
Parameter-Selective Continual
Test-Time Adaptation

Jiaxu Tian1 and Fan Lyu2⋆

1 Unmanned System Research Institute, Northwestern Polytechnical University
2 New Laboratory of Pattern Recognition, Institute of Automation, Chinese

Academy of Sciences
jiaxutian@neau.edu.cn fan.lyu@cripac.ia.ac.cn

Abstract. Continual Test-Time Adaptation (CTTA) aims to adapt a
pretrained model to ever-changing environments during the test time un-
der continuous domain shifts. Most existing CTTA approaches are based
on the Mean Teacher (MT) structure, which contains a student and a
teacher model, where the student is updated using the pseudo-labels
from the teacher model, and the teacher is then updated by exponen-
tial moving average strategy. However, these methods update the MT
model indiscriminately on all parameters of the model. That is, some
critical parameters involving sharing knowledge across different domains
may be erased, intensifying error accumulation and catastrophic for-
getting. In this paper, we introduce Parameter-Selective Mean Teacher
(PSMT) method, which is capable of effectively updating the critical
parameters within the MT network under domain shifts. First, we in-
troduce a selective distillation mechanism in the student model, which
utilizes past knowledge to regularize novel knowledge, thereby mitigat-
ing the impact of error accumulation. Second, to avoid catastrophic for-
getting, in the teacher model, we create a mask through Fisher infor-
mation to selectively update parameters via exponential moving aver-
age, with preservation measures applied to crucial parameters. Exten-
sive experimental results verify that PSMT outperforms state-of-the-art
methods across multiple benchmark datasets. Our code is available at
https://github.com/JiaxuTian/PSMT.

Keywords: Continual test-time adaptation · Parameter-selective method
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1 Introduction

Continual Test-Time Adaptation (CTTA) [46,26] is a novel task that involves
adapting a pretrained source model during the testing time under continuous
domain shifts. For any deployed model, CTTA is valuable since it maintains
the model in dynamic real-world environments where data distributions can
vary significantly over time. CTTA has been studied in many applications, such
as surveillance systems [15], automated driving systems [52,2], medical image
segmentation [5] and natural catastrophes [41].
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Fig. 1: (a) In traditional MT-based methods, all parameters are updated, which
can be problematic for CTTA task. This approach may result in the phenomenon
of error accumulation. (b) Our method improves on the issue of updating crucial
parameters by selectively restoring them instead. The student model focuses on
acquiring new knowledge efficiently, while the teacher model is dedicated to
reinforcing previous knowledge.

To enable a deployed model to adapt under unsupervised domain changes,
a well-proved architecture, i.e. mean teacher (MT) [43], is used. MT meth-
ods [46,8,48,40,3,51,37] build a teacher model to provide pseudo labels for a
student model of the same structure. The student model learns from these
pseudo labels, improving its predictions towards these provided labels. For in-
stance, CoTTA [46] employs weight-averaged and augmentation-averaged predic-
tions to address challenges of error accumulation [4] and catastrophic forgetting
[31,10,35], effectively maintaining essential foundational knowledge and adapt-
ing to domain shifts [39,24]. RMT [8] method adopts symmetric cross-entropy
loss [49] over traditional cross-entropy loss [29] for self-training [21,38], further
enhancing robustness against frequent and varied domain shifts.

Although existing methods based on MT approach excel in CTTA tasks,
they always update the teacher and the student model undergoes the whole pa-
rameters for adaptation (as illustrated in Fig. 1(a)). Liu et al. [22] indicate that
in over-parameterized neural networks, only a subset of parameters is truly ef-
fective, while the remainder may even deteriorate model performance. Inspired
by this, in CTTA tasks, we assume crucial parameters exist in the neural net-
work that are crucial for representing the shared information across different
tasks, and these parameters are only a small part of the whole model. Updating
crucial parameters indiscriminately may lead to the overwriting of overlapping
knowledge from previous and current tasks, which results in catastrophic for-
getting [31,10,28,27] and the accumulation of errors [4]. Thus, parameters may
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misalign the model’s ability that perform well on original tasks, ultimately di-
minishing the model’s effectiveness in CTTA tasks.

