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Abstract. Visual anomaly detection, which is essential for industrial
applications, is typically framed as a one-class classification assignment.
Recent techniques employing the teacher-student framework for this task
have proven effective in both accuracy and processing time. However,
they often assume that real-world anomalies are uncommon, emphasiz-
ing anomaly-free data while neglecting the importance of aberrant data.
We contend that such a paradigm is suboptimal as it fails to differenti-
ate between regular and irregular situations adequately. To overcome this
issue, we proposed a novel Dual Memory Guided Reverse Distillation
(DM-GRD) framework to learn feature representations for both standard
and abnormal data. Specifically, to obtain anomalous patterns, original
images are first augmented with a simple Fourier transformation followed
by Perlin noise. A teacher network then randomly receives arbitrary im-
ages to extract high-level features. To combat "forgetting" and "over-
generalization" difficulties in a student network, two memory banks are
introduced to independently store typical and atypical features while
maximizing the distance margins between them. Next, a multi-scale fea-
ture fusion module is trained to integrate valuable information from the
memory banks. Finally, a student network ingests this data to match the
instructor network for the same images. Experiments on three industrial
benchmark datasets reveal that DM-GRD outperforms current state-of-
the-art memory bank and knowledge distillation alternatives, showcasing
the robust generalization capability of the proposed framework. The code
is publicly available at https://github.com/SKKUAutoLab/DM-GRD.

Keywords: Anomaly detection · Knowledge distillation · Memory bank.

1 Introduction

Anomaly detection (AD) is a foundation task in computer vision, discov-
ering suspicious defects that could imply errors. This work is vital for several
applications, including medical image analysis [38,11,44], quality control in man-
ufacturing [2,45,24], and video surveillance [33,35,4]. Due to the paucity of un-
usual samples in the actual world, gathering enough anomalous prototypes for
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training is time-demanding. As a result, unsupervised AD methods have grown
popular in industrial contexts. They exclusively utilize normal data for training,
diminishing the need for an extensive collection of atypical examples.

An alternate strategy makes use of knowledge distillation (KD), which has
lately shown promise in AD [43,13,7,36,31]. In this setup, a pre-trained teacher
network, typically trained on a large-scale dataset such as ImageNet [8], is used
alongside a student network with a similar design that is trained purely on high-
quality images to replicate the teacher’s behavior. The underlying concept is
that transferring knowledge from the teacher to the student network enables the
student to learn diverse regular features, facilitating the detection of abnormal
patterns not seen during training. Consequently, errors at both image and pixel
levels can be recognized during testing. Nonetheless, three factors undermine
the reliability of this hypothesis. First, the student network may become overly
generalized due to the same architecture, producing features that resemble those
created by the teacher [27]. Second, the identical input data may induce the
student to falsely detect minor anomalies, such as dust particles in the testing
dataset [13]. Last, summing or multiplying the output layers of the student
network for feature aggregation is suboptimal [43]. To address these challenges,
a new KD design, termed reverse distillation (RD) [36], was proposed. In RD, the
instructor and the pupil take on the roles of encoder and decoder, respectively.
The learner receives representative features from the teacher as input and is
trained to reconstruct them at various scales.

For the KD and RD paradigms, we found three current constraints. First,
with a small architecture, the student is susceptible to the "forgetting" issue [13].
Second, owing to the rarity of anomalous samples, the student network easily
misidentifies anomalies because there is no consensus on what an anomaly is.
We also argue that earlier methods [13,39,16] merely store typical prototypes on
a memory module straining to process complex samples. Ultimately, providing
a compact representation capable of embracing all normal circumstances to the
learner is tough if we only lean on distillation tasks [36].

To solve the above shortcomings, we aim to preserve genuine normal and
anomalous data, enabling precise descriptions of atypical patterns. In line with
this notion, we present a novel Dual Memory Guided RD framework to overcome
the drawbacks of the KD and RD approaches. The framework is made up of a
teacher, a student, two memory banks, and a multi-scale feature fusion module.
The student network serves as a decoder, accepting input features from the
multi-scale feature fusion network, while two memory networks selectively store
relevant normal and abnormal characteristics retrieved by the teacher.

We assess the efficacy of DM-GRD on three renowned benchmark datasets
for AD and localization tasks. Experimental results signify that the proposed
method outperforms existing state-of-the-art (SOTA) memory bank and KD
solutions on image, pixel, and instance levels. Ablation studies are also under-
taken to validate the durability and versatility of the proposed components. In
summary, our key contributions are highlighted as follows:
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– We propose a straightforward yet effective anomaly synthesis strategy to get
supervision signals for free, integrating Fourier transformations to enhance
the generality of anomalous patterns.

