictionary learning · Lifted Proximal Oper-
ator Machine · Nesterov’s acceleration.

1 Introduction

Sparse representation can map high-dimensional vectors to a specific set of basis
vectors, thereby achieving a sparse representation of signals. It has been widely
applied in signal processing, machine learning, and computer vision [8, 27, 28].
Dictionary learning (DL) involves learning an overcomplete dictionary from a
training dataset to represent input data succinctly [3, 13, 6].

For the design of dictionary learning algorithms, linear single-layer models
serve as the cornerstone, with most existing algorithms based on this frame-
work. However, single-layer DL models struggle to extract deep-seated infor-
mation from the data [5, 14], thus driving research into multi-layer dictionary
structures, i.e., deep dictionary learning (DDL) [17, 19]. Data is abundant and
complex in the real world, containing much nonlinear information. Linear dic-
tionary learning algorithms are limited to capturing only the linear structures
within the data and are thus ineffective at handling nonlinear information. To ad-
dress this issue, scholars have embarked on a research trend focusing on nonlinear
dictionary learning (NLDL) [22, 26]. The conventional method of handling is to
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2 Benying Tan et al.

use kernel techniques to map the nonlinear data to the high-dimensional space,
where these features are linearly differentiable, and then dictionary learning is
performed [10, 9]. However, the shortcoming of the kernel method is difficult to
extend and cannot be displayed to get the nonlinear mapping function [1, 24]. In
addition, another novel NLDL method can directly extract the hidden nonlinear
information, but this method only inverts the signal and transforms the nonlin-
ear problem into solving a linear task. Additionally, it only considers single-layer
nonlinear dictionary structures and ignores deep nonlinear features.

Therefore, to address the existing issues with nonlinear dictionary learning,
this paper proposes a novel deep nonlinear dictionary Learning (DNLDL) model,
which is capable of uncovering deep nonlinear information and effectively extract-
ing key features. Inspired by deep dictionary learning, we extend the single-layer
NLDL to multiple layers, exploring the depth representation of data by learning
multiple nonlinear dictionaries. To enhance the model’s feature extraction capa-
bility and achieve a sparse representation of the data, we imposed ℓ1 sparsity
constraints on the dictionaries and coefficients for each layer. To avoid directly in-
verting nonlinear functions in regularization optimization problems, we use the
lifted proximal operator machine (LPOM) to transform DNLDL into a linear
convex optimization problem. To speed up the convergence of the algorithm, we
introduce Nesterov’s acceleration technique and propose an accelerated version
called Accelerated DNLDL_ℓ1. We validate the feasibility of the proposed algo-
rithm and its applicability to mainstream nonlinear functions through numerical
simulations. The use of the acceleration scheme is demonstrated to speed up the
convergence of the algorithm significantly. Additionally, we explore the impact
of the ℓ1 constraint on the algorithm, and the results from real tasks such as
image classification and denoising demonstrate the effectiveness and superiority
of the proposed algorithm.

The contributions of this work are summarised as follows:

• In order to extract nonlinear features from data in a hierarchical manner,
we have developed a new model called deep nonlinear dictionary learning
(DNLDL). This model uses ℓ1 regularization on the coefficients and dictio-
naries of all layers to extract hidden nonlinear features in the data, which
we refer to as DNLDL_ℓ1.

• In addressing the challenge of nonconvex optimization in nonlinear models,
we employ the LPOM concept to convert it into a linear convex optimiza-
tion problem. Additionally, we integrate Nesterov’s acceleration technique to
attain an accelerated version.

• To validate the effectiveness of the proposed approach, numerical and ap-
plication experiments were conducted, demonstrating its broad applicability
and superiority in tasks such as image classification and denoising.

