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Fig. 1: Our DanceFusion, can generate natural dance sequences that retain both tem-
poral coherence and spatial diversity. In contrast, autoregressive methods (i.e., FACT
[24]) experience a freezing problem and non-autoregressive methods (i.e., EDGE [45])
su!er from glitches.

Abstract. Generating dance sequences that synchronize with music
while maintaining naturalness and realism is a challenging task. Exist-
ing methods often su!er from “freezing” phenomena or abrupt transi-
tions. In this work, we introduce DanceFusion, a conditional di!usion
model designed to address the complexities of creating long-term dance
sequences. Our method employs a past and future-conditioned di!usion
model, leveraging the attention mechanism to learn the dependencies
among music, past, and future motions. We also propose a novel sam-
pling method that completes the transitional motions between two dance
segments by treating previous and upcoming motions as conditions. Ad-
ditionally, we address abruptness in dance sequences by incorporating
inpainting strategies into a part of the sampling process, thereby im-
proving the smoothness and naturalness of motion generation. Experi-
mental results demonstrate that DanceFusion outperforms state-of-the-
art methods in generating high-quality and diverse dance motions. User
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2 T.-V. Truong-Thuy et al.

study results further validate the e!ectiveness of our approach in gener-
ating long dance sequences, with participants consistently rating Dance-
Fusion higher across all key metrics. Code and model are available at
https://github.com/trgvy23/DanceFusion.

Keywords: Music-to-Dance · Conditional Di!usion Model · Sampling
Strategy

1 Introduction

Dancing has been a vital part of human culture, serving as a medium for enter-
tainment and communication. In recent years, interest has grown in generating
dances synchronized with music. This has various applications, such as virtual
dancing in video games or animated films, choreography assistance, and person-
alized dance training. Despite these promising applications, significant challenges
remain. Primarily, the generated dance sequences must align with the given mu-
sic’s beat and rhythm while preserving a sense of naturalness. Additionally, the
dance moves need to be physically realistic and aesthetically pleasing.

Generating long dance sequences introduces additional complications due
to the high temporal complexity associated with lengthy music pieces. Current
methods are generally categorized into autoregressive and non-autoregressive
approaches, each with its unique advantages and disadvantages. Autoregressive
methods [12, 42, 48] generate future movements based on preceding ones, ef-
fectively capturing the flow of dance but often struggling with the “freezing”
e!ect, where movements become static after a short period. In contrast, non-
autoregressive methods [45] treat each motion segment independently, using
simple interpolation techniques to connect segments and maintain continuity.
Although more computationally e"cient and capable of mitigating the cumu-
lative error found in autoregressive methods, this approach can lead to abrupt
and unnatural transitions between poses, as illustrated in Fig. 1.

This paper introduces DanceFusion, a novel approach to generating real-
istic 3D dance sequences synchronized with music. Our method leverages a
transformer-based di!usion model conditioned on the music, as well as past and
future dance movements. We chose a conditional di!usion model [9,40] due to its
ability to produce high-quality samples with diverse variations, making it par-
ticularly suitable for dance synthesis. By conditioning the model on these three
factors, DanceFusion aims to produce dance sequences that are well-synchronized
with the music while ensuring smooth and continuous motion. Moreover, Dance-
Fusion supports the generation of dance sequences of any length, accommodating
extensive performances.

To maintain visual quality in long sequences and address issues like unnatural
transitions or the “freezing” phenomenon, we propose a novel sampling method.
We segment the music into independent sections and generates dance movements
for each segment separately. We then employ our past and future conditioned
di!usion model to create smooth transitions between adjacent segments. This
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Rethinking Sampling for Music-Driven Long-Term Dance Generation 3

ensures that the transitions blend seamlessly with both adjacent segments, re-
ducing abrupt movements and alleviating the “freezing” issue while preserving
the strengths of autoregressive methods in capturing temporal naturalness.

We demonstrate the e!ectiveness of our proposed music-driven framework
through various experiments. The experimental results on the AIST++ dataset
[24] show that DanceFusion significantly outperforms state-of-the-art (SOTA)
methods, achieving remarkable improvements in both fidelity and diversity. Fur-
thermore, we conducted an extensive user study to validate the e!ectiveness of
DanceFusion. Specifically, our method outperforms competitors by generating
high-quality, diverse dance motions that closely resemble real-life choreography.
Our code is available at https://github.com/trgvy23/DanceFusion.

