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Abstract. This paper presents a novel multi-task model combining self-
supervised monocular depth estimation and knowledge-distilled seman-
tic segmentation that can perform both tasks simultaneously and con-
sistently in both daytime and nighttime conditions. By leveraging the
joint self-supervised and supervised knowledge distillation learning, the
model can learn consistent and complementary representations of the
two tasks to improve the generalization ability without relying on an-
notated ground-truth data. To address the extremely varying lighting
conditions between day and night, we first synthesize night and day im-
ages from their corresponding real day and night images, and then train
the model with the day-night image pairs to provide explicit correspon-
dences between the two lighting conditions for capturing the contextual
and detailed information in both scenarios. We also augment the model
with a light enhancement module and a daytime depth pseudo-labels
for achieving more accurate and robust depth and segmentation. Ex-
perimental results on Oxford RobotCar and nuScenes demonstrate the
robustness of our model in diverse challenging lighting conditions.

Keywords: Monocular depth estimation · Semantic segmentation · Multi-
task learning · Day-night/All-day prediction · Label-free approach

1 Introduction

Monocular depth estimation (MDE) and semantic segmentation (SS) are two
fundamental tasks in computer vision that have a wide range of applications
in numerous fields, most notably autonomous driving and navigation, 3D re-
construction, augmented reality, object recognition, and robotics. MDE aims to
predict the depth of a scene from a single image, while SS focuses on assigning
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semantic labels to each pixel in the image. These tasks have been addressed
independently, with dedicated models designed for each task.

Several recent studies have explored the combination of MDE and SS tasks
into a multi-task learning model [1,24,29,30,40]. However, existing works focused
primarily on daytime scenarios and did not specifically address the challenges
of robustness in both daytime and nighttime scenarios. Real-world deployments
require such models to operate reliably in an all-day setting, where extreme
variations in lighting conditions, shadows, reflections, and other factors between
daytime and nighttime can significantly impact the visual information and per-
formance. Although a multi-task model of MDE and SS that can perform con-
sistently and accurately under different conditions is desirable, to the best of our
knowledge, there have been few to no reports on a model of this nature.

In this paper, we propose a novel multi-task model of MDE and SS that is ro-
bust in both daytime and nighttime combining self-supervised depth supervision
and SS knowledge distillation. By leveraging self-supervised depth supervision,
our model can learn depth in a self-supervised manner from consecutive frames
only, eliminating the reliance on labeled depth data. Also, by incorporating SS
knowledge distillation, our model can benefit from the rich semantic information
captured by state-of-the-art pre-trained SS models. Another key feature is the
synthesizing and utilization of real and synthetic day-night pairs of images to
capture contextual and detailed information in both scenarios of day and night.
This combination allows our model to achieve accurate MDE and SS simultane-
ously while being robust in diverse challenging lighting conditions.

The rest of the paper is organized as follows. Section 2 provides a review of
related work in MDE, SS, multi-task learning, domain adaptation and knowledge
distillation. The principles and architecture of our proposed model are presented
in Section 3. Section 4 describes the experimental setup and presents the results
and analysis. Finally, the paper is concluded in Section 5 with a summary of our
contributions and future outlook.

2 Related Works

Monocular Depth Estimation (MDE). Supervised deep learning methods
for MDE based on direct supervision and fine-grained control over the learning
process are still the best performers in the field [2, 13, 27, 36], although they
require time-consuming and costly pixel-level manual depth annotations. On
the other hand, relying on only consecutive frames, the attractive self-supervised
approach has been shown to close in on the performance gap with the supervised
counterpart [17,21,46], and recently been extended to all-day MDE for handling
different lighting conditions in daytime and nighttime [16,28,35]. Our multi-task
model extends the self-supervised MDE to cover SS in a multi-task model for
both domains of day and night.

Semantic Segmentation (SS). While there have been a lot of efforts in weakly
supervised and unsupervised approaches leveraging techniques such as cluster-
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ing, self-training, and domain adaptation [5,9,26,48], the supervised SS trained
using labeled data, where each pixel in the image is annotated with its corre-
sponding class label, is still the standard approach [6, 7, 14]. Recently all-day
SS methods have been proposed to segment objects and regions in images of
both daytime and nighttime [3, 10, 44], which we exploit as a teacher model for
enabling our label-free approach.