– We introduce a novel dual-branch memory module to address the "forget-
ting" and "over-generalization" problems in the student network. Besides,
we design a self-supervised separation loss to maintain distinct feature rep-
resentations within the two memory modules.

– We employ a multi-scale feature fusion network to merge multi-level features
from the memory modules. Equipped with attention mechanisms used in
image classification and video understanding, DM-GRD can learn both local
and global representations among multi-scale feature maps.

– Through experimental results on three standard benchmark datasets, we il-
lustrate that DM-GRD achieves state-of-the-art performance for anomaly
detection and localization tasks, underscoring the generalizability of our ap-
proach across multiple domains while responding to real-time demands.

2 Related Work

2.1 Knowledge Distillation Approaches

These methods train a student network exclusively with anomaly-free data,
detecting anomalies when the student network’s features deviate from those of
the teacher network. Paul et al. [3] uses local descriptors extracted by a teacher
network as surrogate labels for an ensemble of multiple student networks, ex-
ploiting discrepancies among these students to spot anomalies. Instead of relying
on the last layer’s values of the student network, MKD [31] executes feature dis-
tillation at various layers from an expert network into a cloner network, utilizing
distance vectors between them to pinpoint anomalous regions. To tackle the lim-
its of the KD framework, RD [7] directly incorporates the teacher’s outputs at
different stages into the student’s input, functioning as an autoencoder architec-
ture and delivering outstanding outcomes compared to ordinary KD methods.
These efforts focus on maximizing similarity in KD’s feature representations for
normal inputs, whereas our work attempts to distill both normal and anomalous
inputs, soaring the model’s endurance in handling challenging abnormal samples.

2.2 Memory Bank Approaches

To encode diverse normal patterns from training data, the memory module
[12] has been implemented into deep neural networks to model the normality
distribution. To address the "forgetting" issue in student networks, MemKD
[13] presents a normality recall memory module (NR Memory) that boosts the
student’s generated regular features by recalling stored normal information. An
exemplar set is then constructed for the NR Memory, allowing the recall of prior
knowledge from the query feature. PatchCore [29] builds a memory bank to store
nominal patch features and measures patch-level distances between test targets
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and standard features. A greedy coreset subsampling strategy [1] is given to elimi-
nate redundancy in extracted patch features. To avoid the "over-generalization"
problem, TrustMAE [34] engages a memory-augmented auto-encoder coupled
with a sparse memory addressing mechanism. A trust-region memory updating
scheme is proposed to keep memory slots noise-free by updating memory items
inside a predefined trust region. Unlike approaches that store only regular fea-
tures in a memory module, our solution divides normal and abnormal features
into two memory banks, enabling better separation between them.

2.3 Supervised Approaches

Since unsupervised methods rely heavily on the quality of normal images,
they often fail on noisy datasets. An emerging trend centers on supervised meth-
ods, leveraging known anomalies for training. PRNet [42] learns a residual rep-
resentation of multi-scale prototypes alongside a multi-size self-attention mech-
anism. Various anomaly generation algorithms are given by considering both
seen and unseen appearances to diversify anomaly patterns. To work with only
a few known anomalies, BGAD [40] proposes a boundary-guided semi-push-pull
contrastive learning mechanism, presuming that a compact dividing boundary
can maintain normal features within a margin region. DifferNet [30] uses nor-
malizing flows to estimate the density of extracted features in low-dimensional
data distributions. Furthermore, a multi-scale feature extractor is employed to
assign meaningful likelihoods to the images. However, these methods struggle
with imbalanced datasets, particularly with hidden anomalies, leading to poor
performance. Likewise, subtle anomaly regions are usually overshadowed by nor-
mal ones, complicating the localization of anomalies of varied sizes.

3 Preliminaries

3.1 Problem Formulation

Assume there exists a training set Strain, containing only anomaly-free sam-
ples, and a testing set Stest, which includes both normal and abnormal samples
from the same object class. Our objective is to fit a model on Strain that can
detect and segment anomalies in Stest. In the next section, we briefly depict the
RD method [7], which acts as one of the core components of our framework.

3.2 Reverse Distillation for Anomaly Detection

The RD framework consists of three modules, a fixed teacher network E, a
trainable one-class bottleneck embedding (OCBE) module, and a student net-
work D. The OCBE module is positioned after the 4th block of ResNet [14] within
E. This module projects high-dimensional representations into a low-dimensional
space, preventing unusual traits from spreading to D. Unlike conventional KD
schemes, D’s reversible design reduces the impact of abnormalities, while its
symmetrical shape assembles an architectural similarity between E and D.
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Fig. 1: An overview of DM-GRD. First, pseudo anomaly images are generated
by a simple augmentation strategy. The instructor model’s output features are
then moved to two memory modules to select the most similar features. Next,
these features are passed to the MSFF module. While the abnormal multi-scale
features are used to optimize LOT+LCon, the regular ones are sent to the student
model and minimized with the teacher model through LKD. Simultaneously, the
regular and abnormal memory properties are updated by LSE .