To tackle the above issue, we propose a novel approach termed Parameter-
Selective Mean Teacher (PSMT) under the crucial parameter assumption. As
shown in Fig. 1(b), guided by the objective of retaining crucial parameters, in the
MT structure, we select the Fisher information for identifying important parame-
ters. Specifically, the core concept of PSMT revolves around the dynamic update
of both the teacher and student models. First, the student model dynamically
calculates the importance of model parameters in response to new data, apply-
ing regularization to maintain previously learned tasks, thus reducing the risk of
overfitting [11]. Second, the teacher model focuses on parameter restoration by
selectively preserving crucial parameters during learning progress, which helps in
stabilizing past knowledge and reducing catastrophic forgetting. Overall, PSMT
balances the need for model adaptation to new information while preserving the
integrity of previously acquired knowledge, thereby effectively mitigating the
issues of catastrophic forgetting and error accumulation. Experimental results
clearly demonstrate that PSMT outperforms existing state-of-the-art methods.

In summary, our main contributions of this paper are as follows:

– We propose a Parameter-Selective Mean Teacher (PSMT) method that dy-
namically selects crucial parameters for effective update in the test-time
adaptation.

– We introduce a parameter-selective mechanism to update the student model,
which utilizes this mechanism to regularize past and existing knowledge,
thereby effectively preventing overfitting of current knowledge.

– We introduce a parameter-selective mechanism to update the teacher model,
a mechanism that quantifies the importance of parameters to retain the
crucial ones selectively. This mechanism enhances stability when learning
new tasks and ensures the preservation of previously acquired knowledge.

2 Related Work

2.1 Continual Test-Time Adaptation

The goal of CTTA [46,42] is to continuously adapt a pretrained source model
to changing target domains, utilizing unlabeled data from these new environ-
ments, thereby mitigating performance degradation due to domain shifts [39,24].
CoTTA [46] emerged as a pioneering effort to tackle the problem of CTTA,
utilizing the MT approach [43], CoTTA improves the quality of pseudo-labels
[20] with weight-averaged predictions and employs a stochastic parameter reset
mechanism, selectively restoring model parameters to mitigate knowledge loss
during significant domain shifts. Building on CoTTA’s groundwork, PETAL [3]
proposed a comprehensive probabilistic framework. Distinguishing itself with a
data-driven parameter restoration technique [9] based on the Fisher informa-
tion matrix (FIM), PETAL efficiently combats catastrophic forgetting. Wang et
al. [48] introduced a novel Dynamic Sample Selection method for CTTA that
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effectively mitigates error accumulation by employing dynamic thresholding to
distinguish between high and low-quality samples. While existing methods based
on the MT demonstrate commendable performance in CTTA tasks, the inher-
ent mechanism of updating crucial parameters throughout successive iterations
invariably leads to error accumulation [4] and catastrophic forgetting [31,10,35].

2.2 Parameter Selection in Neural Network

In neural networks, the phenomenon of over-parameterization [22] is often ob-
served, where only a subset of the parameters contributes to the network’s per-
formance. Consequently, numerous methods have been developed to address this
issue. Among these methods, gradient accumulation [1] evaluates the significance
of parameters based on the accumulated sum of the squared gradients during
training, and sensitivity analysis [6], on the other hand, measures the effect of
infinitesimal changes in parameters on the output, identifying parameters that
significantly affect the network’s behaviour. However, gradient accumulation and
sensitivity analysis need large computational costs and lack a robust theoretical
basis that connects to optimization methods in neural network training [14].

Fisher Information (FI) is a concept in statistical estimation theory, where
it measures the sensitivity of the likelihood function to changes in model pa-
rameters and quantifies how much information observed data provides about a
parameter within a model. Moreover, FI is supported by theoretical underpin-
nings in statistical estimation theory. For instance, Ly et al. [25] demonstrated
how FI can be instrumental in pinpointing models that perform best on a given
dataset, playing a crucial role in preventing both overfitting [11] and under-
fitting [16]. Liu et al. [23] argued that FI can lead to improved outcomes by
leveraging curvature information. This perspective underscores the FI’s capabil-
ity to provide a more nuanced understanding of the parameter space, potentially
enhancing model optimization [17]. However, existing FI methods are mainly fo-
cused on scenarios with labels [47], rarely applying them in situations without
labels. Recently, Niu et al. [32] proposed a weighted Fisher regularizer in the
CTTA tasks utilizing FI. This regularizer prevents significant changes in param-
eters that are important for the in-distribution domain. However, it ignores the
error accumulation issues. Instead, our PSMT studies to leverage FI in an MT
architecture, which has been proven effective to error accumulation.

