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Abstract. Hazy images present a challenging ill-posed problem, suffer-
ing from information loss and color distortion. Current deep learning-
based dehazing methods enhance performance by increasing network
depth but incur substantial parameter overhead. Meanwhile, standard
convolutional layers concentrate on low-frequency details, often over-
looking high-frequency information, which hinders the effective utiliza-
tion of prior information presented in blurred images. In this paper,
we propose TCL-Net, a lightweight dehazing network which empha-
sizes on frequency-domain features. Our network first includes a so-
phisticated layer for extracting high-frequency and low-frequency in-
formation, specifically designed using Fast Vision Transformers for the
original blurred images. Concurrently, we have designed a frequency-
domain information fusion module that integrates high-frequency and
low-frequency information with the characteristics of convolutional net-
works for subsequent convolutional layers. Furthermore, to better lever-
age spatial information of the original image, we introduce a multi-angle
attention module. With the aforementioned design, our network achieves
superior performance with a total parameter size of only 0.48MB, rep-
resenting an order of magnitude reduction in parameters compared to
other state-of-the-art lightweight networks.

Keywords: Image Dehazing · Lightweight Neural Network · Frequency-
Domain Fusion · Multi-Angle Attention

1 Introduction

With the development of industrialization, haze has become a common atmo-
spheric phenomenon. Hazy images suffer from information loss and color dis-
tortion. Image dehazing aims to remove these adverse effects to restore clear
and sharp visuals. In the domain of dehazing, the atmospheric scattering model
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(ASM) stands as the most classical depiction of the formation of hazy im-
ages [27,28], which can be formally written as:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) is observed as hazy image and J(x) is clean image, A denotes the
global atmospheric light, and t(x) is the transmission map. According to Eq.(1),
we can observe that the extent of hazy image restoration depends on two key
parameters: the atmospheric light A and the value of the transmission map t(x).

Therefore, in the early stages, researchers attempted to use convolutional
neural networks (CNNs) [5,33,41,42] to accurately estimate the transmission
map t(x) and atmospheric light A values. These networks had relatively simple
structures and processed limited information, leading to often poor dehazing
performance. With the advancement of deep learning, many methods have been
developed to map hazy images to clear ones [17,23,23,11,38,21]. Notable exam-
ples include FFA-Net [31], which proposes an end-to-end feature fusion attention
network for single image dehazing, and RIDCP [39], which enhances dehazing
performance and result adjustability through high-quality codebook priors and
controllable feature matching operations. DCP [18] introduces a single image
dehazing method based on the dark channel prior, estimating and restoring
high-quality haze-free images and depth maps by analyzing the characteristics
of outdoor haze-free images.

However, conventional convolutions predominantly focus on low-frequency in-
formation, paying insufficient attention to high-frequency details such as edges
and contours [26]. This oversight leads to subpar dehazing results, especially in
terms of preserving fine details. The aforementioned methods typically rely on
traditional convolutional operations and tend to simply stack layers deeply. De-
spite this approach resulting in a significant increase in parameter count, it fails
to effectively address the dehazing task. These networks have two main draw-
backs: First, they use traditional convolutions that capture information from a
single perspective, limiting their ability to comprehensively process the image;
Second, they inadequately handle high-frequency information such as edges and
contours, resulting in inferior dehazing performance. As shown in the Fig. 1,
methods such as DCP, RIDCP, and FFA-Net, which do not adequately focus on
high-frequency information in images, perform poorly in removing uneven dense
fog compared to our network.