Formally, let ϕ be the output of the OCBE block. Given an input image I ∈
RC×H×W (where C,H, and W denote the channel, height, and width of I). The
teacher E pulls features for I from multiple layers, denoted as {F i

E = EK(I)},
where Ei defines the ith block in E. The student D is then exploited to rebuild
these features, denoted as {F i

D = DK(ϕ)}, where Di defines the ith block in D.
To optimize D, a cosine similarity loss between FE and FD is defined as follows:

LKD = 1−
K∑
i=1

{ (F
i
E(h,w))

⊤ · (F i
D(h,w))

∥F i
E(h,w)∥2∥F i

D(h,w)∥2
} (1)

where K refers to the number of feature layers for training, h and w are the
height and width of the ith feature map, and ∥ · ∥2 represents the l2 norm.

4 Proposed Method

The proposed framework is made up of four major components, a pre-trained
teacher network E, a learnable student network D, two memory banks, and a
multi-scale feature fusion (MSFF) network, which are trained in an end-to-end
fashion. The overall architecture of DM-GRD is visualized in Fig 1.
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Fig. 2: The generation process of simulated anomaly images. Best viewed in color.

4.1 Anomaly Simulation Strategy

Our fundamental premise is that the RD paradigm is effective during infer-
ence if the learner can learn from the teacher to recognize both normal and aber-
rant characteristics. Hence, fake anomalies need to be simulated during training.
The construction of the proposed anomaly simulator is depicted in Fig 2.

A noise image is generated by a Perlin noise generator [26,41] and binarized
by a threshold λ to produce a Perlin threshold map Mpt ∈ [0, 1]. Inspired by
the semantic-preserving property of the Fourier phase component, we devise a
data augmentation technique to enhance the generalization ability of simulated
anomaly images across several domains. The mixed amplitude of a source image
Isource and a target image Itarget is formulated as follows:

A(Isource→target) = (1− γ)A(Isource) + γA(Itarget), (2)

where γ ∼ N (0, 1) is a hyperparameter to control the strength of the augmen-
tation, A(Isource),A(Itarget) ∈ [3, H1 : H2,W1 : W2] with H1, H2,W1, and W2

are low-frequency spectrum regions and represented as:

Hi = 1

(
⌊H
2
⌋ − ⌊min(h,w)× 0.1⌋

)
,

Wi = 1

(
⌊W
2
⌋ − ⌊min(h,w)× 0.1⌋

)
,

(3)

where i ∈ {1, 2}. If i = 2, H2 = H2 + 1 and W2 = W2 + 1.
The mixed amplitude is then blended with the original phase spectrum to

form a new Fourier representation:

F(u, v) = A(Isource→target)× e−j×P(Isource)(u,v), (4)

which is then fed to the inverse Fourier transformation to generate a Fourier
mixup image FM . Finally, an augmented image Ia is defined as follows:

Ia = (1−Mpt)⊙ FM + (1− β)⊙ FM + (β ⊙Mpt)⊙ FM , (5)
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Fig. 3: The dual-branch memory network. ⊕ is the concatenation operation.

where ⊙ is the element-wise multiplication operation and β ∈ [0.1, 1.0] is a
random hyperparameter to generate diverse anomalous images.

4.2 Dual Memory Networks

Previous approaches merely required a memory module to hold typical pro-
totypes. We find that a single unit is insufficient to distinguish hard samples.
Thus, two updatable normal and abnormal memory modules are provided to
store corresponding templates M ∈ RL×Ci and Mu ∈ RL×Ci×Hi×Wi , where M
is memory features, Mu is updatable memory features, and L is the number of
memory samples. Fig 3 illustrates an overview of our memory network.

Initially, we select a small number of normal and aberrant images from Strain

and utilize a pre-trained teacher network to extract high-level features. Concur-
rently, Mu is acquired in the same manner. Afterward, we randomly sample L
normal and abnormal images from Strain and feed them into the teacher network
to obtain representative features from blocks 1, 2, and 3, respectively.

Given a query target FTi
∈ RB×Ci×Hi×Wi , where B is the batch size, it is

flattened to F̂Ti
∈ RB×Ci×HiWi . The cosine similarity between Mi and FTi

is
computed to yield the similarity vector wi ∈ RB×L×HiWi , which affects the infor-
mation retention in the foremost areas. Later, Mi is aggregated by wi to get the
normalized feature F i ∈ RB×HiWi×Ci before reshaping to F̃i ∈ RB×Ci×Hi×Wi .