We standardize the notation in this paper: bold uppercase letters (e.g., A)
denote matrices, bold lowercase letters (e.g., a) denote vectors, and regular low-
ercase letters (e.g., a) denote scalars.
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2 Related work

Dictionary learning (DL) aims to find the optimal dictionary A ∈ Rn×o

and coefficient Z ∈ Ro×l whose linear combination can sparsely represent the
signal S ∈ Rn×l [18, 7]. We denote the dictionary as A = [a1,a2, · · · ,ao], where
vector aj(1≤j≤o) is the dictionary atom of size n. The sparse coefficient matrix
is Z = [z1, z2, · · · , zo]T , and l is the number of training data samples. In
the sparse coding task, S is the data consisting of o samples, which can be
approximated as S ≈ AZ. Dictionary learning is defined as:

min
A,Z

∥S −AZ∥2F + λSp(Z), (1)

where the Sp(Z) is the sparse penalty, and λ is the regularisation factor to
balance the relationship between the error and the sparsity penalty. To prevent
an imbalance in the ratio of A and Z due to an arbitrarily large dictionary, it
is usually necessary to normalize the A with constraint {∥aj∥2 ≤ 1}oj=1. The
traditional DL approach lays the cornerstone of the study, and Sp(Z) = ∥Z∥1
is usually chosen as the sparse constraint [20, 25].

Deep dictionary learning (DDL) differs from single-layer DL in that it
captures a deep representation of the data by learning multiple dictionaries of
sparse coefficients. It is worth noting that at the outermost layer, the dictio-
nary remains a linear structure, where the nonlinear functions are used to avoid
collapsing the dimension into a matrix. Its structure is described as:

min
Ai,Z

∥S −A1ρ(A2...ρ(AlZ))∥2F + λSp(Z), (2)

where A1, . . . ,Al are different layers of dictionaries, and ρ is a nonlinear function.
Nonlinear dictionary learning (NLDL) method learns the nonlinear in-

formation in the data, it maps the product of the dictionary and coefficient
through a nonlinear function ρ. The model is constructed as follows:

min
A,Z

∥S − ρ(AZ)∥2F + λSp(Z), s.t. ∥aj∥2 = 1, 1 ≤ j ≤ n. (3)

Based on the objective function Eq. (3), Chen et al. proposed NL-MOD
and NL-KSVD algorithms [4] based on ℓ0 norm. Lin et al. proposed NLDL using
MCP and GMC regularisation and optimized with a difference of convex function
(DC) programming [16].

Inspired by the DDL model, this work attempts to expand the single-layer
NLDL framework into a multi-layer structure to obtain deeply hierarchical non-
linear features of the data, and introduces ℓ1 norms to the proposed framework
to further extract the key features.

3 Formulation

We propose a novel deep nonlinear dictionary learning model that achieves a
sparse approximation of the dictionaries and coefficients at each layer and then
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solves the problem by transforming it into a series of LPOM-based convex sub-
problems, where we avoid the optimization challenges associated with inverse
functions. While nonlinear dictionary learning and fully connected neural net-
works are distinct concepts, in this paper, our proposed deep nonlinear dictionary
learning can be viewed as a special case of deep neural networks. We add coef-
ficient constraints at each layer to motivate capturing the essential features of
the original signal, resulting in a compact and informative representation.

3.1 Formulation of DNLDL model

For our proposed DNLDL model, data is decomposed into multiple layers of
features, where deeper coefficients are learned from the nonlinear mappings of
several atoms from the previous layers. We consider each layer of the model as
an auxiliary variable block, and the constrained problem proposed is formulated
as follows:

min
Ai,Zi

∥S − ρ(An . . . ρ(A2ρ(A1Z1)))∥2F , s.t.