In summary, our contributions are as follows:
– We introduce a conditional di!usion model for generating realistic dance

movements, conditioned on music as well as past and future motions. Our
method enhances the quality of the generated sequences and allows for the
creation of arbitrarily long dance sequences.

– We propose a novel sampling method based on di!usion models to generate
coherent dance motions with smooth transitions between adjacent segments,
resulting in more natural and fluid dance sequences.

– Quantitative and qualitative experimental evaluations demonstrate the su-
periority of our method compared to existing approaches.

2 Related Work

2.1 Human Motion Generation

The surge to create lifelike human motion has long captivated researchers in com-
puter vision and computer graphics. Previously, the methods typically involved
using graph-based techniques [1,18], where motion sequences were broken down
into smaller components and then reassembled based on predefined rules. How-
ever, the advent of deep neural networks has revolutionized this domain, o!ering
significantly greater precision and versatility in generating human motion.

A notable breakthrough in this area has been the application of di!usion
models for text-to-motion synthesis. MDM [44] demonstrated outstanding per-
formance by generating high-fidelity motion sequences directly from textual de-
scriptions. Furthermore, recent studies have demonstrated the ability to produce
motion under various conditions. Some conditions are based on the motion it-
self, such as the motion-inbetweening task [14, 34], while others involve specific
requirements like action-labeled [2,21,44] or scene context [13,47]. Despite these
impressive advancements in improving the realism and diversity of generated
motions, creating dance movements remains a substantial challenge due to the
complexity of movements.

2.2 Music-Driven Dance Generation

Early e!orts in music-driven dance generation primarily used retrieval-based
techniques, selecting pre-defined motion segments from a database and arrang-
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4 T.-V. Truong-Thuy et al.

ing them according to the music [5, 29, 37]. In contrast, recent approaches treat
dance generation as a motion synthesis problem, employing various network ar-
chitectures, such as CNNs [11,19], RNNs [12,43], GANs [20,41], and Transform-
ers [22–24]. These networks typically take music and preceding dance sequences
as input, predicting subsequent dance movements in an autoregressive manner.
Notably, Li et al . [24] introduced the Full Attention Cross-modal Transformer
(FACT) model, which generates dance motion from music using transformers
to extract meaningful representations from the input signals and a cross-modal
transformer to learn the relationships between music and dance movements.
However, these autoregressive methods face challenges such as error accumula-
tion and the motion freezing phenomenon [52].

In a unique approach, VQ-VAE [46] was utilized to produce dance sequences
with temporal coherence [39, 51]. 3D motions were first quantized with a VQ-
VAE codebook, then a Generative Pretrained Transformer (GPT) was employed
to create coherent sequences from the learned latent codes [39]. Although VQ-
VAE helps maintain a pretrained codebook and ensures high-quality motion, its
codebook limits dance variety.

Recently, di!usion models have demonstrated remarkable performance in
generating high-quality images, videos, and motion sequences [3,8,15,17,35,36,
38]. EDGE [45] served as a notable example of leveraging di!usion models for
dance generation, treating it as a music-conditioned motion denoising problem.
Using a transformer decoder architecture for music conditioning, EDGE gen-
erated multiple overlapping dance segments during the denoising process and
ensured consistency between them through di!usion inpainting [27]. These seg-
ments were then stitched together using linear interpolation to create a con-
tinuous dance sequence. Although both EDGE and our DanceFusion utilize in-
painting methods during sampling, EDGE’s use of a binary mask results in less
smooth blending between the given and synthesized parts. In contrast, we modify
the mask so that the border is linearly interpolated.

3 Proposed Method

3.1 Problem Formulation

The goal of music-to-dance generation is to produce a synchronized sequence
of dance motions, denoted as D = {di}Ni=1, for a given music sequence M =
{mi}Ni=1, where d → RL↑151 represents a dance pose, N denotes the number of
frames in the music sequence determined by a specific sampling rate. Motion
representation aligns with 24-joint SMPL [25] format, utilizing 6-DOF rotation
representation [50] for each joint and a single root translation like EDGE [45].