3 Method

3.1 Overview

Given a model fθ0 , parameterized by θ0 and initially trained on a source dataset
DS = (XS ,YS), we consider the unlabeled target domain UT = {U1,U2, · · · ,U i,
· · · ,UN}, which consists of multiple domains. Our objective can be described
as: at time step t, the model fθt is tasked with adapting to the newly intro-
duced, the samples xt ∈ UT . Consequently, the model is expected not only to
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Fig. 2: PSMT framework: Using test samples as inputs for the student model
and augmented samples for the teacher model, PSMT enhances the student
model of existing knowledge using past knowledge. PSMT improves the tradi-
tional EMA method by selecting crucial parameters based on Fisher information.

make predictions fθt(xt) but also to undergo self-adaptation in preparation for
subsequent datasets, transitioning from θt to θt+1.

Prevalent methods for achieving this goal have predominantly employed MT
structures. These models generally involve a structure where a teacher network
guides the learning of a student network through consistency regularization,
effectively smoothing the learning trajectory over time. However, these tradi-
tional MT methods may update crucial parameters, which can lead to error
accumulation and catastrophic forgetting, significantly hampering the system’s
ability to preserve crucial parameters essential for task performance. To achieve
the aforementioned goal and address this issue, we propose a PSMT method, a
strategy that utilizes Fisher information differently in the student and teacher
models. The student model leverages Fisher information to enhance the acqui-
sition of new knowledge, focusing on efficiency in learning. Additionally, the
teacher model employs Fisher information to strengthen and stabilize previously
acquired knowledge, as depicted in Fig. 2. In the following, we illustrate the
details of our PSMT.

3.2 Student Update using Selective Distillation

In CTTA, the conventional student model may update crucial parameters to ad-
just to changes in the domains. However, this mechanism could update crucial
parameters, which could increase the buildup of errors and lead to catastrophic
forgetting, where the model loses previously learned information. To avoid incor-
rect updates of crucial parameters, we propose a mechanism to enable real-time
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evaluation of the importance of model parameters under current conditions and
combine previously learned knowledge to regularize new knowledge.

In the methodology for calculating parameter’s importance, we select the
FIM, which is frequently utilized as a criterion for assessing the significance of
parameters. We employ the FIM as the method to evaluate the importance of
model parameters at the time t − 1. When utilizing FIM to assess the impor-
tance of model parameters, the elements on the diagonal play a crucial role.
These diagonal elements indicate the sensitivity of the data to variations in each
independent parameter, thereby reflecting the contribution of each parameter
to the model’s predictive power. Higher values on the diagonal suggest that
a parameter is more significant within the model, as this implies that small
changes in the parameter will lead to significant changes in the prediction out-
comes. To compute the FIM, it is essential to first calculate the gradient of the
log-likelihood with respect to the parameter vector θt for the predicted output
pθt−1(xt−1), where xt−1 represents a batch of past test samples. The FIM is then
formulated as follows:

F = Diag[∇ log pθt−1
(xt−1)(∇ log pθt−1

(xt−1))
T ]. (1)

Traditional distillation is conducted by the teacher model through the gener-
ation of pseudo-labels, without imposing constraints on the learning of current
knowledge. By utilizing the diagonal FIM, we can adopt certain methods to con-
strain the potential overfitting that may occur when learning new knowledge.
Quadratic constraints are particularly beneficial because they provide localized
and bounded adjustments to the parameters, maintaining continuous and dif-
ferentiable gradients that facilitate a more stable and efficient learning process.
Unlike linear constraints, which may not offer sufficient guidance for parame-
ter adjustments to improve model performance, quadratic constraints possess
desirable mathematical properties such as convexity. This ensures the possi-
bility of finding global optima and simplifies computations. Therefore, making
quadratic constraints a more robust choice for maintaining balance between pre-
serving learned knowledge and accommodating new information. Simultaneously,
inspired by [18], our quadratic constraint term is formulated as follows:

Lstu =
∑

i
Fi(θi,t − θi,t−1)

2, (2)

where Fi represents FIM associated with the ith parameter and θi,t is the current
value of the ith parameter in the model at time t. Through this mechanism, we
can enhance the performance of the student model in acquiring new knowledge,
by avoiding updates to important parameters, thereby mitigating the impact of
domain shift on the model.