To address the two main drawbacks of existing dehazing models, we pro-
pose TCL-Net: A Lightweight and Efficient Dehazing Network with Frequency-
Domain Fusion and Multi-Angle Attention. Firstly, to enhance the capability
of traditional convolutional networks in capturing information, our model inte-
grates a Multi-Angle Attention (MAA) module that combines horizontal, angu-
lar, central, and vertical differential convolution blocks in parallel. These blocks
provide attention across various directions, capturing details from unique orien-
tations and thus enriching the directional information available. Moreover, the
implementation of parameter fusion techniques ensures that the parameter count
remains controlled, even with the application of multidimensional convolutions.
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Fig. 1. Comparison of visual results on NH-HAZE dataset[2], (a) is the original hazy
image, (b) is the result processed by DCP [18], (c) is the result processed by FFA-
Net [31], (d) is the result processed by RIDCP [39], (e) is processed by ours, and (f) is
the original clear image.(Color figure online)

Secondly, to overcome the traditional networks’ lack of focus on high-frequency
details in images, we have developed a module based on Vision Transformers.
This module separately and efficiently extracts high and low-frequency features
from hazy images, facilitated by a fusion module that adaptively weights and
merges these details. This method not only promotes comprehensive feature
extraction but also maintains high performance, while preventing parameter ex-
plosion and significantly shortening the duration of training and inference cycles.
This approach demonstrates a highly efficient processing capability, attributable
to specific technical optimizations such as parallel processing and algorithmic
enhancements.

In summary, this work makes the following contributions:

– High- and Low-Frequency Pattern Extractor (HLFPE): Our net-
work includes a specialized layer that extracts both high-frequency and low-
frequency information from hazy images. This layer leverages fast Vision
Transformers to effectively capture the necessary features from the original
blurred images.

– Sophisticated High- and Low-Frequency Pattern Fusion (HLFPF):
We design a unique fusion module that integrates high-frequency and low-
frequency information, enhancing the capability of subsequent convolutional
layers. This module capitalizes on the complementary characteristics of dif-
ferent frequency domains to improve dehazing performance.

– Multi-Angle Attention Module (MAA) : To better utilize spatial in-
formation, we introduce a multi-angle attention module that enables the
network to effectively capture features at various scales, further improving
dehazing results.
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2 Related Work

2.1 Single Image Dehazing

Image dehazing, which involves restoring clear images from hazy ones, has been
a challenging and persistent ill-posed problem for a long time. Existing dehazing
methods can be broadly categorized into two types: physics-based approaches
and deep learning-based approaches.

Physics-based methods typically rely on the atmospheric scattering model
(ASM) [27,28] or handcrafted priors. Handcrafted prior methods are pioneers
in the image dehazing task, with well-known examples including the dark chan-
nel prior [18], color line prior [14], color attenuation prior [45], sparse gradient
prior [6], maximum reflectance prior [43], and non-local prior [4]. However, hand-
crafted priors are mainly derived from the authors’ empirical observations and
can’t accurately describe the formation and process of haze.

Unlike physics-based methods, deep learning-based dehazing models employ
convolutional neural networks (CNNs) to learn image representations [5,42,24].
AOD-Net [21] enhances traditional dehazing quality by rewriting the ASM for-
mula, simplifying the estimation of atmospheric light and transmission map into
a single task. However, despite its lightweight nature, [21] has limited ability to
handle image details. Traditional convolutional methods extract very limited in-
formation from the original images. To improve this issue, we designed the Multi-
Angle Attention (MAA) module, which utilizes different convolutional kernels
to extract high-frequency and low-frequency information from various directions
in the image. By processing these features in parallel, our model enhances the
extraction of original image characteristics while reducing model complexity.

2.2 Vision Transformer

The emergence of Transformers [36] in NLP introduced a non-recurrent architec-
ture with an encoder-decoder framework and self-attention mechanisms [16,20],
enabling parallel computation, reducing training time, and achieving state-of-
the-art performance in machine translation [37,32]. Recently, vision Transform-
ers (ViT) has outperformed almost all CNN-based models in high-level vision
tasks. This success has led to the proposal of numerous modified architectures,
positioning vision Transformers as a formidable challenge to the dominance of
CNNs in high-level vision tasks [9,30,25,40,12,7,10].

