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Abstract. Amodal Instance Segmentation (AIS) presents an intrigu-
ing challenge, including the segmentation prediction of both visible and
occluded parts of objects within images. Previous methods have often
relied on shape prior information gleaned from training data to enhance
amodal segmentation. However, these approaches are susceptible to over-
fitting and disregard object category details. Recent advancements high-
light the potential of conditioned diffusion models, pretrained on exten-
sive datasets, to generate images from latent space. Drawing inspiration
from this, we propose AISDiff with a Diffusion Shape Prior Estimation
(DiffSP) module. AISDiff begins with the prediction of the visible seg-
mentation mask and object category, alongside occlusion-aware process-
ing through the prediction of occluding masks. Subsequently, these ele-
ments are inputted into our DiffSP module to infer the shape prior of the
object. DiffSP utilizes conditioned diffusion models pretrained on exten-
sive datasets to extract rich visual features for shape prior estimation.
Additionally, we introduce the Shape Prior Amodal Predictor, which uti-
lizes attention-based feature maps from the shape prior to refine amodal
segmentation. Experiments across various AIS benchmarks demonstrate
the effectiveness of our AISDiff.

1 Introduction

Amodal perception, as described in [18], describe human’s remarkable ability
to perceive objects in their entirety despite occlusion. Building upon this con-
cept, the pioneering studies by [21,46] introduced amodal instance segmentation
(AIS). This approach aims to predict the complete shape of objects, encompass-
ing both their visible and occluded regions. Indeed, AIS exhibits vast potential
across various domains, as evidenced by its applications in robot manipulation [2]
and autonomous driving [27]. Across various AIS benchmarks [7,27,46], a multi-
tude of approaches addressing the AIS challenge have emerged in the literature.
These approaches, as evidenced by numerous studies [7, 15, 21, 23, 27, 36, 37, 39],
demonstrate the ongoing efforts to tackle this challenge.

Recent research [6,9,15,40,43] highlights the effectiveness of integrating shape
prior information in AIS. Indeed, These shape prior AIS methods typically con-
struct shape-prior knowledge from the training dataset, which is later utilized
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Fig. 1: Overall architecture of AISDiff. AISDiff predicts the visible segmentation mask
and the object category while simultaneously addressing occlusion by predicting the
occluding mask. Next, these predictions are integrated into the Diffusion Shape Prior
Estimation (DiffSP) module to establish the object’s shape prior. This shape prior is
then utilized by AISDiff to produce the amodal segmentation.

to train the AIS model. In [40], for instance, the authors employ variational
autoencoders to reconstruct amodal masks. The concept revolves around using
ground truth amodal masks, utilizing autoencoders to reconstruct them, and
storing the encoded codebooks as shape priors. Similarly, in [9], the authors also
construct a shape prior codebook but employ a vector-quantization variational
autoencoder. After establishing the shape prior, these method first predict the
coarse amodal segmentation and refine the final amodal segmentation mask us-
ing the built shape prior. However, there are limitations to these approaches.
Firstly, the shape prior tends to overfit to the training data, consequently lead-
ing to overfitting in amodal mask prediction overall. Secondly, since the shape
prior is built solely from ground truth amodal masks, it may overlook the object
category, which could provide significant supplementary information for deriving
the shape prior.

To tackle these issues, we desgin a AIS mask head with Diffusion Shape
Prior Estimation (AISDiff). The design of AISDiff is depicted in Figure 1. In
essence, AISDiff begins by predicting the visible segmentation mask and the
category of the object of interest. Simultaneously, it conducts occlusion-aware
processing by predicting the occluding mask, which is the segmentation of oc-
cluding elements within the specified ROI. Subsequently, these three pieces of
information are fed into the proposed Diffusion Shape Prior Estimation (DiffSP)
module to derive the shape prior of the object. Finally, leveraging this shape
prior, AISDiff generates the amodal segmentation.
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Specifically, DiffSP leverages the successes of conditioned diffusion models
(such as Stable Diffusion [28] and GLIDE [25]), which are pretrained on extensive
language vision datasets like LAION [33]. This enables the model to capture
rich visual features, making it suitable as prior knowledge for downstream tasks
[26, 44]. Building upon this foundation, we feed a trained conditioned diffusion
model with an ROI image containing only the visible pixels of the object of
interest, expecting the model to generate the missing parts. Additionally, an
occluding mask and a textual description of the object category is also feed
to condition the mdoel. Subsequently, the denoising process iterates T steps to
output the generated image containing the occluded parts. However, rather than
relying on the final generated pixels, DiffSP exploits on the attention mechanism
between the conditioning information and the image features. This attention
map remains relatively stable across time steps, thereby reducing the denoising
time needed to obtain the shape prior. Furthermore, we design the Shape Prior
Amodal Predictor, which learns the attention-based amodal feature map from
the acquired shape prior to predict the amodal mask segmentation.