3.3 Teacher Update using Selective Exponential Moving Average

The teacher model in the MT method also encounters the drawback of updating
crucial parameters. It updates through the exponential moving average (EMA):

θ
′

t+1 = δθ
′

t + (1− δ)θt+1, (3)
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where δ denotes a smoothing coefficient, θ
′

t corresponds to the teacher model at
time t and θt+1 represents the student model at time t+1. This method, which
does not employ selective updating or preservation of parameters, is likely to
lead to a decline in model performance. Thus, in situations of continual domain
shifts, it is crucial to retain the necessary parameters to prevent catastrophic
forgetting.

To retain the crucial parameters within the teacher model, we can use the
diagonal FIM to determine whether this parameter is crucial. However, it is
important to note that the input in this method is no longer the previously
existing knowledge, but rather the batch of data xt at the present time t. The
formulation of the diagonal FIM of the teacher model is as follows:

F
′
= Diag[∇ log pθt(xt)(∇ log pθt(xt))

T ]. (4)

Subsequently, we can combine the aforementioned diagonal FIM to use the fol-
lowing formula to distinguish whether the parameter is crucial:

mj =

{
1, if F

′

j < quantile(F
′
, ξ)

0, otherwise
, j = 1, 2, · · · , J, (5)

where quantile(F
′
, ξ) [44] is a threshold value which is the ξ-quantile of F

′
, pa-

rameters with FIM value less than ϵ are set to 1. These parameters are considered
significant and do not undergo an updating process. Conversely, parameters with
FIM value equal to or greater than ϵ are set to 0 and updated according to Eq.
(3) using the EMA method. Specifically, the selective EMA mechanism can be
described using the following formula:

θ
′

t+1 = m ⊙ θ
′

t + (1− m)⊙ (δθ
′

t + (1− δ)θt+1). (6)

Here, ⊙ denotes element-wise multiplication. This mechanism refines the tra-
ditional method of global parameter updating via an EMA by incorporating a
restoration approach, thereby effectively mitigating the issues of excessive model
drift and catastrophic forgetting.

3.4 Overall Update

Following CoTTA [46], we employ a distillation loss:

Lce = − 1

C

∑C

c=1
ŷ(c) log y(c), (7)

where y(c) represents the student logits, ŷ(c) denotes the teacher logits, and C
signifies the number of categories.

All in all, in the ongoing process of model self-adaptation, the update is
implemented using the loss formulated as follows:

L = Lce + λLstu. (8)
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Algorithm 1 The Proposed PSMT at time t

Input: Unlabeled test data xt.
Init Model: Pretrained model fθ0 , teacher model f

θ
′
0
.

Prediction:
1: Augment input xt and generate pseudo-labels from the teacher model;
2: Prediction from student model;
3: Prediction ŷ from teacher model;
4: Compute consistency loss in Eq. (7);

Adaptation:
5: Compute FIM in student model via Eq. (1);
6: Compute student loss by Fisher information in Eq. (2);
7: Update student model by selective distillation in Eq. (8);
8: Compute FIM in teacher model via Eq. (4);
9: Compute mask m in Eq. (5);

10: Update teacher model by selective EMA via Eq. (6);
Output: ŷ

As shown in Algorithm 1, our entire process consists of learning regularized
new knowledge and recovering important parameters, which together define our
PSMT method. In this method, the data at time t is predicted, followed by an
adaptation using the predicted outcomes. Our proposed algorithm is articulated
in lines 7 and 10 of Algorithm 1. Line 7 corresponds to selective distillation, and
line 10 executes selective EMA operations by selecting crucial parameters.

4 Experiment

4.1 Experimental Setting

Datasets. We evaluate our method on CIFAR10C, CIFAR100C, and ImageNet-
C [13], which are corrupted variants of the original CIFAR10 [19], CIFAR100
[19], and ImageNet [7], respectively. These modified datasets include real-world
image corruptions to test resilience across different conditions. For the standard
CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-ImageNet-
C tasks, we employ a source model to adapt to fifteen different target domains
with a corruption severity level of 5. Furthermore, in the case of gradually chang-
ing tasks, we apply the three datasets previously described, with corruption
severity levels increasing from 1 to 5, then subsequently decreasing back to 1. In
addition, for the ImageNet-C dataset, our methodology extends to performing
analyses across ten different sequences, all at a corruption severity of 5.
Implementation details. We set up our classification task experiments fol-
lowing CoTTA [46], and we conducted Fisher information visualization tasks
to verify the effectiveness of our approach in retaining crucial parameters. In
our experiments, CIFAR10C is mapped to WideResNet-28 [53], CIFAR100C to
ResNeXt-29 [50], and ImageNet to ResNet-50 [12]. We follow the hyperparam-
eter configuration as outlined in [46]. The batch size is 200 for experiments.
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Table 1: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C
online continual test-time adaptation task.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method GS ST IP DF GA MO ZM SN FT FG BT CT ES PE JG Avg