{
∥Ai∥1 ≤ ε, i = 1, . . . , n

∥Zi∥1 ≤ ε, i = 2, . . . , n+ 1,
(4)

where Ai and Zi represent the i-th layer dictionary and coefficient, ρ is a non-
decreasing nonlinear function. In the middle layer, we define Z2 = ρ(A1Z1),Z3 =
ρ(A2Z2), . . . ,Zi+1 = ρ(AiZi). The nonlinear mapping of the product of the last
layer dictionary An and coefficients Zn serves as an approximation to the signal
S, i.e. S = ρ((AnZn)). ∥Zi∥1 and ∥Ai∥1 denote the ℓ1 norm regularization ap-
plied to the coefficients and dictionary, respectively. We then impose coefficient
constraints on the dictionaries and coefficients of each layer, and we obtain a
deep nonlinear dictionary learning model with all ℓ1 regularization layers.

Introduction of the LPOM Lifted proximal operator machine (LPOM) [12]
converts a nonlinear function ρ into an equivalent proximal operator and adds
it as a penalty to the objective function, thus converting nonlinear constrained
optimization into a convex minimization problem.

We start by solving a relatively simple single constraint problem consisting
of scalars r, t:

min
r,t

s(r), s.t. r = ρ(t). (5)

LPOM introduces a function h(r, t), the optimal solution of which satisfies
the constraints outlined in Eq. (5), i.e., r = ρ(t) = argminr h(r, t), Therefore,
the constraints on a single variable are relaxed to

min
r,t

s(r) + θh(r, t). (6)

In addition, the approximation operator is also a commonly used technique
in optimization algorithms. For Eq. (5), the expression can be expressed in terms
of the proximal operator as follows:

proxf (t) = argmin
r

f(r) +
1

2
(r − t)2. (7)
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Let f(r) =
∫ r

0
(ρ−1(t) − t)dv, thus implying the existence of a convex set

ρ−1(r) = {t|r = ρ(t)}. The optimality condition for Eq. (7) is 0 ∈ (ρ−1(r)− r)+
(r − t), its solution is precisely the constraint r = ρ(t). So we define h(r, t) =

f(r) + 1
2 (r − t)

2.

The DNLDL problem based on LPOM To solve the DNLDL problem in
this paper, we rewrite h(r, t) into the matrix form h(R, T ). The matrices R and
T are then replaced by Zi and Ai−1Zi−1 to obtain the corresponding matrix
expressions of the approximation operator:

argmin
Zi

h(Zi,Ai−1Zi−1) ≡ 1T f(Zi)1+
1

2
∥Zi −Ai−1Zi−1∥2F . (8)

Similarly, the optimality condition for Eq. (8) is 0 ∈ ρ−1(Zi)−Ai−1Zi−1 and
the corresponding optimal solution is Zi = ρ(Ai−1Zi−1), that is, the structural
constraint problem for multilayer dictionary learning in Eq. (4).

We relax the original problem with multiple constraints in Eq. (4), trans-
forming it into the following unconstrained problem:

min
Ai,Zi

1

2
∥S − ρ(AnZn)∥2F +

n∑
i=2

θi

(
1T f(Zi)1+

1

2
∥Zi −Ai−1Zi−1∥2F

)
+

n+1∑
i=2

λZ∥Zi∥1 +
n∑

i=1

λA∥Ai∥1.
(9)

However, unlike the independent single-variable constraints in Eq. (5), Eq.
(4) involves recursive constraints. In the i -th layer, Eq. (4) is required to si-
multaneously satisfy both Zi = ρ(Ai−1Zi−1) and Zi+1 = ρ(AiZi). From this,
we need to use both h(Zi,Ai−1Zi−1) and h(Zi+1,AiZi), it corresponds to the
optimality condition of the following expression:

min
Zi

θih(Zi,Ai−1Zi−1) + θi+1h(Zi+1,AiZi). (10)

For Zi, the optimality condition for the alternative form in Eq. (9) is 0 ∈
θi(ρ

−1(Zi) −Ai−1Zi−1) + θi+1(Ai)
T (AiZi − Zi+1), i = 2, . . . , n. However, its

drawback lies in the inability to simultaneously satisfy both constraints for
Zi = ρ(Ai−1Zi−1) and Zi+1 = ρ(AiZi). To address this issue, we modify
the optimization conditions as follows:

0 ∈ θi(ρ
−1(Zi)−Ai−1Zi−1) + θi+1(Ai)

T (ρ(AiZi)−Zi+1), i = 2, . . . , n. (11)

Simultaneously, similar to the function f(r), we construct g(r) =
∫ r

0
(ρ(t) −

t)dt to ensure the iterative update of sparse coefficients in multi-layer nonlinear
dictionary learning.