In the next stage, we apply topk selection along the channel dimension to
determine the most similar snippets to the query target, which are further con-
catenated to form L difference information Di ∈ RB×L. Thereafter, we take the
minimum indices of Mui

to gain selected features SFui
∈ RB×Ci×Hi×Wi . Then,

L2 distance is calculated to derive the best difference information:

DI = dL2(SFui
, FTi

),

s.t. SFui
= argminDi.

(6)
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To proceed, DI joins with Di along the channel dimension to attain the con-
catenated memory information MI ∈ RB×2Ci×Hi×Wi for normal and abnormal
targets. Eventually, MI is moved to the MSFF module for feature aggregation.

4.3 Multi-scale Feature Fusion Network

Since MI may cause overabundance, it slows down the inference speed. In-
spired by the recent success of the MSFF network in AD [42,39,47], our intuitive
idea is to comprehensively exchange visual information at each scale while cap-
turing both local and global features from the memory information.

To begin with, MIi is fused by three MSFF blocks to halve the number of
channels. In each block, MIi is forwarded to a 3× 3 convolution that preserves
the number of channels. In the meantime, non-local attention [37] captures the
global interaction between channels of MIi. For the memory information features
weighted by the non-local attention, the channels are reduced by half via two
3 × 3 convolutions to form the multi-scale representation fi ∈ RB×Ci×Hi×Wi .
Next, spatial attention maps Ms1 ,Ms2 ,Ms3 are computed as follows:

Ms1 = σ(f7×7([f1avg ; f1max ])),

Ms2 = σ(f7×7([f2avg ; f2max ]))⊙ Upsample(Ms1),

Ms3 = σ(f7×7([f3avg ; f3max ]))⊙ Upsample(Ms2),

(7)

where σ denotes the sigmoid function and f7×7 represents a 7 × 7 convolution.
Finally, the spatial attention maps are weighted by the multi-scale represen-

tations to obtain fused features fouti , that are supplied into the student network.

4.4 Training Objectives

We propose a unified loss for training DM-GRD, including four components,
an optimal transport loss LOT , a contrastive loss LCon, a knowledge distillation
loss LKD, and a separation loss LSE . The total loss is defined as follows:

L = LKD + α ∗ (LOT + µ ∗ LCon) + τ ∗ LSE , (8)

where α, µ, and τ are regularization parameters.
Optimal transport loss. Similar to [32,36], we employ the unbalanced Sinkhorn

divergence to enforce proximity among standard samples within the normal
memory bank. The optimal transport loss is defined as:

LOT =
1

m

1

K

m∑
i,j=1

K∑
k=1

Sε,ρ(σ(foutk(MIi,k)), σ(foutk(MIj,k))), (9)

where Sε,ρ(·, ·) denotes the unbalanced Sinkhorn divergence.
Contrast loss. We raise the discrimination between normal and abnormal

features by enforcing their separation in MSFF. The contrast loss is defined as:

LCon =
1

k

K∑
k=1

max(0, cos(foutk(MIi,k), foutk(MIi,k))− θ), (10)
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where θ is a margin and MI is the concatenated abnormal memory information.
Separation loss. With the updatable memory features Mn

uk
and Ma

uk
of

normal and abnormal targets, they are split by using the triplet loss as follows:

LSE =

K∑
k=1

[∥Sa
k − Sp

k∥
2
2 − ∥Sa

k − Sn
k ∥22 + η],

Sa
k = ∥topk(Mn

uk
;Dn

k )∥2,
Sp
k = ∥topk(Ma

uk
;Da

k)∥2,
Sn
k = ∥topk(Ma

uk
;Da

k)∥2,

(11)

where η = 1, Sa
k is the anomaly part of a normal image, Sp

k means the anomaly
part of an anomaly image, and Sn

k signifies the normal part of a normal image.

5 Experimental Results and Analysis

5.1 Datasets

MVTec [2] is a well-known AD dataset, comprising ten object classes and five
textures, totaling more than 5,000 images. The test data provide both image- and
pixel-level annotations for calculating anomaly localization metrics. Anomalies
in this dataset frequently manifest in irregular shapes.

BTAD [23] is a small dataset that consists of three categories with over 2,500
images. Similar to MVTec, the test data include both normal and abnormal
samples, with anomalies predominantly found in body and surface defects.

VisA [46] stands out as the largest industrial AD dataset, composed of 10,821
images with 9,621 normal and 1,200 anomalous samples distributed over 12
objects. Anomalous images exhibit various imperfections, encompassing surface
and structural flaws such as scratches, dents, and missing parts.