However, ViT has not been fully exploited in the domain of low-level vi-
sion, especially in dehazing tasks. Pan et al. [29] introduced the HiLo attention
mechanism to reduce the computational and memory demands of Vision Trans-
formers, but their work is limited to image classification and object detection. We
propose the High- and Low-Frequency Domain Extractor and Fusion module,
which fully leverages the high- and low-frequency information in original hazy
images through extraction and fusion. This approach achieves superior dehazing
performance while maintaining low overheads.
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3 Proposed Method

Overall Architecture. As shown in Fig. 2, our model consists of 4 parts: Fea-
ture Extractor Network (FEN), High- and Low-Frequency Pattern Extractor
(HLFPE), High- and Low-Frequency Pattern Fusion (FLFPF), and Multi-Angle
Attention (MAA). Our model is an end-to-end dehazing network with a straight-
forward and clear structure. Initially, the information extracted by the HLFPE
model is fused by the HLFPF model and then processed through the FEN model.
The outputs of these three modules are concatenated through a simple concate-
nation operation. Finally, a 1×1 convolution layer is applied to produce the final
clear image. In the following sections, we will detail the composition and function
of each module step by step.

H
LFPE

H
LFPF

Output

CDConv ADConv

HDConv VDConv

5×5Conv

High frequency pattern

a. Feature Extractor Network

C. Multi-Angle Attention High- and Low-Frequency Pattern Extractor

Input

Low frequency pattern

CDConv Central Difference Conv

ADConv Angular Difference Conv

VDConv Vertical Difference Conv

HDConv Horizontal Difference Conv

b. High- and Low-Frequency Pattern Extractor and Fusion ×n

Fig. 2. Overview architecture of TCL-Net.

3.1 Feature Extractor Network

Previous research work relied on the independent computation of A and t(x)
based on the ASM, leading to significant restoration errors and inefficient run-
time.
Eq. (1) can be reformulated as follow:

J(x) =
1

t(x)
I(x)−A

1

t(x)
+A (2)

J(x) = K(x)I(x)−K(x) + c (3)
where K(x) can be defined as

K(x) =

1
t(x) (I(x)−A) + (A− b)

I(x)− 1
(4)
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Li et al. [21] obtained a deformed ASM by introducing the Eq. (4) in Eq. (1),
so we can directly estimate the joint value K(x) of transmission map t(x) and
atmospheric light A. By jointly estimating the transmission map and the global
atmospheric light, the model simplifies by reducing the problem from estimating
two variables to only one, making the network more efficient and effective. As
shown in the Fig. 2 on the right, our Feature Extractor Network is constructed
drawing inspiration from this.

3.2 High- and Low-Frequency Pattern Extractor

The Vision Transformers (ViT) model excels in establishing a global information
interaction mechanism, but the computational complexity of global attention is
considerably high, especially with long sequence inputs. Using traditional Vision
Transformer methods to capture high-frequency details of objects can signifi-
cantly degrade performance. As high frequencies encode local details, applying
global attention to a feature map can be redundant and computationally expen-
sive. Recent works Pan et al. [29] have introduced the HiLo attention mechanism
to reduce the computational and memory demands of Vision Transformers. To
improve model speed and information extraction capability, we propose a High-
and Low-Frequency Pattern Extractor based on their work. To the best of our
knowledge, this is the first use of ViT to independently extract high- and low-
frequency patterns from hazy images.

As shown in the bottom part of Fig. 2, high-frequency pattern in images
typically contains local details, such as edges and textures. And the upper section
designed to capture the high-frequency patterns required for subsequent fusion.
Initially, the input is embedded with positional encoding, followed by local self-
attention windows (e.g., 2×2) to effectively capture high-frequency information.
This method extracts fine details while reducing computational complexity.