Recognizing that a complete music sequence can be divided into multiple
segments (M = {m1,m2, . . . ,mL}, where L is the number of segments), with
each segments include k frames. We can correspondingly decompose the gener-
ated dance sequence into L segments as well (D = {d1, d2, . . . , dL}). For clarity,
we describe our training method using a simplified scenario with only two dance
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Rethinking Sampling for Music-Driven Long-Term Dance Generation 5

Fig. 2: Overview of DanceFusion, a music and motion-conditioned di!usion model us-
ing Transformers. The Transformer input combines music, past motions, future motion,
and noised current motions. The model learns to denoise dance sequences from time
t = T to t = 0. Music embedding information is provided by a frozen Jukebox [4]
model, while past and future motions are embedded with the same linear layer.

segments (D = {d1, d2}), which can be easily extended to handle an arbitrary
number of segments. To avoid ambiguity, we represent d1 as x = {x1, x2, . . . , xk}
and d2 as y = {y1, y2, . . . , yk}. The corresponding music frames are denoted as
m = {mx,my}.

3.2 Architecture of DanceFusion

Drawing inspiration from the success of models like MDM [44] and PCMDM
[49], we employ a Transformer Encoder as the core of our model architecture
(See Fig. 2). This choice is motivated by the Transformer’s ability to handle
sequences of varying lengths and its proven e!ectiveness in motion generation
tasks [33, 44, 45]. Frozen Jukebox model [4] is used to encode music sequences
into a format suitable for the Transformer.

To incorporate both the noise level and the musical context into the Trans-
former, we design a special token, zt, by concatenating the noise timestep t and
the music condition m, after processing them with a feed-forward network. Each
frame of the noisy input xt is then projected into the Transformer dimension
and combined with positional information. This combined input, including zt
and the projected frames, is then processed by the Transformer encoder.

Finally, the encoder’s output, excluding the initial token zt, is projected back
into the original motion dimensions, producing the predicted clean motion se-
quence, x̂0. Instead of directly predicting the noise, as in DDPM [9], our approach
focuses on generating the clean motion itself, a strategy that has shown success
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6 T.-V. Truong-Thuy et al.

in human motion generation [44, 45]. This direct prediction approach has been
found to be e!ective in our context as well.

3.3 Past and Future Motion Conditioned Di!usion

Our di!usion process is represented as a Markov chain process, gradually adding
noise to real data. At each step of this process, Gaussian noise is injected, with
the amount of noise controlled by a predefined schedule, {at → (0, 1)}Tt=1. The
forward noising process is mathematically defined as:

q(xt|xt→1) = N(xt;
↑
atxt→1, (1↓ at)I). (1)

Training a model solely on music proved insu"cient for generating long, co-
herent dance sequences, we recognized the need for a smooth transitions between
segments. To address this, we introduced an additional training step focusing on
generating transitions, denoted as x̂y, between two arbitrary dance segments:
the past motion xh and the future motion yh. This enables the concatenation
of segments into a continuous sequence. The forward di!usion process remains
unchanged, but the denoising process can be formulated as:

pε(xyt→1|xyt, xh, yh,mxy) = N (xyt→1;µε(xyt, x
h, yh,mxy, t),ωt),

µε(xyt, x
h, yh,mxy, t) =

1
↑
at

(xyt ↓
ωt↑
1↓ at

εε(xyt, x
h, yh,mxy, t)).

(2)

As described in Sec. 3.1, k represents the number of frames per segment.
We define k↓ = k

2 , so xh denotes the h frame condition of segment x (xk→:k→+h)
and yh denotes the h frame condition of segment y (yk

→→h:k→
). Note that the

last k↓ frames of past segments and the first k↓ frames of future segments are
excluded to represent the transition between segments being generated. Conse-
quently, the hyperparameter h frames lie within the replaced segment frames,
serving as conditional frames that provide past and future context to ensure the
generated transition maintains consistency with the original segment motions.
We empirically chose h = 30 (one second at 30 fps) for optimal result and visual-
ization. Correspondingly, mxy is the concatenation of mh

x and mh
y , representing

the music features for the respective frames.
The combined music condition mxy, the past motion sequence xh, the future

motion sequence yh, the timestep t, and the current motion xyt are then fed into
the Transformer Encoder as a single input. To maintain consistency in feature
representation, we utilize the same embedding function for both past and future
motions. Our model architecture is illustrated in Fig. 2.