In summary, our contributions are as follows:

– We present AISDiff, a novel AIS mask head featuring a Diffusion Shape
Prior Estimation module. This model predicts the visible segmentation mask
and category of the object while considering occlusion. It then uses these
predictions to estimate the shape prior of the object before generating the
final amodal segmentation mask.

– We propose DiffSP module, harnessing the efficacy of conditioned diffusion
models to derive the shape prior of the object of interest.

– We introduce the Shape Prior Amodal Predictor, which learns attention-
based amodal feature maps from the obtained shape prior to predict the
amodal segmentation.

2 Related Work

2.1 Amodal Segmentation

Amodal instance segmentation involves predicting an object’s shape, includ-
ing both its visible and occluded parts. Li and Malik [21] pioneered a method
aimed at addressing AIS. They proposed enlarging the modal bounding box
in alignment with high heatmap values and synthesizing occlusions. Following
this seminal work, various methodologies have surfaced in literature. Notably,
ORCNN [7] introduces instance mask heads for both amodal and visible in-
stances, along with an additional head for predicting occluded masks. ASN [27]
builds upon ORCNN by integrating a multi-level coding module for bidirec-
tional feature modeling of visible and amodal aspects. BCNet [17] enhances
amodal mask prediction by incorporating a supplementary branch dedicated to
predicting occlusion masks within the bounding box. AISFormer [37] introduces
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a transformer-based mask head, demonstrating the efficacy of transformer mod-
eling in generating AIS masks. However, their approach, which consolidates all
mask relationships into one transformer model, leads to compromised visible
segmentation output, consequently affecting the quality of amodal segmentation
output due to bidirectional feature relations as mentioned earlier.

Recent studies [9, 15, 40] underscore the benefits of integrating shape priors
into AIS. These methods leverage prior knowledge of mask shapes to improve
amodal mask predictions. VRSP-Net [40] predicts coarse amodal masks, retrieves
shape priors using a simple autoencoder, and then refines the final amodal mask
predictions. AmodalBlastomere [15] employs a similar strategy with a varia-
tional autoencoder for blastomere and cell segmentation. C2F-Seg [9] constructs
a shape prior codebook using a vector-quantization variational autoencoder. Af-
ter establishing the shape prior, the method first predicts a coarse amodal seg-
mentation. This coarse segmentation is then refined to produce the final amodal
segmentation mask using the built shape prior. Despite their progress, these
methods often overlook the importance of object categories when utilizing prior
shapes. Moreover, their training procedures frequently lead to overfitting of the
shape prior model to the training dataset. Additionally, these approaches simply
incorporate the shape prior by concatenating it with visible features to refine
amodal masks.

2.2 Diffusion Models

The Denoising Diffusion Probabilistic Model (DDPM) [13] has become a widely
used generative architecture in computer vision. Its popularity stems from its
ability to model multi-modal distributions, training stability, and scalability. The
study by [5] first showed that diffusion models outperform GANs [10] in image
synthesis. To enhance computational efficiency, Stable Diffusion [28], trained on
LAION-5B [32], applied a diffusion model in the latent space of a variational
autoencoder [19]. Subsequently, major improvements were made to boost diffu-
sion model performance [14, 34]. With the release of Stable Diffusion [28] as a
powerful generative tool, many works have adapted it to tackle tasks in various
domains such as image editing [4, 8, 30] and image segmentation [1, 3, 41]. Re-
cently, diffusion models have been applied to the problem of amodal completion.
Notably, [26] and [45] leverage diffusion models, such as Stable Diffusion [28], to
train on proposed amodal completion datasets with synthetic occlusion. Addi-
tionally, [42] utilize pretrained features from Stable Diffusion [28] for their UNet
model aimed at amodal mask completion. Unlike these works, AISDiff is an AIS
framework designed to amodally detect and segment instances in images. Fur-
thermore, AISDiff takes advantage of the attention maps in diffusion models to
build prior knowledge without denoising to the final output.
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Fig. 2: Overall process of Diffusion Shape Prior Estimation (DiffSP).