The lower section is designed to capture low-frequency patterns. Initially, the
embedded information undergoes pooling operations, which effectively capture
global features of the image and reduce memory consumption, thereby enhancing
the computational efficiency of the model. Unlike the high-frequency section,
in the low-frequency section, the query (Q) originates from the original input
feature map to maintain spatial resolution consistency, while the key (K) and
value (V) are derived from the feature map after average pooling. This design
allows the model to leverage global information in the low-frequency branch and
local detail information in the high-frequency branch.

Experiments have demonstrated that HLFPE can effectively capture high-
and low-frequency information from hazy images, thereby enhancing the net-
work’s dehazing performance.

3.3 High- and Low-Frequency Pattern Fusion

Previous dehazing work has demonstrated that integrating different information
sources can enhance the network’s ability to capture image information [15,13].
The simplest fusion method involves summing the elements extracted from high-
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and low-frequency information, which has been adopted in many prior meth-
ods [11,3]. However, simply summing the extracted high- and low-frequency
features cannot effectively utilize the captured information. Therefore, we have
specifically designed a High- and Low-Frequency Pattern Fusion module to merge
high- and low-frequency information, enabling subsequent feature extraction
modules to efficiently learn image priors.

As show in Fig. 3 in the process of amalgamating high-frequency and low-
frequency information, an element-wise sum operation is initially carried out.
Then, channel importance for both frequencies is calculated separately. Spatial
significance is assessed with average and max pooling, and the sigmoid function
determines the weights for their representational strength. A residual connection
finally fuses the information, effectively leveraging the high- and low-frequency
features to help the model focus on key areas more efficiently.

This module facilitates the precise fusion of high- and low-frequency features
by weighting their respective contributions, leading to more informative repre-
sentations. The efficacy of this approach is thoroughly validated in our ablation
experiments.

Fig. 3. The high- and low-frequency pattern fusion model (HLFPF).

3.4 Multi-Angle Attention

A single image contains various significant details, such as textures, edges, and
corner points, which are crucial for image interpretation. In addition to extract-
ing high and low-frequency information, we have incorporated a Multi-Angle
Attention (MAA) module. This module is equipped with a set of convolutional
blocks operating in parallel, comprising Horizontal Difference Convolution, An-
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gular Difference Convolution, Central Difference Convolution, and Vertical Dif-
ference Convolution.

The differential convolutions in various directions can effectively capture
high-frequency details in different orientations, thus offering a richer set of direc-
tional information. Simultaneously, the introduction of differential convolutions
also enhances the extraction of global contextual information, thereby provid-
ing a comprehensive supplement to the detailed information captured by the
previously processed high and low-frequency features.

3.5 Loss Function

Incorporating the methodology detailed by Andrey et al. [19], we employ a color
loss function to fine-tune the visual accuracy of our results, thereby enhancing
fidelity to the original image characteristics. The color loss function is formally
defined as:

Lcolor(J,GT ) = ||Jb −GTb||22 (5)

where Jb and GTb are the blurred images of J and GT , respectively:

Jb(i, j) =
∑
k,l

J(i+ k, j + l) ∗G(k, l) (6)

The 2D Gaussian blur operator is given by:

G(k, l) = Aexp(− (k − uJ)
2

2σJ
− (l − uGT )

2

2σGT
) (7)

where A = 0.053, uJ,GT = 0, and σJ,GT = 3.
Our TCL-Net is trained by minimizing the pixel-wise difference between the
predicted clean image J and the corresponding ground truth GT . In our imple-
mentation, we use a combination of mean squared error (MSE) and color loss
functions:

LGT,J = α ∗ ||J −GT ||2 + (1− α) ∗ Lcolor(J,GT ) (8)

In our proposed loss function, the parameter α plays a key role in balancing
the contributions of different components. To determine the optimal value of α,
we conducted a series of experiments, systematically varying α across a range of
values from 0 to 1 with a step size of 0.05 and assessing the model’s performance
on a validation dataset, specifically evaluating the maximum PSNR and SSIM
values on the SOTS_indoor dataset [22]. Our experiments revealed that setting
α = 0.8 consistently yielded the best performance. This value strikes an effec-
tive balance between the loss components, significantly improving the model’s
accuracy.