Loss function. To enhance the physical realism of our generated dance se-
quences, we go beyond simply minimizing reconstruction error. Drawing inspi-
ration from previous models [44, 45], we incorporate geometric auxiliary losses
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Fig. 3: (Left) Sampling method. Transitions are generated by considering frames
from both preceding and following segments (i.e., past and future motions). During
sampling, the generation of transitions is handled as an inpainting task to maintain
smoothness. (Right) Sampling process pipeline. The model starts with a noisy
sequence xT → N (0, I), generates an estimated final sequence x̂0, then noising it back
to xT→1, and continues this process until reaching t = 0.

to ensure the model aligns with three key aspects of physical realism: joint posi-
tions (Lpos), velocities (Lvel), and foot contact (Lcontact). For an input sequence
x and its prediction x̂, the loss functions are defines as follow:

Lpos =
1

k

k∑

i=1

||FK(x(i))↓ FK(x̂(i))||22,

Lvel =
1

k ↓ 1

k→1∑

i=1

||(x(i+1) ↓ x(i))↓ (x̂(i+1) ↓ x̂(i))||22,

Lcontact =
1

k ↓ 1

k→1∑

i=1

||(FK(x̂(i+1))↓ FK(x̂(i))) · b̂(i)||22,

(3)

where FK(·) is the forward kinematic function, converting joint rotations into
joint positions, superscript (i) indicates the frame index. The contact consistency
loss Lcontact is specifically applied to foot joints, in which b̂(i) → {0, 1} is the
model’s prediction of whether a foot is in contact with the ground at frame i.
Finally, our overall training loss is a weighted sum of the simple reconstruction
loss Lrecon introduced in the work of Ho et al . [9] and the auxiliary losses:

L = ϑreconLrecon + ϑposLpos + ϑvelLvel + ϑcontactLcontact. (4)

Classifier-free guidance. DanceFusion leverages a di!usion model to generate
dance movements. At each time step t, we predict a clean sample x̂0 = xε(xt, c)
and then add noise back to it to obtain xt→1. This process is iteratively repeated,
starting at t = T and continuing until we reach the desired clean sample at x0,
as shown in Fig. 3.

We train our model xε using the classifier-free guidance technique [10], learn-
ing both conditioned and unconditioned distributions by randomly setting the
condition c to empty (↔), ensuring that xε(xt, ↔) approximates the uncondi-
tioned distribution p(x0). This allows us to balance diversity and fidelity during
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(a) GRTR pipeline. (b) E!ectiveness of GRTR.

Fig. 4: Global Root Translation Refining (GRTR) layer.

sampling through performing guided inference, which is a weighted combination
of unconditionally generated samples and conditionally generated samples, as
expressed in Eq. (5):

x̃ε(xt, c) = xε(xt, ↔) + w · (xε(xt, c)↓ xε(xt, ↔)), (5)

To ensure the generated transitions remain consistent with the preceding and
following dance motions, we apply this guided strategy exclusively to the music
condition and not to the past or future motion conditions.

3.4 Long-Form Sampling

Generating dance moves for music of any length is challenging. To address this,
we propose to segment the music into L parts and independently generating
corresponding dance moves for each segment. This method e!ectively mitigates
the problems associated with autoregressive mechanisms, such as motion freezing
and error accumulation.

However, this approach overlooks the relationships between consecutive dance
segments. To overcome this limitation, we generate transitions conditioned on
the h frames of the preceding and the following motion segment, as illustrated
in Fig. 3. During the sampling phase, we use the sampling method from Sin-
MDM [34] to ensure the generated transitions maintain coherence by treating
transition generation as an inpainting task. Specifically, a mask includes linearly
interpolated values between 0 and 1 at the borders of the inpaint and non-inpaint
regions is used to indicate the transition part that requires inpainting.