Multi-task Model of MDE and SS. Multi-task models that combine MDE
and SS aim to jointly predict both depth maps and pixel-wise semantic labels
from a single input image [1,24,29,30,40], with recent works adding more down-
stream tasks such as optical flow [19,20,42]. They showcase the benefits of jointly
training these tasks, such as improved performance and reduced computational
cost by taking advantage of the shared representation. In this work, we carefully
design the network and loss functions to handle task interference and increased
complexity of our model to unlock its generalization ability in both day and
night.

Domain Adaptation. Domain adaptation plays a crucial role in bridging the
gap between clear daytime and challenging nighttime. Recent advances have
focused on leveraging models trained on well-labeled or clear conditions like
daytime to adapt effectively in the more complex nighttime domain across vari-
ous tasks, such as depth estimation [16,28,35], SS [41], object detection [12], etc.
Here we synthesize the night domain from the real day domain, and the day do-
main from the real night domain to train the model with the synthetic-real pairs
of day and night images for learning the two contrasting lighting conditions.

Knowledge Distillation. Knowledge distillation involves transferring knowl-
edge from a complex teacher model to a simpler student model [18,23,25]. This
process aims to improve the performance, efficiency, and transferability of the
student model by leveraging the knowledge learned by the teacher model. Our
model incorporates knowledge-distilled SS and day depth losses for elimination
of annotations and performance enhancement.

3 Method

3.1 Principles of our Proposed Method

Our method focuses on a multi-task model of MDE and SS aimed at delivering
consistent performance in extremely varying environments in both day and night.
The model is designed to capture both shared common representations between
the two cross-tasks of MDE and SS and representations between the two lighting
conditions of day and night. The model is also trained in a label-free fashion to
eliminate the need for expensive and time-consuming annotations. Our overall
approach compared with traditional approaches is depicted in Figure 1.
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Fig. 1: Overview of our approach. While traditional approaches address either
multi-task learning or multi-domain challenges individually, our approach inte-
grates both aspects, i.e. multi-task learning of depth and semantic segmentation
in two domains of day and night, providing a holistic solution to complex visual
processing tasks.

Multi-task Model of Depth and Semantic Segmentation. Our method
combines MDE and SS into a single multi-task learning framework. By employing
a shared common encoder and separate decoders for depth and segmentation,
the model can leverage the shared features to learn representations that are
consistent between the two tasks. This allows the model to take advantage of
complementary information from both tasks, ultimately improving their perfor-
mance. This multi-task approach enhances the overall efficiency and accuracy of
the model.

Robustness in Both Daytime and Nighttime. To ensure robustness across
varying lighting conditions, we first synthesize night and day images from the
corresponding real-world day and night counterparts. We then utilize these day-
night image pairs, i.e. real-day-synthetic-night pairs and synthetic-day-real-night
pairs, during training. By providing the model with explicit correspondences
between the two lighting conditions using these day-night pairs, the model can
learn and capture contextual and detailed information in both the day and night
scenarios, where lighting can vary significantly.

Label-Free: Combination of Self-Supervised MDE and Knowledge-
Distilled SS. Our method employs a label-free training approach by combining
self-supervised MDE with knowledge-distilled SS. The self-supervised MDE does
not require ground-truth depth labels, while the knowledge-distilled SS allows
the model to leverage the knowledge learned by a teacher model. This approach
enables the model to benefit from both unsupervised and supervised learning,
which boosts its generalization ability in unseen and different scenarios. Ad-
ditionally, it reduces the dependency on annotations, thereby enhancing the
scalability and applicability of the model.
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3.2 Model

The proposed model architecture, as illustrated in Figure 2, includes a light
enhancement module, a shared encoder, two separate decoders for MDE and SS,
as well as a PoseNet for predicting the relative poses of consecutive frames used
in the self-supervised MDE approach.

Fig. 2: Our model involves feeding pairs of real-day-synthetic-night and real-
night-synthetic-day images into the light enhancement module. These are then
passed through the shared encoder and into two separate decoders for depth es-
timation and semantic segmentation. The real day and night consecutive images
are passed through the PoseNet to predict their relative poses, which are then
used in training for image reconstruction and the self-supervised depth loss.

Light Enhancement Module. Inspired by [41], the light enhancement module
is the initial stage of our model, designed to improve the visibility of nighttime
images. This module adjusts the brightness and contrast of nighttime images to
approximate daytime conditions, facilitating more accurate feature extraction in
subsequent stages. Additionally, the light enhancement module includes a light
loss component to optimize the light enhancement process.