Source [53] 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
BN Adapt [36] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
SAR [33] 28.3 26.0 35.8 12.7 34.8 13.9 12.0 17.5 17.6 14.9 8.2 13.0 23.5 19.5 27.2 20.3
TENT-cont [45] 24.8 20.6 28.5 15.1 31.7 16.9 15.6 18.3 18.3 18.1 11.0 16.8 23.9 18.6 23.9 20.1
EATA [32] 24.3 19.1 27.0 12.4 29.9 13.9 11.8 16.5 15.5 15.0 9.4 12.5 21.6 16.8 21.0 17.8
CoTTA [46] 24.4 21.7 26.2 11.8 27.8 12.2 10.4 14.8 14.3 12.6 7.5 10.9 18.5 13.5 17.7 16.3
PETAL [3] 23.4 21.1 25.7 11.7 27.2 12.2 10.3 14.8 13.9 12.7 7.4 10.5 18.1 13.4 16.8 15.9
LAW [34] 24.5 19.0 25.4 12.8 26.8 13.5 10.4 14.2 13.5 13.0 8.5 10.2 17.5 12.3 15.4 15.8
DSS [48] 24.1 21.3 25.4 11.7 26.9 12.2 10.5 14.5 14.1 12.5 7.8 10.8 18.0 13.1 17.3 16.0
Ours 22.8 18.9 23.2 11.2 24.4 12.3 10.2 13.7 13.0 11.4 7.8 9.5 16.2 11.8 15.4 14.8

Table 2: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C
online continual test-time adaptation task.
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method GS ST IP DF GA MO ZM SN FT FG BT CT ES PE JG Avg

Source [53] 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN Adapt [36] 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4
SAR [33] 40.5 34.9 37.1 25.7 37.2 28.1 25.6 31.9 30.9 35.9 25.1 27.8 31.8 29.0 37.3 31.9
TENT-cont [45] 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9
EATA [32] 37.2 36.8 37.4 28.0 37.6 30.3 27.3 32.6 32.0 35.7 27.1 29.2 33.8 29.6 37.9 32.8
CoTTA [46] 40.8 38.2 39.9 27.3 37.9 28.3 26.4 33.5 32.2 40.2 25.0 26.9 32.4 28.3 33.9 32.7
PETAL [3] 38.3 36.4 38.6 25.9 36.8 27.3 25.4 32.0 30.8 38.7 24.4 26.4 31.5 26.9 32.5 31.5
LAW [34] 40.4 36.2 37.9 25.8 37.0 27.4 25.1 30.6 29.2 36.6 24.4 27.0 31.2 27.9 34.8 31.4
DSS [48] 39.7 36.0 37.2 26.3 35.6 27.5 25.1 31.4 30.0 37.8 24.2 26.0 30.0 26.3 31.1 30.9
Ours 39.6 35.3 37.1 26.2 34.0 27.8 25.4 29.0 28.5 34.1 24.7 26.1 28.8 25.9 28.9 30.1

Additionally, for the weight balancing parameter, λ is set to 500. All experi-
ments were conducted on an NVIDIA 4090 GPU using PyTorch version 1.13.0
and CUDA version 11.7.