Finally, we employ LPOM to relax the constrained deep nonlinear dictio-
nary learning problem into a convex optimization problem. The unconstrained
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optimization expression for Eq. (4) as follows:

min
Ai,Zi

1

2
∥S − ρ(AnZn)∥2F +

n∑
i=2

θi

(
1T f(Zi)1+ 1T g(Ai−1Zi−1)1+

1

2
∥Zi −Ai−1Zi−1∥2F

)
+

n∑
i=1

λA∥Ai∥1 +
n+1∑
i=2

λZ∥Zi∥1,
(12)

where the first term is the approximation error, the second term is the internal
structure of the multilayer dictionary learning model, and the last two terms
are the ℓ1 regularization of the coefficients and dictionaries, respectively. θi is
the balancing factor for each layer, and λA and λZ correspond to the positive
regularization parameters of dictionaries and coefficients, respectively.

3.2 Optimization

Most dictionary learning models commonly use an alternating optimization scheme,
which comprises two steps: sparse coding and updating dictionaries. We update
the coefficients {Zi}n+1

i=2 and dictionaries {Ai}ni=1 separately, keeping the other
layer variables fixed when updating either Zi or Ai.

Updating coefficients {Zi}n+1
i=2 We fix the dictionary of the current layer

and all variables from other layers. Simplifying problem Eq. (12), we obtain:

min
Ai,Zi

n∑
i=2

{θi
(
1T f(Zi)1+1T g(Ai−1Zi−1)1+

1

2
∥Zi−Ai−1Zi−1∥2F

)
+λZ∥Zi∥1}.

(13)
For the update of Zi(i = 2, 3, . . . , n), Eq. (13) can be reformulated as the

following optimization subproblems:

min
Zi

θi

(
1T f(Zi)1+

1

2
∥Zi −Ai−1Zi−1∥2F

)
+θi+1

(
1T g(AiZi)1+

1

2
∥Zi+1 −AiZi∥2F

)
+ λZ∥Zi∥1,

(14)

the optimality condition for Eq. (14) is

0 ∈ θi(ρ
−1(Zi)−Ai−1Zi−1)+θi+1((Ai)

T (ρ(AiZi)−Zi+1))+λZsign(Zi). (15)

To avoid explicit use of ρ−1, based on the fixed-point principle, we derive the
following iterative expression:

Zi
k+1 = ρ

(
Ai−1Zi−1 −

θi+1

θi
((Ai)

T ρ(AiZi
k)−Zi+1)−

λZ

θi
sign(Zk

i )

)
. (16)

For the last layer Zn+1, has g(An+1Zn+1) = 0. Problem 12 is reduced to

min
Zn+1

1

2
∥S−Zn+1∥2F+θn+1

(
1T f(Zn+1)1+

1

2
∥Zn+1−AnZn∥2F )+λZ∥Zi∥1, (17)
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the optimality condition for Eq. (17) is

0 ∈ (Zn+1 − S) + θn+1(ρ
−1(Zn+1)−AnZn) + λZsign(Zn+1). (18)

Based on the fixed-point principle, the updating expression for Zn+1 at the k-th
iteration is obtained as:

Zk+1
n+1 = ρ

(
AnZn − 1

θn+1
(Zk

n+1 − S)− λZ

θn+1
sign(Zk

n+1)
)
. (19)