5.2 Implementation Details

Experimental settings. DM-GRD adopts the RD framework and utilizes
WResNet50 [14] as its backbone. Input images are shrunk to 256 × 256 without
applying data augmentation techniques for fair comparison. The training process
spans 200 epochs, with a batch size of 16. We use the Adam optimizer [17] with a
learning rate of 0.005. To attenuate overfitting, Cosine Annealing [21] is employed
with a minimum learning rate of 0.0001, a warmup ratio of 0.1, and 20 warmup
steps. For the unified loss, the hyperparameters α, µ, and τ are set to 0.2, 0.1,
and 0.1, respectively. In the memory module, L is chosen as 30 samples from
Strain. These configurations were determined through a grid search.

Evaluation metrics. Following prior studies [36,3,7,43], we evaluate AD
and localization scores at the image- and pixel-levels using the area under the
receiver operator curve, i.e., I-AUC and P-AUC. Likewise, the area under the
per-region-overlap (PRO) curve estimates the instance-level AD performance.
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Fig. 4: Simulated anomaly images with β ∈ [0.1, 0.2, 0.3, 0.4, 0.5].

Table 1: Anomaly detection and localization performance in terms of I-AUC and
P-AUC on the MVTec dataset. The best results are bolded, and the second-best
are underlined. More results can be found in the supplementary material.

Memory Bank Supervised Knowledge Distillation

Category PatchCore [29] CFA [18] DevNet [25] DRA [10] PRNet [42] RD [7] RD++ [36] DM-GRD

Carpet 98.70/99.00 97.30/99.28 88.20/96.98 92.50/98.20 99.70/99.00 98.90/98.90 100.0/99.20 100.0/99.31
Grid 98.20/98.70 99.20/98.12 96.56/96.24 98.60/86.00 99.40/98.40 100.0/99.30 100.0/99.30 100.0/99.32
Leather 100.0/99.30 100.0/99.37 96.23/98.89 98.90/93.80 100.0/99.70 100.0/99.40 100.0/99.40 100.0/99.62
Tile 98.70/95.40 99.40/95.25 95.99/89.39 100.0/92.30 100.0/99.60 99.30/95.60 99.70/96.60 99.70/97.13
Wood 99.20/95.00 99.70/91.53 99.26/89.66 99.10/82.90 100.0/97.80 99.20/95.30 99.30/95.80 99.91/96.68
Bottle 100.0/98.60 100.0/98.84 99.53/96.02 100.0/91.30 100.0/99.40 100.0/98.70 100.0/98.80 100.0/98.84
Cable 99.50/98.40 99.80/98.97 92.39/92.86 94.20/86.60 98.90/98.80 95.00/97.40 99.20/98.40 99.68/98.15
Capsule 98.10/98.80 97.30/99.11 81.55/93.16 95.10/89.30 98.00/98.50 96.30/98.70 99.00/98.80 97.30/98.85
Hazelnut 100.0/98.70 100.0/98.85 100.0/95.27 100.0/89.60 100.0/99.70 99.90/98.90 100.0/99.20 100.0/99.30
Metal nut 100.0/98.40 100.0/99.15 99.89/91.68 99.10/79.50 100.0/99.70 100.0/97.30 100.0/98.10 100.0/97.14
Pill 96.60/97.40 97.90/98.93 82.77/85.25 88.30/84.50 99.30/99.50 96.60/98.20 98.40/98.30 97.46/98.51
Screw 98.10/99.40 97.30/98.91 95.99/63.04 99.50/54.00 95.90/97.50 97.00/99.60 98.90/99.70 98.54/99.50
Toothbrush 100.0/98.70 100.0/98.96 93.33/84.72 87.50/75.50 100.0/99.60 99.50/99.10 100.0/99.10 100.0/99.40
Transistor 100.0/96.30 100.0/98.06 84.00/83.31 88.30/79.10 99.70/98.40 96.70/92.50 98.50/94.30 99.96/96.30
Zipper 99.40/98.80 99.60/99.02 99.91/98.89 99.70/96.90 99.70/98.80 98.50/98.20 98.60/98.80 99.89/98.03
Average 99.10/98.06 99.17/98.15 93.71/90.36 96.10/85.30 99.40/99.00 98.46/97.81 99.44/98.25 99.50/98.41

5.3 Main Results

Anomaly detection and localization. Table 1 and Table 2 compare the
AD and localization outcomes of DM-GRD to recent SOTA models on MVTec
AD. Our method improves upon the baseline RD, promoting the average I-AUC
and P-AUC by up to 1.04% and 0.6%, and PRO by a substantial margin of
4.67%. DM-GRD also outperforms RD++ by 0.06%, 0.16%, and 3.61% in I-
AUC, P-AUC, and PRO, respectively. Although RD and RD++ yield competi-
tive results, their reliance on the KD task hinders their ability to classify complex
samples such as screws, cables, and transistors. By leveraging two memory mod-
ules for normal and abnormal features, DM-GRD surpasses its memory bank
counterparts, e.g., PatchCore and CFA, by 0.33% to 5.2% on all metrics. No-
tably, without the mechanism to retrieve normal information from the memory
bank, RD and RD++ perform worse than PatchCore and CFA on PRO.