3.5 Global Root Translation Refining (GRTR) Layer

Foot sliding or drifting, a common problem in dance generation, arises from
a misalignment between the global translation of the root joint and the local
rotations of other body joints [48]. To address this issue, inspired by previous
works [31, 32, 48], we employ a Global Root Translation Refining (GRTR) layer
that enable the model to learn the interdependence between these factors through
an a"ne transformation. The GTRT layer aims to adjust latent codes of motion
representations F through a modulation mechanism (See Fig. 4a): F = ϖF + ω,
where ϖ = fϑ(r),ω = fϖ(r) are two linear functions of the input 3D global
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Table 1: Comparison with SOTAs on the AIST++ dataset. ↑ means higher is better,
↓ means lower is better, and ↔ means closer to ground-truth is better.

Method Motion Quality Motion Diversity BAS ↑ PFC ↓ Winning

Rate
FIDk ↓ FIDg ↓ Distk ↔ Distg ↔

Ground-truth - - 10.31 7.65 0.278 1.332 69.06%

FACT [24] 35.35 12.40 5.94 6.18 0.221 2.2543 83.59%
Bailando [39] 28.15 9.63 7.83 6.33 0.220 1.754 73.59%
EDGE [45] 36.42 23.67 4.47 4.32 0.226 1.6545 70.78%

DanceFusion (w = 1.0) 27.60 21.13 6.77 4.10 0.234 1.4115 -
DanceFusion (w = 2.5) 31.53 23.00 7.97 4.97 0.233 1.3759 -

translation r. As illustrated in Fig. 4b, the GRTR layer significantly reduces
foot sliding, maintaining a consistent foot trajectory across all frames.

4 Experiments

4.1 Experimental Settings

Our method was implemented and evaluated on a machine with a single A100
GPU of 80 GB memory. DanceFusion was trained for 20,000 steps using the
AdamW optimizer [16,26] with a learning rate of 2↗10→4 and a weight decay of
10→4. The minibatch size was set to 32 for evaluation and 128 for training. We
employed a Transformer encoder with 4 attention heads and 512-dimensional
hidden representations as our backbone network. During both training and eval-
uation, we divided the dataset into 6-second segments and downsampled the
dance motion data to 30 fps. Similar to Tseng et al . [45], we set the values
ϑrecon = 0.636,ϑpos = 1.0,ϑvel = 2.964, and ϑcontact = 10.942 in Eq. (4).

We used AIST++ dataset [24], which comprises 1,408 high-quality dance
motions paired with music, for our evaluation. We followed the train/test splits
as defined by the original dataset.

4.2 Comparison with State-of-the-art Methods

We compare our DanceFusion against music-to-danceSOTAs, including FACT
[24], Bailando [39], and EDGE [45]. FACT [24] leverages a full attention cross-
modal transform model to generate long sequences of realistic 3D dance move-
ments. Building upon this, Bailando [39] shows remarkable improvements in
qualitative performance. Lastly, EDGE [45], a transformer-based di!usion model,
represents the current SOTA model in dance generation.

Motion Quality. In line with previous studies [24, 39, 45], we evaluate mo-
tion quality by measuring the distance between the motion features of both

2675



10 T.-V. Truong-Thuy et al.

the generated and the ground-truth motions, using the Frechet Inception Dis-
tance (FID) [7]. The features For this computation are extracted from fairmo-

tion [6], which include kinematic features [30], denoted as FIDk, and geometric
features [28], denoted as FIDg. Our DanceFusion outperforms EDGE in both
FIDk and FIDg. Notably, we achieve the best FIDk score of 27.6, outperform-
ing all other methods and indicating superior motion quality. Although FACT
achieves better FIDg scores, the generated motions often appear nonsensical,
with repetitive poses during the test music piece. This discrepancy raises con-
cerns about the metrics’ ability to accurately reflect the quality of generated
motion, a concern also noted by Tseng et al . [45].

Motion Diversity. To evaluate DanceFusion’s ability to generate diverse dance
motions in response to various input music tracks, we calculate the mean Eu-
clidean distance in the feature space, as outlined in Bailando [39]. The motion
diversity metrics in the kinematic and geometric feature spaces are denoted as
Distk and Distg, respectively. We achieve the best performance on Distk with the
score of 7.97, an improvement of 0.14 over Bailando, the second-best method.
Although FACT and Bailando perform better in terms of Distg, we argue that
neither performs well with in-the-wild music, both su!ering from freezing motion
issues.