4.2 Major Results

4.2.1 Comparison with State-of-the-art Methods

The results for the CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C and Ima-
geNet-to-ImageNet-C datasets are respectively shown in Table 1, Table 2 and
Table 3. In this table, we abbreviate Gaussian, shot, impulse, defocus, glass,
motion, zoom, snow, frost, fog, brightness, contrast, elastic, pixelate and jpeg as
GS, ST, IP, DF, GA, MO, ZM, SN, FT, FG, BT, CT, ES, PE, JG respectively.
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Table 3: Classification error rate (%) for the standard ImageNet-to-ImageNet-C
online continual test-time adaptation task.
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method GS ST IP DF GA MO ZM SN FT FG BT CT ES PE JG Avg

Source [12] 95.3 94.6 95.3 84.9 91.1 86.8 77.2 84.4 80.0 77.3 44.4 95.6 85.2 76.9 66.7 77.2
BN Adapt [36] 87.6 87.4 87.8 87.7 88.0 78.2 64.5 67.6 70.6 54.9 36.4 89.3 58.0 56.4 66.6 66.2
SAR [33] 82.0 80.9 81.1 81.2 81.0 69.4 57.8 61.9 65.5 49.1 34.4 77.0 53.5 48.1 55.7 65.2
TENT-cont [45] 85.7 80.0 78.3 82.2 79.2 70.9 59.1 65.6 66.4 55.4 40.6 80.3 55.5 53.5 59.0 67.4
EATA [32] 82.4 76.9 73.9 77.4 73.1 63.9 54.0 60.9 61.2 49.1 36.0 67.3 49.4 45.6 49.9 61.4
CoTTA [46] 84.6 82.0 80.8 81.1 78.9 68.6 57.9 60.5 60.9 47.8 35.7 65.8 47.2 41.0 45.5 62.6
PETAL [3] 87.4 85.8 84.1 84.8 83.6 72.9 62.2 64.0 63.3 51.6 40.2 72.5 51.4 46.0 50.8 66.7
LAW [34] 80.7 73.7 70.9 77.8 73.8 64.0 54.9 57.7 60.6 46.8 36.4 67.9 48.5 45.1 48.7 60.5
DSS [48] 84.6 80.4 78.7 83.9 79.8 74.9 62.9 62.8 62.9 49.7 37.4 71.0 49.5 42.9 48.2 64.6
Ours 79.9 76.8 74.4 77.4 76.8 65.6 54.9 57.0 60.5 45.7 36.5 61.7 47.9 40.8 42.4 59.9

From these three tables, we can make several observations. Firstly, it is noted
that some methods perform commendably on the CIFAR100C dataset in Table
2, such as PETAL and EATA. PETAL’s superior performance is attributed to
its utilization of Fisher information to restore knowledge from the pretrained
model, which rendered it more effective than CoTTA. However, this method
simply utilizes Fisher information. EATA [32] also employs Fisher regularization
to mitigate the issue of forgetting, but EATA does not incorporate Fisher infor-
mation to the mean teacher architecture, which has been verified effectiveness
in many unsupervised learning. Secondly, our proposed method has surpassed
SOTA across multiple domains in these three datasets. For instance, in the CI-
FAR10C dataset, our error rate is recorded at 14.8%, compared to the current
state-of-the-art, which stands at 15.8%. This improvement is due to the effec-
tive prevention of key parameter updates during the model’s adaptive process,
facilitated by our Fisher information in the student model and teacher model,
thereby validating the efficacy of our proposed method. Lastly, it is also observed
that our method exhibits certain limitations. For example, in the motion and
brightness domains across the three datasets, our performance is slightly inferior
to that of SOTA, a deficiency still likely caused by error accumulation.
4.2.2 10 Different Orders of CTTA Loops

Furthermore, to more effectively validate the robustness of our method and align
our evaluation with CoTTA, we also conduct experiments on 10 different types
of corruption sequences at corruption level 5, as depicted in Fig. 3. Our method
reduces the average classification error rate to 58.5%, marking a 4.2% improve-
ment over PETAL. This outcomes further demonstrate better performance of
our method in CTTA tasks.
4.2.3 Forgetting Evaluation

We conduct experiments on five specific scenarios (fog, snow, frost, brightness,
and pixelate) at corruption level 5 across three rounds. The purpose of the exper-
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Table 4: Classification error rate (%) for three round of the CIFAR10-to-
CIFAR10C online continual test-time adaptation task.
Round 1 2 3