Shared Encoder and Separate Decoders. The light-enhanced images are
then passed through a shared encoder. This encoder extracts high-level features
that are common to both the depth estimation and SS tasks, as well as to both
daytime and nighttime conditions. The encoded features are then fed into two
separate decoders: the depth decoder and the segmentation decoder. The depth
decoder generates depth maps, ensuring that the model understands the spatial
structure of the input images, while the segmentation decoder produces segmen-
tation maps for identifying and classifying different objects within the images.
This architecture allows our model to benefit from multi-task learning, where
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improvements in one task can positively affect the other, ultimately leading to
a more comprehensive understanding of the scenes.

Real-Day-Synthetic-Night Pairs and Synthetic-Day-Real-Night Pairs.
For the real-day-synthetic-night pairs, the real day images Id are converted to
synthetic night images Īn using CycleGan [47]. Conversely, the real night images
In are transformed to synthetic day images Īd for the synthetic-day-real-night
pairs. This helps the model learn how to handle images captured under real low-
light conditions, rather than relying solely on the synthetic night images. The
pairs are then processed by the light enhancement module, which adjusts the
visibility of both the real and synthetic night images before feature extraction.

3.3 Losses and Training

Light Enhancement Loss. Based on [41], the light enhancement loss is a
combination of three different loss functions:

– The variation loss Ltv, widely used in many previous works [34, 39, 43], to
smooth the images,

– The exposure control loss Lexp to force the lighting effects in the day and
night scenarios to be as consistent as possible, and

– The structural similarity loss Lssim to ensure that the generated lighting
maps are consistent with the original images.

Unlike [41] which uses the same light enhancement loss Llight for both daytime
and nighttime images, thereby altering the intensity distributions of both, we
only aim to adjust the light intensity distributions of the nighttime images to
closely match those of the daytime images without dramatically changing the
daytime images. Therefore, we remove the loss term Lexp for the daytime images
and apply it to the nighttime ones exclusively. The light enhancement loss Llight
in our model is defined as

Llight-day = αtvLtv + αssimLssim, (1)
Llight-night = αtvLtv + αexpLexp + αssimLssim, (2)

Llight = Llight-day + Llight-night, (3)

where αtv, αexp, and αssim are set to 10, 1, and 1.

Self-supervised Depth Loss. We adopt a self-supervised learning approach
[17,46] to reconstruct the target image Is→t from the source image Is∈{t−1,t+1}
and the depth Dt of the target image It through the following equation.

Is→t = Is(Proj(Dt, Tt→s,K)), (4)

where K is the camera intrinsic, and Tt→s is the transformation matrix represent-
ing the camera transition from the target image to the source image estimated
by the PoseNet as

Tt→s = PoseNet(Is, It). (5)
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To evaluate the quality of the reconstructed image, we utilize the pixel-wise
photometric error defined as

Lpe(It, Is→t) =
α

2
(1− SSIM(It, Is→t)) + (1− α)∥Is − Is→t∥1. (6)

We also add a smoothness function to impose constraints on the depth map
and facilitate the blurring of regions with similar pixels.

Lsmooth(Dt, It) = |∂xDt|e−|∂xIt| + |∂yDt|e−|∂yIt|. (7)

The terms Lpe and Lsmooth form the real-domain self-supervised loss function
as follows.

Lsf-real(It, Is→t, Dt) = Lpe(It, Is→t) + 0.001Lsmooth(Dt, It). (8)

The term Lsf-real performs reliably in the real domain where the lighting
across consecutive frames is consistent. However, in the synthetic domain, it
suffers from the problem that the reconstructed image is very dissimilar from
the target image Īt as there may be changes between frames that can not be
accounted for. Following previous works [16, 35], we improve depth prediction
from the synthetic domain D̄t by using this depth map to warp the image in the
real domain correspondingly as follows.

Īs→t = Is(Proj(D̄t, Tt→s,K)), (9)

where the depth D̄t is predicted from the synthetic image Īt, and the transfor-
mation matrix Tt→s is predicted through the corresponding consecutive frames
Is, It in the real domain. The self-supervised loss for the synthetic domain is
defined as

Lsf-syn(It, Īs→t, D̄t) = Lpe(It, Īs→t) + 0.001Lsmooth(D̄t, It). (10)

Finally, our self-supervised depth loss is a combination of three losses com-
prised of real day, synthetic night, and real night defined as follows:

Lsf =Lsf-real(I
d
t , I

d
s→t, D

d
t )+

Lsf-syn(I
d
t , Ī

n
s→t, D̄

n
t )+

0.1Lsf-real(I
n
t , I

n
s→t, D

n
t ).