Motion-Music Correlation. To assess how well the generated dance se-
quences are synchronized with the accompanying music, we use the Beat Align-
ment Score (BAS) [24]. This score calculates the average time temporal distance
each beat in the music and the nearest matching beat in the dance sequence.
As shown in Tab. 1, DanceFusion beats all other methods on this metric. These
findings highlight our model’s proficiency in improving the correlation between
music and motion.

Physical Plausibility. To evaluate the physical plausibility of our generated
dance sequences, we adopt the Physical Foot Contact score (PFC) metric, as
proposed in EDGE [45]. This metric assesses the realism of foot-ground interac-
tions without assuming static contact throughout the sequence. The results are
presented in Tab. 1. Notably, our approach outperforms the SOTA methods and
achieves a score close to the ground truth motion capture data.

User Study. To thoroughly assess the visual quality of our method, we con-
ducted an extensive user study comparing dance sequences generated by Dance-
Fusion with those produced by other methods using the AIST++ dataset. The
study included 64 participants who individually viewed 40 pairs of video clips,
each lasting 7 to 10 seconds. Each pair featured one sequence generated by
DanceFusion (with guidance w = 1.0) and one by a competing approach. Partic-
ipants were asked to select the video with superior overall quality in the dance
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Fig. 5: Our DanceFusion is capable of generating diverse and physically plausible
dance.

sequence, considering factors such as physical plausibility, visual appeal, and di-
versity of dancing motions. Notably, music was not provided in this study, as it
was not necessary for the goal of evaluating the visual quality of the generated
dance sequences. Additionally, initial participants provided feedback that they
preferred to watch the videos with muted music, as the short duration of each
melody made it di"cult for them to focus on the dance sequences.

The results shown in Tab. 1 demonstrate that our method substantially out-
performs EDGE, achieving an impressive 70.78% winning rate. Notably, Dance-
Fusion surpasses the ground-truth dance performances 69.06% of the time, even
though the baseline dances are motion-captured from professional dancers. This
indicates that DanceFusion can generate dance movements that are indistin-
guishable from those performed by real-life dancers. Figure 5 showcases sev-
eral examples where DanceFusion’s capabilities are fully displayed. These results
highlight our method’s ability to produce highly realistic and physically plausible
3D human movements.

4.3 Ablation Study

Guidance Weight at Inference Time. The guidance weight coe"cient w
in Eq. (5) is a crucial parameter in classifier-free guidance. A larger w yields
higher fidelity to the condition but may reduce accuracy relative to the true
distribution of the original data. Tab. 2 displays results for di!erent w values.
As w increases, diversity also increases, while a lower w produces motions more
accurate to the ground-truth.

E!ect of Conditioning Frames. We conducted an in-depth analysis of vari-
ous hyperparameter choices for h, starting with one second and exploring di!er-
ent options. As shown in Tab. 2, h = 30 is the optimal value, striking a balance
between fidelity and diversity. We also found that too high value causes insuf-
ficient temporal space for meaningful transitions, while too low value fails to
provide su"cient context and constraints for the model.

2677



12 T.-V. Truong-Thuy et al.

Table 2: Ablation study of DanceFusion.

Method FIDk ↓ FIDg ↓ Distk ↔ Distg ↔ BAS ↑ PFC ↓

Ground-truth - - 10.31 7.65 0.278 1.332

w = 1.0 27.60 21.13 6.77 4.10 0.234 1.4115
w = 1.5 26.13 21.28 7.29 4.51 0.225 1.3865
w = 2.0 28.79 21.87 7.67 4.79 0.230 1.5792
w = 2.5 31.53 23.00 7.97 4.97 0.233 1.3759

h = 20 26.96 22.72 6.74 4.26 0.226 1.5951
h = 30 27.60 21.13 6.77 4.10 0.234 1.4115

h = 40 45.66 18.81 6.01 4.43 0.230 1.5356

w/o inpainting 28.56 24.83 6.77 4.11 0.230 1.9795
with inpainting 27.60 21.13 6.77 4.10 0.234 1.4115

w/o GRTR 44.45 21.20 5.29 4.30 0.232 1.4671
with GRTR 27.60 21.13 6.77 4.10 0.234 1.4115

Inpainting Strategy During Sampling. Tab. 2 indicates that the perfor-
mance declines when sampling without the inpainting method. Specifically, both
FIDk and FIDg increase compared to when the inpainting strategy is applied,
suggesting a decline in motion quality. While other metrics show negligible dif-
ferences, sequences without inpainting exhibit subtle glitches.