Method FG SN FT BT PE FG SN FT BT PE FG SN FT BT PE Avg

Source [12] 26.0 25.1 41.3 9.3 58.5 26.0 25.1 41.3 9.3 58.5 26.0 25.1 41.3 9.3 58.5 32.0
BN Adapt [36] 14.9 17.5 17.6 8.2 19.5 14.9 17.5 17.6 8.2 19.5 14.9 17.5 17.6 8.2 19.5.6 15.5
SAR [33] 14.9 17.5 17.6 8.2 19.5 14.9 17.5 17.6 8.2 19.5 14.9 17.5 17.6 8.2 19.5 15.5
TENT-cont [45] 13.1 15.6 15.4 8.8 16.2 14.1 17.0 17.8 10.2 16.9 14.9 16.9 17.0 10.5 17.3 14.8
EATA [32] 13.2 15.3 15.0 8.2 15.0 12.4 14.3 14.4 8.5 14.9 12.7 14.3 14.2 8.9 15.6 13.1
CoTTA [46] 14.6 15.4 15.4 7.7 15.6 13.7 14.7 14.9 7.6 14.9 13.7 14.6 14.5 7.6 14.5 13.3
PETAL [3] 14.1 15.3 15.1 7.6 15.3 13.8 14.7 14.8 7.6 15.0 13.6 14.3 14.1 7.4 14.8 13.2
LAW [34] 14.9 15.1 14.2 8.8 13.0 14.1 14.4 13.7 8.7 12.8 13.8 14.1 13.4 8.4 13.5 12.9
DSS [48] 13.2 15.3 15.2 8.0 13.8 12.9 14.9 14.8 8.0 13.6 12.6 14.7 14.4 7.7 13.1 12.8
Ours 13.4 14.9 14.5 7.9 13.6 10.7 12.6 13.0 7.7 12.6 10.1 11.8 12.1 7.5 11.6 11.6

iment is to verify whether our method can effectively mitigate the challenge of
catastrophic forgetting. As shown in Table 4, several observations can be made.
First, our method demonstrates a reduction in error rates for each scenario after
every learning round, achieving an average error rate of 11.6%. This indicates
that our approach can mitigate the phenomenon of catastrophic forgetting. Sec-
ond, we also observe that in the brightness scenario, our method performs worse
than the state-of-the-art in the first and second rounds. We attribute this to the
possible occurrence of error accumulation.

We conducted experiments to verify forgetting for source domain and results
are shown in Fig. 4. It can be observed that the accuracy of our method shows
a stable upward trend, whereas the accuracy of CoTTA is not stable, indicating
that CoTTA is less effective in maintaining the stability of source domain.

4.3 Results on Gradual Test-Time Adaptation

In addition to the aforementioned scenarios where the degree of corruption
suddenly changes, we also conduct tests on the CIFAR10C, CIFAR100C, and
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Table 5: Online mean classification errors (%) for gradually changing CIFAR10-
to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-ImageNet-C.

Source[12] BN Adapt [36] TENT-cont[45] CoTTA [46] LAW [34] Ours
CIFAR10C 24.7 13.7 20.5 10.9 10.1 9.1
CIFAR100C 33.6 29.9 74.8 27.0 27.0 25.4
ImageNet-C 58.4 48.3 46.4 43.6 40.5 40.0

Table 6: Ablation Study on the contribution of different modules. SD, SEMA
represent the selective distillation and selective EMA, respectively.

No. SD SEMA CIFAR10C CIFAR100C ImageNet-C

1 - - 16.3 32.7 62.6
2 ✓ - 15.0 30.6 60.7
3 - ✓ 15.8 31.0 61.1
4 ✓ ✓ 14.8 30.1 59.9

ImageNet-C datasets for the task of gradual test-time adaptation [30] (GTTA).
Unlike CTTA, GTTA features a gradual transition in the level of corruption
across each type of corruption, as detailed below:

· · · → 2 → 1︸ ︷︷ ︸
Domain t−1

domain−−−−→
change

1 → 2 → · · · → 5 → · · · 1︸ ︷︷ ︸
Domain t,gradually changing severity

domain−−−−→
change

1 → 2 → 3 · · ·︸ ︷︷ ︸
Domain t+1 and on

.

Table 5 illustrates that our method achieves the lowest average classification
error rates across these three datasets, recording 9.1% for CIFAR10C, 25.4% for
CIFAR100C, and 40.0% for ImageNet-C. Our approach yields enhancements of
1%, 1.6%, and 0.5% over the LAW method for these datasets, respectively.