(11)

In Equation (11), we incorporate the loss term Lsf-real(I
n
t , I

n
s→t, D

n
t ) to enhance

the robustness of our model’s depth predictions in nighttime scenes. However,
the effectiveness of Lsf-real may be adversely affected by significant variations
in lighting conditions across consecutive frames in the real night domain. To
mitigate this issue, we adjust the weight of this loss term in practice, reducing it
to 0.1 to ensure more stable training outcomes under variable lighting conditions.
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Consistency Loss Between Real and Synthetic Domains. To achieve
uniform depth across both day and night images, our model incorporates a con-
sistency loss Lcst between the depth maps generated from daytime images and
those derived from their corresponding nighttime image counterparts. While the
transition from real night to synthetic day enhances model training by providing
real low-light conditions, it also introduces challenges in calculating consistency
loss. Synthetic daytime images can still exhibit imperfections, such as overex-
posed areas or inaccurate color reproduction, particularly in the ‘sky’ region.
These imperfections can lead to discrepancies in depth estimation, where those
areas are misrepresented.

To address the discrepancies in depth estimation, particularly in the ’sky’
region of synthetic daytime images, we implement a masking strategy before
calculating the consistency loss. By excluding the ’sky’ class from the loss com-
putation, we mitigate the impact of these errors on the overall depth estima-
tion accuracy. This masking approach refines the consistency loss calculation by
concentrating on more reliably reproduced areas. This ensures that our depth
estimation remains robust and consistent, minimizing the influence of synthetic
artifacts on the model’s performance. As a result, our consistency loss is defined
as follows.

Lcst-real =
1

N

N∑
i=1

∥∥Dd,i − D̄n,i
∥∥2 , (12)

Lcst-syn =
1

N

N∑
i=1

∥∥Mi · (D̄d,i −Dn,i)
∥∥2 , (13)

Lcst = Lcst-real + Lcst-syn, (14)

where Mi is the mask generated from the pseudo-segmentation map, and each
pair Dd−D̄n, D̄d−Dn is the depth prediction from each real-day-synthetic-night
and synthetic-day-real-night pair respectively. Since depth predictions in the
daytime domain (Dd, D̄d) are typically more accurate than those in the nighttime
domain, we exploit them as pseudo-labels to align the depth predictions of the
nighttime domain.

Day Depth Distillation Loss. To address the problem of detrimental effects
on daytime domain performance when training models across daytime and night-
time domains, we make use of pseudo-labels generated from a daytime MDE
model that is exclusively trained on daytime images. These daytime pseudo-
labels are aimed at refining the depth estimation network to align more precisely
with the unique features of the daytime domain.

The day depth distillation loss Lds based on the daytime pseudo-labels D̂d

is as follows.

Lds =
1

N

N∑
i=1

∥∥∥Dd,i − D̂d,i
∥∥∥2 + (1− SSIM(Dd, D̂d)). (15)
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Knowledge-Distilled SS Loss. To train the segmentation network, we lever-
age pseudo-labels generated by an off-the-shelf SS model, rather than relying on
ground-truth pixel-level segmentation masks. However, pseudo-labels also inher-
ently carry the risk of incorporating errors from the off-the-shelf model. This risk
is particularly noticeable under challenging lighting conditions such as nighttime
scenarios. In order to deal with this problem, we incorporate a confidence thresh-
olding mechanism for selectively including only pixels whose pseudo-labels have
the predicted probability, i.e. confidence level, above a specific threshold in the
cross-entropy loss as below.

LCE(y, p) =

N∑
i=1

C∑
c=1

1(yic>τ) · yic · log(pic), (16)

where N is the total number of pixels, C is the number of semantic classes, pic
is the prediction for pixel i belong to class c, yic is the generated pseudo-label,
and τ is the threshold set to 0.1 in our experiments. Our segmentation loss is
then defined as

Lseg = LCE(y
d, pd) + LCE(y

d, p̄n) + LCE(y
n, pn), (17)

where yd, and yn are the SS pseudo-labels for real day and real night respectively,
pd, p̄n are our model’s predictions for real-day-synthetic-night pairs. Similar
to the self-supervised depth loss, we also expose our model to real night SS
conditions by prediction on real night domain pn.