Updating dictionary {Ai}n
i=1 For {Ai}ni=1, keeping the sparse coefficients

within the same layer and other variables from different layers fixed. When i =
1, 2, . . . , n, we simplify Eq. (12) to

min
Ai

1T g(AiZi)1+
1

2
∥Zi+1 −AiZi∥2F + λA∥Ai∥1, (20)

and Eq. (20) can be rewritten as:

min
Ai

1T g̃(AiZi)1− ⟨Zi+1,AiZi⟩+ λA∥Ai∥1, (21)

where g̃(r) =
∫ r

0
ρ(t)dt, which is similar to g(r). Here, a variant of the Accelerated

Proximal Gradient (APG) method [12] is utilized to solve problem Eq. (21)
through local linearization ĝ(A) = g̃(AZ), simultaneously, the use of ρ−1 is
avoided, enhancing the efficiency of the algorithm. We transform Eq. (21) as
follows, see [12] for details:

Ai
k+1 = argmin

A
⟨ρ(T i

kZi), (A− T i
k)Zi⟩

+
β

2
∥(A− T i

k)Zi∥2F − ⟨Zi+1,AZi⟩+ λA∥Ai∥1,
(22)

where T i
k = ηkAi

k −
√
ηk(ηk−1Ai

k−1 −Ai
k), ηk can be calculated from 1 −

ηk =
√

ηk(1− ηk−1), and β denotes a Lipschitz constant.
Eq. (22) has a closed-form solution, and its least squares solution is given by:

Ai
k+1 = T i

k − 1

β

(
ρ(T i

kZi)−Zi+1 + λAsign(A
k
i )((Zi)

†)T
)
Z†

i . (23)

Here Z†
i denotes the pseudo-inverse of Zi.

3.3 Algorithms

The formulated objective function in Eq. (12) involves ℓ1 regularization on multi-
layer dictionaries and coefficients. In the structure of DNLDL, we globally update
the dictionary and coefficients alternately. Unlike other optimization methods,
we avoid explicitly using the inverse of a nonlinear function, which reduces the
restriction on its having invertibility. We summarize as Algorithm 1.
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Algorithm 1 Multilayer sparse regularised DNLDL (DNLDL_ℓ1)
Input: parameters β, λ, {θi}ni=1, iteration K;
1: Randomly initialize {Ai}ni=1, {Zi}n+1

i=2

2: for k = 1 to K do
3: Updating Zi

k from Eq. (16), i = 2, 3, . . . , n.
4: Updating Zn+1

k from Eq. (19).
5: Updating Ai

k from Eq. (23), i = 1, 2, . . . , n.
6: end for

Output: {Ai}ni=1, {Zi}n+1
i=2

Algorithm 2 Accelerated DNLDL_ℓ1

Input: parameters β, λ, {θi}ni=1, iteration K, µ1 = 1;
1: Randomly initialize {Ai}ni=1, {Zi}n+1

i=2

2: for k = 1 to K do

3: µk+1 =
1 +

√
(1 + 4(µk)2)

2
.

4: ω =
1− µk

µk+1
.

5: Updating Zi
k from Eq. (16), i = 2, 3, . . . , n.

6: Updating Zn+1
k from Eq. (19).

7: Updating Ai
k from Eq. (23).

8: Ak+1
i = (1− ω)Ak

i + ωAk−1
i , i = 1, 2, . . . , n.

9: end for
Output: {Ai}ni=1, {Zi}n+1

i=2

Furthermore, we aim to accelerate the convergence speed of the algorithm
by identifying an optimal computation point that expedites reaching the con-
vergence threshold. Nesterov’s acceleration technique [2, 21] involves, in each
iteration, determining the next optimal update point ξk+1 based on both the
current ξk and the previous values ξk−1, rather than solely relying on the cur-
rent suboptimal update point:

ξk+1 = (1− ω)ξk + ωξk−1, (24)

where

ω =
1− µk

µk+1
, µk+1 =

1 +
√

(1 + 4(µk)2)

2
. (25)

Therefore, by incorporating Nesterov’s acceleration technique, we summarize
the acceleration scheme for DNLDL_ℓ1 as Algorithm 2.