4.4 Ablation Study and Analysis

4.4.1 Effect of Each Module

We conduct a series of ablation experiments on CIFAR10C, CIFAR100C, and
ImageNet-C to verify the contributions of different modules within our method.
In Table 6, it is observable that upon incorporating the selective distillation mod-
ule, the average error rates for the three datasets decreased by 1.3%, 2.1%, and
1.9% respectively. It shows that this module helps the method quickly learn new
knowledge and reduce error accumulation. In the second experiment, we remove
the selective distillation module to elucidate the effect of solely incorporating the
selective EMA module. Although the error reduction is smaller than the previous
module, it still helps alleviate catastrophic forgetting by strengthening existing
knowledge. Upon integrating both modules into our method, the average error
classification rates for the three datasets decrease by 1.5%, 2.6%, and 2.7%, re-
spectively. These results further confirm that retaining crucial parameters helps
tackle error accumulation and catastrophic forgetting.
4.4.2 Hyperparameter Analysis
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Table 7: Mean error on varying λ.
λ CIFAR10C CIFAR100C

50 15.3 30.8
100 15.2 30.5
500 14.8 30.1
1000 14.9 30.9

Table 8: Mean error on varying ξ.
ξ CIFAR10C CIFAR100C

0.01 15.1 30.3
0.03 14.8 30.1
0.05 15.0 30.7
0.1 15.3 30.8

Table 9: Evaluation of methods’ efficiency.
Method Time(ms) Memory(GB) FLOPs(GB)

CoTTA [46] 151.93 1.23 357.06
PEATL [3] 240.18 7.54 591.03
Ours 160.03 5.35 420.09

Additionally, we conduct experiments to assess the hyperparameter λ that bal-
ances the loss function in Eq. (8). As shown in Table 7, the optimal performance
of the model on both the CIFAR10C and CIFAR100C datasets is achieved when
λ is set to 500. Concurrently, we also evaluate the hyperparameter ξ that seg-
ments crucial parameters in Eq. (5). As shown in Table 8, our method achieves
the best performance when ξ is set to 0.03.
4.4.3 Efficiency Evaluation

To evaluate the efficiency of our methods, we leverage three metrics: time (ms),
memory (GB), and FLOPs (GB). As shown in Table 9, we evaluate the three
metrics on one iteration and make several observations. First, the efficiency of
our method is comparable with some SOTA methods. The time consumption for
predicting is 160.03 ms, which is significantly faster than the PEATL method,
but slightly slower than CoTTA. Second, we find that our method has higher
memory usage. This is attributed to the storage of the FIM. Third, although
our method does not exhibit the best performance across all efficiency metrics,
it ensures robust performance without occupying excessive resources. We will
continue to optimize the efficiency of our method in the future.
4.4.4 Fisher Information Visualization

To better highlight the effects of Fisher information within our method, Fig. 5 il-
lustrates the variations in Fisher information during domain changes from source
to GS and PE to JG within the CIFAR10C dataset. By utilizing the Fisher infor-
mation of the subsequent domain minus that of the preceding domain, we assess
the effectiveness of our restoration of crucial parameters. Higher values indicate
that the parameter is significant and should be preserved. Moreover, it can be
observed that the initial high values identified by CoTTA are not maintained
during subsequent domain shifts. In contrast, selective EMA effectively preserves
crucial parameters, ensuring that the initial high values are retained even in the
presence of domain shifts. The results demonstrate that our proposed approach
effectively restores crucial parameters to prevent updating them in CTTA tasks.
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Fig. 5: The performance of Fisher information in CoTTA and selective EMA is
assessed on the CIFAR10C dataset. SEMA represents the selective EMA.

5 Conclusion

In this paper, we studied the CTTA tasks and addressed the drawback of the tra-
ditional MT method, which may harm crucial parameters. We proposed a novel
approach PSMT which consists of two modules. Firstly, we applied regularization
based on previously acquired knowledge to retain important prior knowledge,
thereby mitigating the phenomenon of error accumulation. Secondly, we created
a mask using FIM, based on which we selectively updated parameters through
EMA to preserve important parameters, thereby alleviating the phenomenon of
catastrophic forgetting. Moreover, the effectiveness of our method was validated
on extensive experiments.

Furthermore, we identified several limitations in our method. First, the noise
issues in the Fisher visualization, which we thought may be caused by error
accumulation due to CTTA across multiple domains. Additionally, the efficiency
of our method is slightly inferior compared to certain previous approaches. We
thought this reduction in efficiency may be due to the computational overhead
required for storing and utilizing FIM. We intend to address these issues in our
future work to refine and enhance the method.
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