Total Loss. Our total loss is defined as

L = αlightLlight + αsfLsf + αcstLcst + αdsLds + αsegLseg, (18)

where αlight, αsf, αcst, αds, and αset are set to 0.01, 1.0, 1.0, 1.0, and 1.0.

4 Experiments

4.1 Datasets

In line with previous practice [15,16,28,37,45], we use large-scale Oxford Robot-
Car [32] and NuScenes [4] driving datasets in this paper (see Appendix for de-
tails).

4.2 Implementations

Our method is implemented in the PyTorch [33] framework. We follow the net-
work architecture of [17] with a standard shared ResNet-18 [22] encoder and
two decoders for depth and SS with skip connections. The Adam optimizer with
an initial learning rate of 2.5e−4 is used to train our model through 40 epochs
with a batch size of 4 and with each epoch taking approximately 0.5 hours on
a GeForce RTX 4090 24 GB GPU. We utilize the popular Mask2Former [8], in
particular, the model trained with Cityscapes [11], and Monodepth2 [17] as the
SS and daytime depth teacher models, respectively.
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Table 1: Depth on Oxford RobotCar (depth = 40 m). Best: bold, second best:
underlined. Our multi-task model achieves the best or second-best performance
compared to depth-specifically-optimized dedicated SOTA methods.

Night - Oxford RobotCar
Method

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE
log↓

δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Monodepth2 [17] (day) 0.477 5.389 9.163 0.466 0.351 0.635 0.826
Monodepth2 [17] (night) 0.661 25.213 12.187 0.553 0.551 0.849 0.914
HR-Depth [31] 0.512 5.800 8.726 0.484 0.388 0.666 0.827
ADDS-DepthNet [28] 0.233 2.344 6.859 0.270 0.631 0.908 0.962
Ours 0.195 1.714 5.936 0.240 0.734 0.917 0.970

Day - Oxford RobotCar
Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE

log↓
δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Monodepth2 [17] (day) 0.117 0.673 3.747 0.161 0.867 0.973 0.991
Monodepth2 [17] (night) 0.306 2.313 5.468 0.325 0.545 0.842 0.937
HR-Depth [31] 0.121 0.732 3.947 0.166 0.848 0.970 0.991
ADDS-DepthNet [28] 0.109 0.584 3.578 0.153 0.880 0.976 0.992
Ours 0.113 0.604 3.490 0.161 0.865 0.974 0.991

4.3 Results and Discussions

Depth on Oxford RobotCar. Table 1 shows evaluation scores for differ-
ent depth estimation models on both nighttime and daytime scenes of this
Oxford RobotCar dataset. It is worth mentioning that the Monodepth2, HR-
Depth [31], and ADDS-DepthNet [28] models are single-task models designed
and optimized for this specific MDE task. In the nighttime scene up to 40 m,
Monodepth2 trained with the daytime and nighttime splits achieved an abso-
lute relative score of 0.477 and 0.661, respectively. HR-Depth achieved a score
of 0.512, ADDS-DepthNet achieved a score of 0.233, and our model achieved a
score of 0.195. In the daytime scene up to 40 m, Monodepth2 achieved a score of
0.117 and 0.306 respectively for the trained daytime and nighttime splits. HR-
Depth achieved a score of 0.121, ADDS-DepthNet achieved a score of 0.109, and
our model achieved a score of 0.113. The results also emphasize the increased
difficulty of the nighttime scene compared to the daytime scene. Overall, our
model performed relatively well in both nighttime and daytime scenes, with the
lowest score achieved for the nighttime scene and on par with HR-Depth for
the daytime scene. It is important to highlight that our model, unlike the other
methods, is not a single-task model tailored solely for this task. This suggests
that our model may have a more robust performance across different scenarios.

Depth on nuScenes. Table 2 provides a comparison of the models’ perfor-
mance in estimating depth in different lighting conditions on two scenarios: “day-
clear” and “night” in the nuScenes dataset. Monodepth2 consistently achieved
relatively good accuracy in both scenarios. RNW [38] and STEPS [45] performed
slightly lower than Monodepth2. PackNet-SfM showed better performance than
Monodepth2, RNW, and STEPS. md4all achieved the lowest scores, partially
thanks to the additional velocity supervision. To provide further insights into
multi-task models, we integrated a semantic encoder into the Monodepth2 base-
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Table 2: Depth on nuScenes (depth = 80 m). Best: bold, second best: underlined,
M: monocular self-supervised, v: velocity supervision on PoseNet based on odom-
etry. Our multi-task model performs relatively well in both night and day.