To test the generalization of DM-GRD, we also evaluate it on two other
datasets, namely BTAD and VisA. The quantitative results are presented in
Tab 3 and Tab 4. DM-GRD surpasses its KD competitors, such as RD and
RD++, on the BTAD dataset by a sizable margin ranging from 0.54% to 14.61%.
On the VisA dataset, DM-GRD gets an I-AUC of 96.10%, beating RD by 0.1%
and RD++ by 0.2%. Regarding PRO, our method exceeds RD++ by 2.97% and
RD by a significant gap of 25.47%. Aside from PatchCore, both SPADE and
PaDiM exhibit inferior results compared to RD and RD++. These findings con-
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Table 2: Anomaly localization results of PRO on the MVTec dataset.
Memory Bank Supervised Knowledge Distillation

Category PatchCore [29] CFA [18] DevNet [25] DRA [10] PRNet [42] RD [7] RD++ [36] MKD [31] DM-GRD

Carpet 96.60 96.54 85.80 92.20 97.00 97.00 97.70 92.50 99.22
Grid 96.00 94.04 79.80 71.50 95.90 97.60 97.70 72.90 99.29
Leather 98.90 97.43 88.50 84.00 99.20 99.10 99.20 97.50 99.64
Tile 87.30 89.26 78.90 81.50 98.20 90.60 92.40 74.30 97.81
Wood 89.40 90.54 75.40 69.70 95.90 90.90 93.30 76.50 97.98
Bottle 96.20 95.76 83.50 77.6 97.00 96.60 97.00 88.60 98.97
Cable 92.50 94.17 80.90 77.70 97.20 91.00 93.90 66.20 98.04
Capsule 95.50 93.66 83.60 79.10 92.50 95.80 96.40 90.10 98.49
Hazelnut 93.80 95.75 83.60 79.10 92.50 95.50 96.30 94.30 99.11
Metal nut 91.40 94.54 76.90 76.70 95.80 92.30 93.00 76.90 97.98
Pill 93.20 97.19 69.20 77.00 97.20 96.4 97.00 86.40 98.84
Screw 97.90 95.23 31.10 30.10 92.40 98.20 98.60 85.20 99.49
Toothbrush 91.50 91.14 33.50 56.10 95.60 94.50 94.20 87.30 98.45
Transistor 83.70 95.35 39.10 49.00 94.80 78.0 81.80 68.10 97.56
Zipper 97.10 95.95 81.30 91.00 95.50 95.40 96.30 86.50 98.11
Average 93.40 94.44 71.40 73.30 96.10 93.93 94.99 82.90 98.60

Table 3: Anomaly localization results on the BTAD dataset at P-AUC/PRO.
Memory Bank Supervised Knowledge Distillation

Class PatchCore [29] CFA [18] REB [22] BGAD [40] PRNet [42] RD [7] RD++ [36] DM-GRD

01 97.03/64.92 95.90/72.00 94.70/- 98.20/83.00 96.60/81.40 96.60/75.30 96.20/73.20 96.73/91.26
02 95.83/47.27 96.00/53.20 95.60/- 97.90/64.80 95.10/54.40 96.70/68.20 96.40/71.30 97.18/84.90
03 99.19/67.72 98.60/94.10 99.70/- 99.80/99.30 99.60/98.30 99.70/87.80 99.70/87.40 100.0/99.44
Average 97.35/59.97 96.83/73.10 97.20/- 98.60/82.40 97.10/78.00 97.67/77.10 97.43/77.30 97.97/91.71

solidate our prediction that depending on a single memory module may degrade
model performance when applied to challenging datasets.

Complexity analysis. To verify the method’s feasibility for real-time in-
dustrial applications, we measure DM-GRD with other SOTA models from the
perspective of the total number of parameters, inference time, and training time.
The statistics are detailed in Table 5. Compared to memory bank approaches,
they consume more memory than DM-GRD, resulting in a runtime appropriate
for offline applications. Although our WResNet50 backbone version covers more
parameters than RD++, it maintains strong performance at a lower latency.
Remarkably, in the condensed variant, e.g., ResNet18, we defeat RD less than
three milliseconds and compete with RD++ in terms of P-AUC and PRO.