4 Experiments

4.1 Datasets

We conducted experiments by training and evaluating our model on both syn-
thetic RESIDE [22] and real-world datasets: DenseHaze [1] and NH-Haze [2].
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Additionally, we compared our model’s performance with the latest state-of-the-
art models.
Synthetic Datasets. We utilized the RESIDE dataset, proposed by Li et
al. [22], to evaluate the performance of our model in synthetic scenarios. Specif-
ically, we employed the ITS (Indoor Training Set) and OTS (Outdoor Training
Set) subsets for training, while the SOTS (Synthetic Objective Test Set) was
designated for evaluation. The ITS dataset comprises 1,399 clean images paired
with 13,990 synthetic hazy counterparts, and the OTS dataset contains 2,061
clean images alongside 72,135 synthetic hazy images. For testing, the SOTS
dataset includes 500 indoor and 500 outdoor images.
Real-Word Datasets. To evaluate our model’s performance in challenging
real-world scenarios, we utilized two real-world datasets: DenseHaze [1] and NH-
HAZE [2]. DenseHaze comprises densely and uniformly hazy scenes, whereas
NH-HAZE consists of non-uniform hazy scenes. Each dataset contains 55 im-
ages, and we split the datasets into training, validation, and testing sets with a
ratio of 8:1:1.

4.2 Implementation Details

Our architecture is implemented using the PyTorch framework and deployed
on an Nvidia A100 GPU. We employ the Adam optimizer with β1 = 0.9 and
β2 = 0.9999, and the initial learning rate is set to 1× 10−4. The learning rate is
dynamically adjusted using a cosine annealing schedule. The batch size is set to
16, and the patch size is 256× 256. All experiments under the same conditions
to ensure fairness. The total parameter count for our TCL-Net is 0.48M.

4.3 Evalutation Metrics and Comparisons Methods

Evalutation Metrics. In the field of image dehazing, PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity Index Measure) are distortion-
based metrics and are two crucial evaluation metrics used to assess the effective-
ness of dehazing algorithms. PSNR evaluates image quality by calculating the
ratio between the maximum possible pixel value of the original image and the
difference between the original and processed images. Generally, a higher PSNR
value indicates lower image distortion and better image quality. SSIM evaluates
the visual quality of the image by considering human visual perception. Unlike
PSNR, which primarily focuses on pixel value differences, SSIM takes into ac-
count the characteristics of human visual systems and assesses image quality
by simulating human visual system principles. In this experiment, we employed
both of these common evaluation metrics.
Comparsion Methods. We compare our method with state-of-the-art (SOTA)
methods both qualitatively and quantitatively. The comparison includes three
classic models (DCP [18], DehazeNet [5], AOD-Net [21]) and eight SOTA models
(FFA-Net [31], LDN [35], RDN [44], AECR-Net [38], Dehamer [17], RIDCP [39],
DehazeFormer-B [34], DEA-Net [8]), all of which have been published in recent
top-tier journals and conferences.
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Table 1. Quantitative comparisons on different datasets for different dehazing meth-
ods. Best values and second-best values for each metric are color-coded.