3 Method

3.1 Overall AIS Setup

Given an input image I, we follow most of previous AIS settings [7, 17, 37, 40],
utilizing a pre-trained backbone network, such as ResNet [11], RegNet [31] to
extract spatial visual representation. An object detector such as FCOS [35], or
Faster-RCNN [11], can be subsequently adopted to obtain n regions of inter-
est (RoI) predictions and their corresponding visual features {Fi}ni=1. Follow
most of previous works [17, 37, 40], the object detector being chose is Faster
R-CNN for fair comparison. Here, each RoI is presented by its visual feature
Fi ∈ RCe×Hr×Wr , where Ce denotes the feature channel size and Hr ×Wr rep-
resents the spatial shape of the pooling feature. In this context, given a RoI,
AISDiff takes Fi as input and aims to predict the amodal mask Mi

a. Moreover,
in this case, we also denote the visible mask Mi

v, and the occluding mask Mi
o.

3.2 AISDiff

The overall design of AISDiff is depicted in Fig. 1. Initially, we discuss the
prediction process for the visible segmentation of the object of interest, along
with its categories, incorporating occlusion-awareness through the prediction of
occluding masks (Sec. 3.2). Following this, we introduce the DiffSP method in
detail (Sec. 3.2). Lastly, we present the Shape Prior Amodal Predictor (Sec. 3.2).

Occlusion-aware Visible Segmentation Given the ROI feature Fi, AISDiff
first aims to predict the visible segmentation mask and the category of the object
of interest, while simultaneously conducts occlusion-aware ability by predicting
the occluding mask, which is the segmentation of occluding elements within the
specified ROI. BCNet [17] is utilized as the foundation for the Occlusion-aware
Visible Segmentation module. This module consists of two branches: one for
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occluding mask prediction and the other for visible mask prediction. Drawing
from the methodology outlined in [17], both branches follow a similar design
structure, encompassing two main components: feature extraction and mask pre-
diction. The feature extraction segment comprises a sequence of layers, including
a 3 × 3 convolutional layer with a stride of 1, a Graph Convolutional Network
(GCN) [20] block, and another 3× 3 convolutional layer with a stride of 1. Sub-
sequently, the mask prediction component is constructed with a 2×2 transposed
convolutional layer employing a stride of 2, coupled with a 1 × 1 convolutional
layer using a stride of 1.

Furthermore, to enhance occlusion awareness and subsequently improve vis-
ible segmentation accuracy, features extracted from the occluding branch are
incorporated into the ROI feature Fi before being fed into the feature extrac-
tion section of the visible branch. Simultaneously, features extracted from the
visible branch are utilized for object category prediction. This classification step
employs a fully connected layer with an output dimension corresponding to the
number of categories present in the datasets under consideration. In summary,
the final output of this module comprises the visible mask Mi

a, the occluding
mask Mi

o, and the object category ci.

DiffSP The process depicted in Fig. 2 illustrates the Shape Prior Estimation
(DiffSP) module. DiffSP builds upon the successes of conditioned diffusion mod-
els, such as Stable Diffusion [28] and GLIDE [25], which are pre-trained on com-
prehensive language-vision datasets like LAION [33]. This pre-training equips the
model with the ability to capture intricate visual features, rendering it suitable
as prior knowledge for subsequent tasks [26, 44]. Expanding on this foundation,
DiffSP utilizes a trained conditioned diffusion model and inputs a ROI image
containing only the visible pixels of the object, an occluding mask and a tex-
tual description of the object category under consideration, expecting the model
to generate the obscured parts. Subsequently, the denoising process iterates T
steps to produce the generated image containing the occluded regions. How-
ever, instead of relying solely on the final generated pixels, DiffSP capitalizes on
the attention mechanism between the conditioning information and the image
features.

Specifically, Stable Diffusion [28] is employed as the pre-trained conditioned
diffusion model, leveraging its self and cross-attention layers. Specifically, the
random Gausian noise is encoded into latent space and then experiences the
denoising process over T time steps to generate the inpainting image. In fact,
the ROI image containing only the visible pixels of the object of interest, the
occluding mask, and the textual description of the object category serve as con-
ditions and are represented as y, which is projected by τ into an intermediate
representation τ(y). At each denoising step t, a UNet architecture with L layers
of self and cross-attention transforms zt into zt−1. Specifically, at layer l and
time step t, the cross-attention layer captures the relationship between zt and
the encoded condition τ(y), reflecting the entire reconstructed shape of the ob-
ject. This relationship is formalized as follows: at layer l and time step t, the
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Fig. 3: Overall design of Shape Prior Amodal Predictor.

self-attention map is denoted as Al,t
S , and the cross-attention map is denoted as

Al,t
C . Moreover, as demonstrated in [24], the attention map remains relatively

stable across time steps. Following the methodology of [24], we average these
cross and self-attention maps over layers and time steps, setting T = 10. Addi-
tionally, as also suggested in [24], although the cross-attention maps AC already
outline the shape of the reconstructed object, they tend to be coarse-grained and
noisy. To refine the precision of object localization, we follow [24], utilizing the
self-attention map AS to enhance AC . Consequently, the shape prior is obtained
by: Msp = (AS)

τ · AC .