Discussion. In this study, we focus on ameliorating the efficiency and short-
ening the processing time of both memory bank and KD methods. However,
much of the computational overhead arises from adopting an extensive back-
bone. How to apply a smaller backbone, e.g., ResNet18, while maintaining high
performance is an intriguing question that we leave for future research.

5.4 Ablation Study

Study on training objectives. Table 6 summarizes DM-GRD’s perfor-
mance on several loss combinations. In RD++, training the projection layers
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Table 4: Anomaly detection results on the VisA dataset at I-AUC/PRO.
Memory Bank Knowledge Distillation

Category PatchCore [29] SPADE [5] PaDiM [6] RD [7] RD++ [36] DM-GRD

Candle 98.60/94.00 91.00/93.20 91.60/95.70 92.20/92.20 96.40/93.80 95.00/94.91
Capsules 81.60/85.50 61.40/36.10 70.70/76.90 90.10/56.90 92.10/95.80 92.47/98.43
Cashew 97.30/94.50 97.80/57.40 93.00/87.90 99.60/79.00 97.80/91.20 95.36/92.40
Chewing gum 99.10/84.60 85.80/93.90 98.80/83.50 99.70/92.50 96.40/88.10 96.70/99.60
Fryum 96.20/85.30 88.60/91.30 88.60/80.20 96.60/81.00 95.80/90.00 97.16/95.31
Macaroni1 97.50/95.40 95.20/61.30 87.00/92.10 98.40/71.30 94.00/96.90 98.50/95.74
Macaroni2 78.10/94.40 87.90/63.40 70.50/75.40 97.60/68.00 88.00/97.70 97.60/98.43
PCB1 98.50/94.30 72.10/38.40 94.70/91.30 97.60/43.20 97.00/95.80 93.87/96.97
PCB2 97.30/89.20 50.70/42.20 88.50/88.70 91.10/46.40 97.20/90.60 92.99/91.37
PCB3 97.90/90.90 90.50/80.30 91.00/84.90 95.50/80.30 96.80/93.10 96.44/97.42
PCB4 99.60/90.10 83.10/71.60 97.50/81.60 96.50/72.20 99.80/91.90 99.34/97.55
Pipe fryum 99.80/95.70 81.10/61.70 97.00/92.50 97.00/68.30 99.60/95.60 97.80/98.26
Average 95.10/91.20 82.10/65.90 89.10/85.90 96.00/70.90 95.90/93.40 96.10/96.37

Table 5: Complexity comparison between memory bank and KD models on the
MVTec dataset. The test conditions were conducted on Intel Core i5-12600K and
NVIDIA TITAN X. [DM-GRD1]: with ResNet18, [DM-GRD2]: with WResNet50.

Type Method Params(M) Latency(ms) Training Time(h) I-AUC P-AUC PRO

Memory Bank

SPADE 68.9 1417.7 0.03 85.40 95.50 89.50
PaDiM 68.9 19567.9 0.02 90.80 96.60 91.30

PatchCore 68.9 23.8 0.02 99.10 98.06 93.40
CFA 66.8 54.8 0.63 99.17 98.15 94.44

KD

RD 161.1 9.4 2.9 98.46 97.81 93.93
RD++ 176.6 12.9 5.4 99.44 98.25 94.99

DM-GRD1 34.1 6.4 2.0 98.61 98.21 98.20
DM-GRD2 264.7 11.9 7.7 99.50 98.41 98.60

with LOT leads to more effective condensation of regular features. Thus, we can
notice a moderate gain compared to RD, especially in PRO. In the case of DM-
GRD, by reinforcing the contrast between normal and abnormal features in two
memory modules with LSE , it outplays RD without requiring LOT . Likewise,
the condensed features derived by LOT and LCon prevent abnormal signals from
impacting the student network, thereby boosting P-AUC and PRO criteria.

Study on the number of memory items. Table 9 examines the effects of
different amounts of information expanded to the memory modules. Even though
a larger L improves query performance, it can introduce extra parameters and
make the model’s convergence tougher. Hence, for the sake of higher P-AUC and
PRO, we randomly picked L as 30 from Strain for most objects. For classes with
fewer training samples, i.e., Toothbrush, we set it to a smaller value, e.g., 10.

Study on noise levels. Table 8 reports the influence of noise levels added
to training images. For PRO, the results indicate negligible variance in varied
noise intensities. Conversely, I-AUC and P-AUC tend to perform more stable
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Fig. 5: Visualization of KD methods for anomaly localization in MVTec AD.