Method NH-Haze SOTS_outdoor SOTS_indoor Dense_Haze
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP 14.91 0.6742 19.14 0.8605 16.61 0.8546 14.15 0.5521
DehazeNet 16.62 0.5241 27.75 0.9269 19.82 0.9269 13.84 0.4252
AOD-Net 15.53 0.6332 24.14 0.9198 20.51 0.8162 14.51 0.4883
FFA-Net 19.87 0.6913 36.39 0.9886 36.39 0.9886 14.39 0.4524
LDN 20.95 0.7961 — — 21.27 0.8321 18.27 0.6031
RDN 12.37 0.5392 24.12 0.9151 — — 12.15 0.4262
AECR-Net 18.51 0.6561 — — 33.34 0.9824 15.86 0.4663
Dehamer 20.66 0.6821 36.63 0.9881 36.73 0.9891 16.62 0.5632
RIDCP 12.27 0.5014 18.36 0.7526 18.36 0.7526 8.09 0.4173
DehazeFormer 17.37 0.7256 31.46 0.9864 33.58 — — —
DEA-Net 19.55 0.6645 — — 39.16 0.9921 — —
Ours 21.45 0.7261 36.78 0.9913 37.85 0.9924 18.34 0.6121

4.4 Performance Analysis

Visual Analysis of the Model’s High-Frequency Information Process-
ing Capabilities. To validate the effectiveness of our model in capturing high-
frequency components, we visualized the frequency response of various algo-
rithms after 1,000 iterations using the Discrete Fourier Transform (DFT). A
greater concentration of high-frequency energy in the DFT magnitude spectra
indicates a superior capacity to preserve fine details. As shown in Fig. 4, our
model outperforms previous SOTA methods in high-frequency retention, demon-
strating its distinct advantages. The results highlight that our model is adept at
preserving a greater amount of high-frequency details, reinforcing its robustness
in effectively managing critical image information.

Fig. 4. The DFT results of filtered features.
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Comparision with SOTAs on synthetic hazy images. Table 1 presents a
quantitative comparison of our method and various approaches on the indoor and
outdoor of SOTS datasets. Our approach achieves optimal performance in SSIM
on both datasets and performs competitively in PSNR. Specifically, our model
achieves the best performance on the SOTS_outdoor dataset, with a PSNR
value of 36.78 dB and SSIM of 0.9913. Compared to Dehamer [17], our method
improves PSNR by 0.15 dB and SSIM by 0.0032 on the SOTS_outdoor datasets.
Moreover, our model achieved the second-highest PSNR and the highest SSIM
on the SOTS_indoor dataset.

As show in Fig. 5, DCP, DehazeNet, and LDN perform poorly in restoring
background colors during dehazing. In the third row, it is noticeable that the
walls exhibit significant pitting and color distortion after dehazing with these
methods. In contrast, AOD and FFA-Net handle the walls better but still suffer
from dim color issues. Dehamer and our results are visually very similar, with
only minor differences in some fine detail contours. Our model, by fully leverag-
ing the high- and low-frequency prior information of the original hazy images,
achieves more natural detail processing compared to other models.

On the SOTS_indoor dataset, from a quantitative analysis perspective, our
results are only slightly inferior to DEA-Net, with a PSNR lower by 1.31 dB but
an SSIM higher by 0.0003 compared to the highest value. As shown in Fig. 6,
DCP, DehazeNet, and LDN exhibit color distortion and dim color issues, while
AOD, FFA-Net, and Deharmer perform relatively well. Although our quantita-
tive metrics are lower than DehazeNet’s, our visual performance excels in high-
frequency contour details of some objects. It is important to note that the SOTS
dataset consists of synthetically sparse fog, where many existing methods have
already demonstrated high performance and visually pleasing dehazing results.

Comparsion with SOTAs on real-world hazy images. In the realm of
practical applications, effectively mitigating dense and irregular haze remains
a persistently challenging issue. Existing approaches often struggle to achieve
optimal results due to constraints imposed by limited datasets. Our model capi-
talizes on the inherent high and low-frequency priors present in original images,
yielding remarkable visual dehazing outcomes. Moreover, in quantitative anal-
ysis, our model attains state-of-the-art performance levels. Specifically, on the
NH-HAZE dataset, our PSNR exceeds the best-performing model by 0.5 dB,
while on the DenseHaze dataset, our PSNR surpasses the highest model by 0.07
dB.