Shape Prior Amodal Predictor The design of Shape Prior Amodal Predic-
tor is depicted in Fig. 3. Initially, the feature extraction module utilizes the ROI
feature Fi to generate the amodal feature. This module is constructed using a
sequence of 3 × 3 convolutional layers with a stride of 1. Subsequently, the ob-
tained amodal feature undergoes processing in the attention learning module in
conjunction with the shape prior Msp obtained from DiffSP, aimed at learning
the spatial attention map. Specifically, the attention computation involves pass-
ing the amodal feature through a sequence of 3 × 3 convolutional layers with a
stride of 1, followed by a sigmoid activation function. This computed attention
map is then multiplied with the shape prior Msp. The spatial attention map is
further multiplied with the amodal feature to obtain the attention amodal fea-
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ture. This feature is then fed into a mask prediction module, which is structured
with a 2×2 transposed convolutional layer employing a stride of 2, coupled with
a 1× 1 convolutional layer using a stride of 1, to derive the amodal mask Mi

a

3.3 Objective Function & Training

Employing AIS protocols, the training adopts a two-stage instance segmenta-
tion process similar to Mask R-CNN, facilitating concurrent training of both
bounding box and amodal mask prediction heads alongside the object detec-
tion framework. In essence, the training procedure optimizes a multi-task loss
function L as follows:

L = Ldet + Lcls + Lv + Lo + La (1)

where Ldet is object detection loss, defined similarly to that in Faster R-CNN
object detection. The occluding mask loss Lo, the visible mask loss Lv, the
amodal mask loss La, and the classification loss Lcls are computed using cross
entropy loss with the corresponding ground truth.

4 Experiments

4.1 Datasets, Metrics and Implementation Details

Datasets: We benchmark our AISDiff on three AIS datasets, namely KINS [27],
COCOA-cls [7], and D2SA [7]. KINS is a large-scale traffic dataset with 95,311
training instances and 92,492 testing instances with 7 categories. COCOA-cls is
an AIS dataset that is derived from MSCOCO [22] with 80 categories of 6,763
training instances and 3,799 testing instances. D2SA is an AIS dataset with
60 categories of instances related to supermarket items with 13,066 training
instances and 15,654 testing instances.
Metrics: Following existing AIS methods [37, 40], we adopt mean average pre-
cision (AP) and mean average recall (AR).
Implementation details: We develop AISDiff utilizing the Detectron2 frame-
work [38]. For the KINS dataset, we employ an SGD optimizer [29] with a learn-
ing rate of 0.0025 and a batch size of 1, over 48, 000 iterations. For the D2SA
dataset, training is conducted with an SGD optimizer, a learning rate of 0.005,
and a batch size of 2 over 70, 000 iterations, while for the COCOA-cls dataset,
training involves 10, 000 iterations with a learning rate of 0.0005 and a batch
size of 2. All experiments are performed using a Quadro RTX 8000 GPU.

4.2 Baselines

We compare AISDiff with state-of-the-art (SOTA) AIS methods, including OR-
CNN [7], BCNet [17], VRSP-Net [40], and C2F-Seg [9]. These methods share
the same AIS setup described in Section 3.1. It is important to note that recent
works such as [26], [42], and [45] focus on amodal completion with the object
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of interest already given, and then extract the amodal mask based on this com-
pletion. This differs from the AIS framework mentioned, which involves amodal
detection and segmentation of instances within images. Therefore, we exclude
these methods from our comparison.

Table 1: Performance comparison on KINS test set with various backbones. † indicates
our reproduced results.