Fig. 6: An example of AD methods for generating abnormal regions.

with higher refinement. These findings suggest that random β values are more
proper for generalizing in anomaly detection and localization tasks.

Study on the generalization of different backbones. Table 7 compares
the performance of the proposed method to its KD equivalents on various ResNet
backbones. DM-GRD consistently outperforms RD++ in all backbones, indicat-
ing that deeper networks yield better AD results. Except for I-AUC, the P-AUC
and PRO criteria of both methods on ResNet50 and WResNet50 backbones are
almost identical, making them suitable for real-time industrial applications.

5.5 Visualization Analysis

Anomaly localization. Fig 5 depicts the anomaly maps generated by KD
models on MVTec AD. In the third column, RD incorrectly ranks the middle
portion of the leather as anomalous due to a lack of atypical data during training,
despite the image being normal. Similarly, in the first and ninth columns, where
there is a tiny incision in the carpet and a triangular hole in the hazelnut, DM-
GRD discovers anomalous regions more precisely than RD and RD++.

Types of noise. Fig 6 intuitionally visualizes the abnormal zones produced
by several anomaly-generating mechanisms. Simplex noise [36] creates more nat-
ural pseudo-anomalies than Gaussian noise. However, real-world abnormalities
frequently appear as damage, rendering it unsuitable for mimicking fake sam-
ples. Although CutPaste [19] and CutX [20] are simple techniques, cutting and
pasting certain overlapping sections of an image can lead to artificial visuals. As
opposed to our method, Perlin noise [41] generates more realistic faults but lacks
the diversity of bogus images, which is useful for Out-of-Distribution (OOD) AD.
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Table 6: Study on training objec-
tives on the MVTec dataset.
Method I-AUC P-AUC PRO
RD 98.46 97.81 93.93
RD++ 99.44 98.25 94.99
Ours (LKD + LOT ) 94.48 98.05 97.93
Ours (LKD + LCon) 98.19 97.93 97.88
Ours (LKD + LSE) 98.79 97.96 97.87
Ours (LKD + LOT + LCon) 97.40 98.38 98.29

Table 7: Study on different back-
bones on the MVTec dataset.

I-AUC P-AUC PRO

Backbone RD++ Ours RD++ Ours RD++ Ours

ResNet18 98.63 98.40 97.64 97.82 93.65 97.65
ResNet50 99.05 98.61 98.17 98.21 94.78 98.20
WResNet50 99.44 99.50 98.25 98.41 94.99 98.60

Table 8: Study on noise levels on the
MVTec dataset.

β I-AUC P-AUC PRO
0.1 97.69 97.77 98.25
0.2 97.87 97.59 97.99
0.3 97.96 97.85 98.21
0.4 97.07 97.88 98.25
0.5 98.01 98.08 98.33

Table 9: Study on the number of
memory items on MVTec AD.

L I-AUC P-AUC PRO
5 97.48 97.89 97.75
10 96.27 97.85 97.81
30 99.50 98.41 98.60
50 96.66 97.71 97.50
100 99.11 97.95 98.25

6 Discussion and Conclusion

Conclusion. In this paper, drawing inspiration from the efficiency of the
RD architecture, we design a novel model named DM-GRD for the AD task.
DM-GRD introduces several key innovations, a simple approach for simulating
pseudo anomalies, two memory banks to alleviate the "forgetting" and "over-
generalization" problems in student networks, and a MSFF network for feature
aggregation at each scale. Extensive experiments on several datasets demonstrate
the generalization of DM-GRD compared to existing memory bank and KD
approaches. Remarkably, our shortened version surpasses its baseline while being
three milliseconds faster. We expect that the method will prove advantageous
for industrial applications and contribute to further advances in the field.

Limitation. While DM-GRD shows effectiveness, it is suboptimal to sim-
ply create irregular artifacts by randomly adding noise to the images. In reality,
abnormal regions often vary in size and only occur in specific areas. Thus, un-
derstanding these traits can lead to more accurate anomaly detection.

Future work. We intend to adapt DM-GRD for OOD AD, where images
encompass a variety of anomalous scenarios, making generalization a crucial fac-
tor. In addition, with the recent developments in generative models [28,9,15], it is
worthwhile to apply them to generate higher-quality anomaly images. Since our
dual memory networks are flexible and can be integrated into various topologies,
we are also excited to test them on different KD architectures.
Acknowledgement This work was supported by the Institute of Information &
communications Technology Planning & Evaluation(IITP) grant funded by the
Korean government(MSIT) (No. 2021-0-01364, An intelligent system for 24/7
real-time traffic surveillance on edge devices).
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