4 Experiment

In this section, we evaluate the performance of the proposed algorithm through
numerical and application experiments. All experiments are conducted on an
11th generation Intel(R) Core(TM) i9-11900K @ 3.50GHz, and the results are
the average of repeated runs.
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In Numerical experiments, we compare the impact of the DNLDL_ℓ1 al-
gorithm under various nonlinear functions and demonstrate its excellent signal
recovery capability. Then, to address the issue of slow convergence speed for in-
dividual activation functions, we adopt an acceleration algorithm and prove its
effectiveness. We compare the proposed model with state-of-the-art methods in
different DL frameworks and show the superiority of our approach.

In application experiments, the DNLDL_ℓ1 algorithm is applied to image
classification and denoising tasks. In image classification, we investigate the effect
of sparse constraints on algorithm performanc. In image denoising, we compare
the performance with mainstream algorithms under different noise levels.

4.1 Experimental settings and evaluation metrics

Numerical experiments As in the experimental setup of traditional DL meth-
ods, we randomly generate multiple dictionaries with independent and identically
distributed columns and normalize each column using ℓ2 normalization. We gen-
erate L samples {sj}Lj from the multi-layer dictionary as the ground truth signal
S, and each synthesized signal is composed of a nonlinear mapping of the linear
combination of different atoms from the multilayer dictionaries. We expect the
synthesized signals to approximate the real simulated signals and recover the
dictionary to the maximum extent possible.

The effectiveness of a two-layer dictionary model is demonstrated here, and
it is easier to extend to deeper models when facing more complex tasks. We
set dictionaries of size A1 ∈ R20×50 and A2 ∈ R50×20, and the sparse coding
matrix Z1 ∈ R50×1500. Following the structure of deep nonlinear dictionary
learning, we recursively generate simulated signals S ∈ R50×1500 through the
nonlinear mapping of each layer’s dictionary and the sparse linear combination,
i.e., S = ρ(A2ρ(A1Z1).

Dictionary recovery ratio and relative error are used as evaluation metrics.
Each column in the dictionary is referred to as an atom. We scan each column in
the learned dictionary for each atom in the ground truth dictionary and calculate
their distance. If there exists |aTu âj | > 0.99, it is considered that the learned atom
is successfully recovered. The proportion of recovered atoms to the total number
of atoms determines the dictionary recovery ratio. To assess the discrepancy
between the approximated signal and the true synthesized signal, we employ the
relative error, expressed as follows:

Relative error =
∥S − ρ(A2ρ(A1Z1))∥2F

∥S∥2F
. (26)

Application experiments In image classification, we use the MNIST dataset,
which is composed of 10 types of handwritten digits with a size of 28 × 28
and contains 6,000 training images and 1,000 test images. A four-layer deep
dictionary learning structure is set, namely A1 ∈ R500×784, A2 ∈ R300×500,
A3 ∈ R200×300, and A4 ∈ R10×200. Therefore, the parameter count for our
algorithm is 500×784+300×500+200×300+10×200 = 604, 000. Classification
accuracy and loss are used as evaluation metrics for image classification.
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Fig. 1: Convergence with different nonlinear functions. (a) is the recovery rate of
the dictionary, and (b) is the average relative error between the approximated
signal and the true signal.

In image denoising, the dictionaries are set to A1 ∈ R80×64 and A2 ∈ R64×80

with parameters 80×64+64×80 = 10240. The Peak signal-to-noise ratio (PSNR)
and Structural similarity (SSIM) are used to evaluate the denoising performance.