Backbones& Methods Venue Shape
AP ↑ AP50 ↑ AP75 ↑ AR ↑Prior

R
es

N
et

-5
0

Mask R-CNN [16] ICCV17 ✗ 30.0 54.5 30.1 19.4
ORCNN [7] WACV19 ✗ 30.6 54.2 31.3 19.7
ASN [27] CVPR19 ✗ 32.2 - - -
AISFormer [37] BMVC22 ✗ 33.8 57.8 35.3 21.1
AmodalBlastomere [15] TMI20 ✓ 30.3 - - -
VRSP-Net [40] AAAI21 ✓ 32.1 55.4 33.3 20.9
C2F-Seg [9] ICCV23 ✓ 36.5 58.2 37.0 22.1

AISDiff (Ours) - ✓ 36.3 58.8 37.2 22.0

R
es

N
et

-1
01 Mask R-CNN [11] † ICCV17 ✗ 30.2 54.3 30.4 19.5

BCNet [17] CVPR21 ✗ 28.9 - - -
BCNet [17] † CVPR21 ✗ 32.6 57.2 35.4 21.5
AISFormer [37] BMVC22 ✗ 34.6 58.2 36.7 21.9
C2F-Seg [9]† ICCV23 ✓ 36.9 58.9 37.8 23.1

AISDiff (Ours) - ✓ 36.9 59.6 37.5 23.0

4.3 Performance Comparison

Quantitative Results KINS. Tab. 1 depicts the comparison between AISDiff
and SOTA AIS methods on the KINS dataset. AISDiff demonstrates consistent
improvements across various backbones, including ResNet-50 [12] and ResNet-
101 [12]. Specifically, when compared to methods utilizing ResNet-50 as the
backbone, AISDiff achieves comparable results with the SOTA method (i.e., and
C2F-Seg [9] Simlarly when ResNet-101 is utilized as the backbone, our method
achieves great performance, compatible with C2F-Seg.
D2SA. Tab. 2 further validates our approach on D2SA dataset. We achieve
best results across all metrics. Specifically, we gains 0.13 on AP and 0.1 AR in
comparison with the SOTA method, i.e. C2F-Seg [9].
COCOA-cls. Tab. 3 shows our results on COCOA-cls dataset. AISDiff also
outperform other methods on all metrics. In fact, it outperforms the second best
by 0.16 AP and 0.03 AR.

Qualitative Results Fig. 4 illustrates the qualitative output of AISDiff. The
results are arranged from left to right, encompassing: input ROIs, Visible Masks,
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Table 2: Performance comparison on D2SA test set with ResNet-50 as backbone. †
indicates our reproduced results.

Methods Venue
Shape
Prior AP ↑ AP50 ↑ AP75 ↑ AR ↑

Mask R-CNN [11] ICCV17 ✗ 63.57 83.85 68.02 65.18
ORCNN [7] WACV19 ✗ 64.22 83.55 69.12 65.25
ASN [27] † CVPR19 ✗ 63.94 84.35 69.57 65.20
BCNet [17] † CVPR21 ✗ 65.97 84.23 72.74 66.90
AISFormer [37] BMVC22 ✗ 67.22 84.05 72.87 68.13
VRSP-Net [40] AAAI21 ✓ 70.27 85.11 75.81 69.17
C2F-Seg [40]† ICCV23 ✓ 70.88 85.07 75.85 69.19

AISDiff (Ours) - ✓ 71.01 85.12 76.23 69.29

Table 3: Performance comparison on COCOA-cls test set, ResNet-50 as backbone. †
indicates our reproduced results.

Methods Venue
Shape
Prior AP ↑ AP50 ↑ AP75 ↑ AR ↑

Mask R-CNN [11] ICCV17 ✗ 33.67 56.50 35.78 34.18
ORCNN [7] WACV19 ✗ 28.03 53.68 25.36 29.83
ASN [27] † CVPR19 ✗ 35.33 58.82 37.10 35.50
BCNet [17] † CVPR21 ✗ 35.14 58.84 36.65 35.80
AISFormer [37] BMVC22 ✗ 35.77 57.95 38.23 36.71
VRSP-Net [40] AAAI21 ✓ 35.41 56.03 38.67 37.11
C2F-Seg [9]† ICCV23 ✓ 35.72 58.80 38.73 37.11

AISDiff (Ours) - ✓ 35.93 58.86 38.63 37.14

Occluding Masks, Shape Prior, and Amodal Masks. Fig. 5 visualizes the spatial
attention map of the Shape Prior Amodal Predictor on ROIs of the image.
The attention maps are well-constrained to the object shape. Moreover, we can
see that the decoder typically attends to the visible parts of objects that are
similar to the occluded regions when predicting the amodal mask. Fig. 6 shows
qualitative comparison between AISDiff and the existing SOTA method C2F-
Seg [9]. Example are sampled from D2SA and KINS test sets. As can be seen,
AISDiff accurately extracts the amodal mask of the occluded object (i.e. the bag
of pasta) (left) and efficiently handles the car and the truck (right).