Method Train day-clear - nuScenes night - nuScenes
Abs Rel↓ RMSE↓ δ < 1.25↑ Abs Rel↓ RMSE↓ δ < 1.25↑

Monodepth2 [17] M 0.137 6.692 0.850 0.283 9.729 0.518
Monodepth2-naive M 0.215 9.256 0.660 0.256 11.018 0.565
RNW [38] M 0.287 9.185 0.562 0.333 10.098 0.437
PackNet-SfM [21] M 0.157 7.230 0.826 0.262 11.063 0.566
STEPS [45] M 0.258 9.864 0.858 0.287 9.120 0.572
md4all [16] M+v 0.137 6.452 0.846 0.192 8.507 0.710
Ours M 0.151 6.712 0.816 0.211 8.899 0.661

line to construct a basic multi-task model for depth estimation and SS. The
results from this multi-task Monodepth2-naive model indicate that the naive
multi-task approach decreased the performance of Monodepth2 itself in both
day and night conditions, compared to the comprehensive mechanisms for multi-
task learning employed in our model. Our model performed relatively well, with
scores similar to PackNet-SfM and Monodepth2 in both scenarios. Neverthe-
less, the models’ performance provides insights into their relative strengths and
weaknesses in different lighting conditions. In general, compared with Oxford
RobotCar, nuScenes is much more challenging for all the models. Once again, it
is worth mentioning that except for our model and Monodepth2-naive, all other
models are single-task models customized for this specific task.

Semantic Segmentation on nuScenes and Oxford RobotCar. Table 3
provides the mean Intersection over Union (mIoU) and the accuracy of various
semantic classes of two models, the optimized SS teacher model Mask2Former
and our multi-task depth and SS student model, on day and night scenes of
nuScenes and Oxford RobotCar.

For the nuScenes dataset, Mask2Former achieved mIoU scores of 68.31 and
39.71 during the day and night, respectively. In terms of individual class accu-
racy, Mask2Former performed well in road, vegetation, car, and truck classes.
Meanwhile, we achieved lower mIoU scores of 57.74 during the day and 35.05 in
nighttime, performing relatively well in road, vegetation, car and terrain classes.

As for the Oxford RobotCar dataset, we recorded mIoU scores of 64.31 during
the day and 49.73 during the night, and delivered well in road, car, building, and
sidewalk classes. Due to the unavailability of ground-truth labels, the results were
calculated using Mask2former results as the ground-truth.

Overall, Mask2Former generally achieved higher accuracy in both datasets as
expected for a teacher model. Our method showed competitive performance in
various semantic classes, especially in the nuScenes dataset. However, it is impor-
tant to consider the limitations of using Mask2Former results as the ground-truth
for the Oxford RobotCar dataset. The multi-task nature of our method, combin-
ing depth and SS, suggests its potential for more comprehensive understanding
of the scenes.
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Table 3: Semantic segmentation. Our multi-task model delivers competitive
performance in various semantic classes against the semantic-segmentation-
dedicated teacher model.

(a) nuScenes (based on ground-truth labels).
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Mask2Former [8] Day 68.31 95.97 58.52 28.41 86.59 62.34 60.76 77.29 76.62
Ours Day 57.74 93.15 41.02 25.09 82.45 57.44 40.47 68.61 54.18

Mask2Former [8] Night 39.71 87.14 32.14 24.68 67.34 27.62 7.42 58.36 12.94
Ours Night 35.05 86.37 37.24 5.93 67.94 12.93 1.91 61.23 6.81

(b) Oxford RobotCar (based on pseudo-labels by Mask2Former).
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Ours Day 64.31 97.52 70.12 88.36 24.05 8.35 37.70 70.19 92.99 89.5

Ours Night 49.73 91.36 49.93 73.54 43.85 11.3 13.88 62.19 19.67 81.86

Qualitative Results. Figure 3 visualizes depth and SS predictions for some
representative day and night scenes on nuScenes and Oxford RobotCar. The
depth maps generated by our model show clear distinctions and relative dis-
tances between objects such as cars and traffic lights even at night, while the
segmentation maps also correctly identify and classify the objects and bound-
aries of the cars and road with appropriate semantic labels. The results highlight
the ability of our multi-task model in seamless integration of MDE and SS for
producing visually consistent and coherent perception.