4.2 Results of numerical experiments

Effectiveness of the proposed algorithm We choose the mainstream ac-
tivation function to explore the generalization of the proposed algorithm. The
parameter c is the number of non-zero elements in each column of the sparse en-
coding matrix, and these non-zero entries’ positions are randomly chosen. Fig. 1
shows the convergence of the proposed algorithm for the different nonlinear func-
tions with c = 5. We are mainly concerned with the recovery rate of the last layer
of the dictionaries. The experimental results indicate that ELU, LeakyReLU, and
ReLU exhibit similar and rapid convergence, while Softplus and Tanh require
more time to reach convergence. The recovery rates of the different nonlinear
functions are close to 100%, and the reconstruction loss is close to 0. Then, we
tested the convergence of DNLDL_ℓ1 for different values of c. Fig. 2 shows that
the algorithm can converge stably at about 30 iterations for different c values.

Acceleration schemes for the proposed algorithm Given the poor con-
vergence performance of Softplus and Tanh, we use them to explore the impact
of the acceleration scheme on the convergence of the algorithm. In Fig. 3, we
observe a significant improvement in the dictionary recovery ratio and a smaller
error. This suggests that the acceleration scheme finds better update points,
improves the algorithm’s convergence, and achieves lower reconstruction errors.

Performance comparison of different algorithms To demonstrate the su-
periority of our proposed model, we compared the DNLDL_ℓ1 algorithm with
various state-of-the-art algorithms in the field of dictionary learning, including
NLKSVD [4], NLMOD [4], MCP [15], GMC [23], and DDL [11]. This comparison
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Fig. 2: Convergence results for different numbers of nonzero element c. (a) is the
dictionary recovery ratio, and (b) is the relative error with different c.
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Fig. 3: Comparison of the accelerated version of the algorithm with the original
DNLDL_ℓ1. (a) and (b) depict the dictionary recovery ratio and relative error
when ρ = Softplus, respectively. (c) and (d) are then ρ =Tanh.

encompasses single-layer structures, deep structures, linear models, and nonlin-
ear models. NLKSVD and NLMOD are single-layer NLDL algorithms, MCP and
GMC are advanced single-layer linear DL algorithms, and DDL is a deep linear
dictionary learning model. To ensure the fairness of the experiment so that the
single-layer model and multilayer structure construct the same S dimension, we
set the dictionary to A ∈ R50×80 and the coefficient to Z ∈ R80×1500.
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Fig. 4: Convergence comparison of different dictionary learning algorithms. (a)
and (b) are the dictionary recovery ratio and relative error, respectively.
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Fig. 5: Classification accuracy under different λ. (a) Applying ℓ1-norm on coeffi-
cients Z or the dictionaries A and (b) applying ℓ1-norm on both Z and A.

We compare the performance of different algorithms for various DL frame-
works, and it is noteworthy that in Fig. 4, the proposed algorithm achieves satis-
factory results with a 100% dictionary recovery ratio and the fastest convergence
speed. In terms of layer structure, multi-layer dictionaries can mine deeper and
richer features than single-layer, and in terms of nonlinear frameworks, they can
capture hidden representations better than linear models.

4.3 Results of application experiments

Image classification We investigated the influence of hyperparameters on the
model. In the field of dictionary learning, the regularization parameter λ plays
a crucial role in balancing the sparse penalty term and the reconstruction er-
ror term. Since θi have relatively little impact on optimization performance in
LPOM, we set them uniformly to 2. In Fig. 5, we compare the effect of the
ReLU activation function on the experimental results at different λ values. In
subsequent experiments, we uniformly choose the optimal λ as 1× 10−5.