4.4 Ablation studies

Effect of DiffSP diffusion models Table 4 compares the performance of using
GLIDE [25] and Stable Diffusion [28] models within the DiffSP framework on
the KINS and D2SA datasets. For the KINS dataset, GLIDE achieves an AP of
35.16 and an AR of 21.71, while Stable Diffusion shows improved performance
with an AP of 36.36 and an AR of 22.02. Similarly, on the D2SA dataset, GLIDE
records an AP of 70.18 and an AR of 69.22, whereas Stable Diffusion further
excels with an AP of 71.01 and an AR of 69.29. These results indicate that Stable
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Fig. 4: Qualitative results of AISDiff. Left to right: Input RoI, Visible masks, Occluding
masks, Amodal masks. Best viewed in color.

Diffusion consistently outperforms GLIDE, offering better precision and recall
in the DiffSP framework.
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Fig. 5: Spatial attention map of the Shape Prior Amodal Predictor on the each RoI.
Best viewed in color.

Fig. 6: Qualitative comparison between AISDiff and the SOTA method C2F-Seg [9].
Examples are from D2SA (left) and KINS (right) test set.

Table 4: Effect of diffusion models in DiffSP

Diffusion Model KINS D2SA

AP ↑ AP50 ↑ AP75 ↑ AR ↑ AP ↑ AP50 ↑ AP75 ↑ AR ↑

GLIDE [25] 35.16 57.97 37.11 21.71 70.18 85.11 74.96 69.22
Stable Diffusion [28] 36.36 58.84 37.24 22.02 71.01 85.12 76.23 69.29

Effect of denoising time steps Table 5 presents the impact of varying diffu-
sion timesteps (T = 10, 50, 100) on the performance of the DiffSP framework,
evaluated using the Average Precision (AP) and Average Recall (AR) metrics
on the KINS and D2SA datasets. For the KINS dataset, the AP remains rela-
tively stable across different timesteps, with values of 36.36, 36.33, and 36.43 for
T = 10, T = 50, and T = 100, respectively. Similarly, the AR values are consis-
tently around 37.24 for all timesteps. In the D2SA dataset, the AP values are
71.01, 70.99, and 71.11 for T = 10, T = 50, and T = 100, respectively, while the
AR values remain steady at approximately 69.29 across all timesteps. Overall,
the results indicate that varying the number of diffusion timesteps has minimal
impact on both AP and AR metrics for both datasets, suggesting that the DiffSP
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framework performs robustly regardless of the diffusion timestep settings. Thus,
we opt for T = 10 for efficiency.

Table 5: Effect of difusion timesteps

Dataset T = 10 T = 50 T = 100

AP AR AP AR AP AR

KINS 36.36 37.24 36.33 37.23 36.43 37.24
D2SA 71.01 69.29 70.99 69.27 71.11 69.29

Effect of object category and occluding mask We conducted an ablation
study on the inputs of DiffSP, which utilizes three inputs: visible pixels of the
object of interest, the occluding mask, and the object category. The first input is
essential for reconstructing the missing parts and cannot be omitted. Therefore,
our study focuses on the other two inputs: the object category and the occluding
mask, as shown in Table 6. The results demonstrate that including either the
object category or the occluding mask improves performance, with the best
results achieved using both (the default DiffSP configuration).

Table 6: Effect of object category and occluding mask

Object
Category

Occluding
Mask

KINS D2SA
AP↑ AR↑ AP↑ AR↑

✗ ✗ 31.12 20.10 64.87 67.09
✓ ✗ 35.23 21.83 67.92 68.13
✗ ✓ 35.81 21.87 69.13 69.21
✓ ✓ 36.36 22.02 71.01 69.29

5 Conclusion

In conclusion, we propose AISDiff, an AIS mask head with a Diffusion Shape
Prior Estimation module. This module, termed DiffSP, leverages pre-trained
conditioned diffusion models on extensive datasets to extract nuanced visual
features for deriving the shape prior of the object. Furthermore, we present the
Shape Prior Amodal Predictor, which utilizes attention-based feature maps from
the shape prior to enhance amodal segmentation. Through extensive experimen-
tation across diverse AIS benchmarks, we affirm the efficacy of AISDiff.

Acknowledgments. This work is sponsored by the National Science Foundation
(NSF) under Award No OIA-1946391.
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