From Fig. 1, it is evident that DCP and RIDCP exhibit limited dehazing
capabilities for irregular dense fog, with DCP showing significant color distortion
issues. Compared to FFANet, our approach achieves higher fidelity in restoring
input hazy images and excels in fine-detail processing, approaching GroundTruth
results closely.
Model Complexity and Inference Time. As show in Fig. 7, we present the
parameter counts and FLOPs for processing a single image on the SOTS dataset
for different models. Notably, the values for DEA-Net are slightly higher than
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12 C. Tang and W. Lou

Fig. 5. Dehazed results of Ours and Other models on SOTS_outdoor dataset.

Fig. 6. Dehazed results of Ours and Other models on SOTS_indoor dataset.

those reported in its original paper due to differences in deployment environ-
ments and the PyTorch version used. We have made efforts to account for these
practical considerations in our comparisons. It is worth noting that although
DehazeNet, AOD-Net, and LDN have relatively small parameter counts, their
actual effectiveness and quantitative performance are suboptimal. Compared to
the most SOTA model DEA-Net, our model slightly outperforms it on the NH-
HAZE dataset while performing slightly worse on the SOTS dataset, which can
be negligible in the performance. In our experiment, our model has only 16.9%
of the parameter count, 56.8% of the computational cost, and 38.8% of the in-
ference time compared to DEA-Net.

4.5 Ablation Studies

In this section, we conducted several ablation experiments to evaluate the pro-
posed method. These experiments include the following ablation models:
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– (a) Baseline: Only the Feature Extractor Network.
– (b) No-HLFPEF: The model without the High- and Low-Frequency Pat-

tern Extractor and Fusion (HLFPEF) module.
– (c) No-Concat-Fusion: The model using simple concatenation for high-

and low-frequency information fusion after the High- and Low-Frequency
Pattern Extractor.

– (d) No-MAA: The model without the Multi-Angle Attention (MAA) mod-
ule.

– (e) Ours: The final configuration of our proposed method.

These models, along with our complete model, were trained using the same
configuration. Table 2 summarizes the performance of these models. It is evident
that our HLFPEF, HLFPF, and MAA modules contribute to enhancing the
model’s performance.

Fig. 7. Comparative analysis of model complexity for various methods. FLOPs are
computed using an input size of 620×460, which corresponds to the dimensions of an
image from the SOTS_indoor dataset. Note that the x-axis represents the logarithmic
scale. Although DEA-Net appears close to our model, its parameter size is 300% larger
than ours.

Table 2. The results of ablated models on SOTS_outdoor dataset.

Metric a b c d e
PSNR↑ 25.14 28.76 31.32 32.25 36.78
SSIM↑ 0.92 0.94 0.96 0.96 0.99
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14 C. Tang and W. Lou

Fig. 8 illustrates the performance of different ablation models on the NH-HAZE
dataset. It is evident that the model’s ability to process high-frequency informa-
tion in images is significantly diminished without the HLFPEF module.

Fig. 8. Results of different ablation models on NH-Haze dataset.

5 Conclusion

This paper introduces TCL-Net, a lightweight and efficient dehazing network
employing frequency-domain fusion and multi-angle attention. We developed a
High- and Low-Frequency Pattern Extractor based on a Fast Vision Transformer
to effectively extract both high- and low-frequency information from hazy im-
ages. Our High- and Low-Frequency Pattern Fusion module enhances this ex-
traction by leveraging prior image knowledge. Additionally, we introduced a
Multi-Angle Attention module that incorporates various differential convolution
blocks to capture high-frequency details from multiple directions, enriching di-
rectional information. Experimental results demonstrate that TCL-Net excels
in detail processing, achieving state-of-the-art performance while maintaining a
lightweight architecture, with only 16.9% of the parameter count, 56.8% of the
computational cost, and 38.8% of the processing time compared to recent mod-
els. In future work, we aim to explore the generalization capabilities of TCL-Net
across various tasks and investigate a more versatile architecture.
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