In Tab. 1, we compare the classification effects of different activation func-
tions, where ST is an irreversible soft-threshold function. To verify the effec-
tiveness of adding ℓ1 regularization, we compared the performance under four
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Table 1: Accuracy on MNIST test datasets with different nonlinear functions.
ℓ1 norm Sigmoid Tanh LeakyReLU ReLU ELU ST

None 90.74% 96.51% 97.24% 97.97% 97.47% 81.87%
Z 94.22% 97.41% 97.39% 98.12% 97.61% 97.64%
A 94.26% 97.51% 97.36% 98.09% 97.60% 97.73%

A+Z 94.18% 97.48% 97.29% 98.10% 97.70% 97.83%
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Fig. 6: Classification results of the acceleration and original algorithms
(ρ=Sigmoid). (a) and (b) are training accuracy and loss, respectively, and (c)
and (d) are test results

.scenarios: without any sparse constraint (None), applying sparse constraint only
to the coefficients Z, applying sparse constraint only to the dictionaries A, and
applying sparse constraint to both coefficients Z and dictionaries A. The ex-
perimental results indicate that the introduction of regularization improves the
performance of the original algorithm. Under the Sigmoid nonlinear function, the
test accuracy increased by 3.52%. This suggests that ℓ1 regularization avoids the
interference of redundant features for a concise data representation. Fig. 6 shows
that the Accelerated DNLDL_ℓ1 significantly improves the performance of the
original algorithm in real tasks with faster convergence and higher accuracy.

Image denoising To generate a noisy image, we randomly add different levels σ
of white noise to the original image. Then the grayscale image of of size 512×512
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Table 2: Denoising results of DNLDL with different nonlinear functions (Gaus-
sian noise σ = 25).

ρ
House Peppers Boat

PSNR SSIM PSNR SSIM PSNR SSIM

Linear 28.95 0.7166 28.84 0.7395 27.58 0.7017
Softplus 29.24 0.7338 29.95 0.7775 27.82 0.7191
ReLU 31.45 0.8377 30.95 0.8168 28.86 0.7591
ELU 31.35 0.8345 30.91 0.8166 28.89 0.7606

LeakyReLU 31.40 0.8385 30.79 0.8124 28.90 0.7556

is divided into 8 × 8 image blocks and flattened to 64 × 1 for denoising. Tab. 2
shows the performance of DNLDL_ℓ1 with different nonlinear functions, where
ELU and ReLU have better denoising results. In Tab. 3 by comparing with
other mainstream dictionary learning algorithms, our method has good image
denoising capability with high PSNR and SSIM. Furthermore, applying sparse
constraints to both dictionaries and coefficients has better denoising performance
than acting on only one of them.

Table 3: Denoising results different algorithms (Gaussian noise σ = 50).

Algorithm House Peppers Boat

PSNR SSIM PSNR SSIM PSNR SSIM

NLMOD[4] 20.78 0.2951 19.22 0.2551 20.18 0.3227
KSVD[23] 27.64 0.7598 25.46 0.7607 25.40 0.6415
GMC[23] 27.60 0.7592 25.39 0.7570 25.45 0.6428
Our(Z) 28.14 0.7604 27.87 0.7435 25.92 0.6520
Our(A) 28.14 0.7648 27.85 0.7468 25.92 0.6530

Our(A+Z) 28.68 0.7792 27.93 0.7446 27.93 0.6544

5 Conclusion

We propose a new deep nonlinear dictionary learning method, which simulta-
neously introduces a ℓ1-norm penalty to both the dictionaries and the coeffi-
cients, thus facilitating efficient extraction of key features. We advocate using
the LPOM, approximating the model as a series of non-convex optimization sub-
problems. Through this process, we successfully circumvent the need for inverting
nonlinear functions, relying solely on the inherent properties of these functions.
In addition, we introduce Nesterov’s acceleration techniques, the advantage of
this approach whose strength lies in the increased computational efficiency. By
integrating deep structures and norm penalties, it can more effectively learn
crucial information from the data.

We need to specify that models of different depths should be designed ac-
cording to the complexity of the task. In the future, we will focus on developing
the architecture of DNDL models, specifically a lightweight, universal model.
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