Computational Efficiency. By comparing the GMACs, number of parame-
ters, and inference time of these models (Table 4), it is evident that our multi-task
model achieves a 10x higher computational efficiency with fewer computations
and parameters compared to a naive combination of 2 single-task models while
maintaining a similar level of performance in terms of depth estimation and SS.
This highlights the advantage of combining multiple tasks into a single model,
resulting in improved computational efficiency without sacrificing performance.

4.4 Ablation Study

We analyze the performance of our method by examining different variants with
the core components of the light enhancement module, the day depth distilla-
tion, and the SS distillation of the real and synthetic domains on nuScenes. As
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(a) Depth on nuScenes.

(b) Semantic segmentation on nuScenes.

(c) Depth on Oxford RobotCar. (d) Semantic segmentation on RobotCar.

Fig. 3: Qualitative results on nuScenes and Oxford RobotCar. Our results display
clear depth and correct classification of the objects and their sharp boundaries
in both day and night scenes.

shown in Table 5, the light enhancement module helped lead to an improve-
ment in both depth and SS in both day and night, with a few exceptions of
performance drop in RMSE and δ in the nighttime depth, highly likely due to
synthetic artifacts. Similarly, the day depth distillation proved its substantial
role in boosting the model’s overall performance in all the metrics, again except
for night depth’s RMSE. Domain selection in the SS distillation confirmed that
the combination of 3 domains of real day, synthetic night, and real night offered
better representations for more stable performance.
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Table 4: Computational efficiency on a GeForce RTX 4090 24 GB GPU. A ten-
fold computational speedup can be achieved with our multi-task model compared
to a naive combination of two single-task models.

GMACs Number of parameters (M) Time (s)

Model Light
Enhance
Module

Encoder Depth
Decoder

Seg
Decoder

Total Light
Enhance
Module

Encoder Depth
Decoder

Seg
Decoder

Total

Ours (depth+semantics) 20.573 6.699 5.358 6.254 38.884 0.167 11.177 3.153 3.192 17.688 0.0020

Monodepth2 [17] (depth) - 6.699 5.358 - 12.057 - 11.177 3.153 - 14.330 0.0016

Mask2Former [8] (semantics) - - - - 152.639 - - - - 209.660 0.0267

Table 5: Ablation study on nuScenes. LE: light enhancement, PD: day depth dis-
tillation, SN: synthetic night, RN: real night (real day images always included).

Variant day-clear - nuScenes night - nuScenes

RN SN LE PD mIoU Abs Rel↓ RMSE↓ δ < 1.25↑ mIoU Abs Rel↓ RMSE↓ δ < 1.25↑

✓ ✓ ✓ 56.26 0.157 6.897 0.811 34.95 0.210 8.803 0.668
✓ ✓ ✓ 55.39 0.155 6.761 0.811 35.43 0.211 8.747 0.666
✓ ✓ ✓ 54.14 0.156 6.760 0.812 34.42 0.214 8.794 0.655
✓ ✓ ✓ 56.13 0.166 7.115 0.803 33.87 0.214 8.765 0.651
✓ ✓ ✓ ✓ 57.74 0.151 6.712 0.816 35.05 0.211 8.899 0.661

4.5 Limitations

The use of synthetic day or night images instead of all-real images in the day-
night input image pairs in training poses certain limitations for our model, as
synthetic images may not accurately capture the complexities and variations
present in real-world day and night scenes. Relying on a daytime depth teacher
model is also another limitation. Additionally, using a simple ResNet-18-based
network architecture in line with previous methods for ease of comparison may
result in limited capability compared to complex networks with attention and
adaptive convolutions.

5 Conclusion

In this work, we presented DepthSegNet24, a unified approach for robust around-
the-clock MDE and SS. Our model delivers consistent performance in diverse
lighting conditions by leveraging self-supervised learning, knowledge distillation,
synthetic and real day-night image pairs, and light enhancement. This work
helps contribute to applications such as autonomous driving and robotics, where
a comprehensive understanding of the scene is crucial. We are now improving
the model’s architecture and investigating additional datasets and scenarios to
enhance the model’s generalization ability.
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