E!ect of GRTR Layer. Tab. 2 shows the improvement of using the GRTR
layer in term of PFC score, indicating the e"ciency of the GRTR layer in solving
issues of foot sliding.

5 In-The-Wild Music-To-Dance Evaluation

While DanceFusion has shown excellent performance on the AIST++ dataset, it
also shows impressive results for in-the-wild music. To address crucial aspects of
generalization and to highlight our method’s capability, we conducted a thorough
user study using in-the-wild music.

Metrics. We defined four key metrics to comprehensively evaluate the ability to
generate long-term dance sequences, including Smoothness, Pose Diversity, Beat
Alignment and Overall Impression. These metrics cover a thorough assessment
of the model’s e!ectiveness and capabilities. Specifically, participants were asked
to rate the generated dance sequences on a scale of 1 to 5 based on the following
criteria: Smoothness: How smooth and fluid did you find the dance sequence?
Diversity : How diverse were the poses in the dance sequence? Beat Alignment :
How well did the dance sequence align with the musical beat? Overall : What is
your overall impression of the dance sequence?
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Table 3: Comparative performance of DanceFusion and EDGE in term of MOS.

Method Smoothness Pose Diversity Beat Alignment Overall

EDGE [45] 3.65 3.48 3.47 3.55
DanceFusion 3.94 3.84 3.76 3.99

Fig. 6: Participants’ ratings for each method across four key metrics in the user study.
The horizontal bars represent the aggregated scores for each method.

Setup. We evaluated our method against EDGE [45], the leading approach
in achieving the highest qualitative performance. Bailando [39] was excluded
because it is observed to frequently produce instances where the generated dances
froze. FACT [24] was omitted as well due to not support customized music
inputs. We randomly selected 6 music pieces spanning diverse genres, including
Pop, Rap, Chinese Classical, and K-pop. We then generated dance movements
using both the EDGE model and our own. Afterward, we visualized the dances
with a 3D SMPL [25] model in Blender, giving participants a clearer view of the
performances, as shown in Fig. 7.

5.1 Apparatus and Procedure

We invited 64 participants, covering various levels of knowledge in artificial in-
telligence and choreography, to join our study. Their diverse professional back-
grounds provided a range of perspectives for the evaluation process, ensuring
a comprehensive and objective assessment. Participants were asked to rate the
performance of each of the two methods on a scale from 1, indicating “Very
poor,”, to 5, indicating “Excellent,” based on four metrics from their perspec-
tives. To ensure quality responses, we filtered out those with uniform ratings
(e.g ., all “Very bad” or all “Excellent”).

5.2 Quantitative Results

Results from Tab. 3 show that DanceFusion consistently outperforms EDGE
across all metrics, indicating that participants found DanceFusion superior in
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Fig. 7: Qualitative results for generating dance sequences from in-the-wild music.

generating fluid, diverse, well-aligned with the beat, and impressive long-term
dance sequences. As depicted in Fig. 6, DanceFusion rarely received “Very bad”
ratings and was frequently rated as “Good.” In contrast, EDGE had more “Fair”
ratings, highlighting its lower performance. Additionally, Fig. 7 demonstrates
that DanceFusion produces dance movements with greater diversity than EDGE.

6 Failure cases

Although DanceFusion shows significant improvements over existing methods,
it still has certain limitations. Notably, it faces challenges in generating smooth
turn-around movements, often resulting in jerky or abrupt transitions. Addition-
ally, it struggles to maintain consistency during more complex movements. We
leave these limitations as areas for future research. Advancing research in these
directions could considerably enhance the model’s performance and robustness,
opening doors for its use in more demanding real-world scenarios.

7 Conclusion

In this paper, we introduced DanceFusion, a novel method for generating long-
term 3D dances using a di!usion model conditioned on past and future. We also
proposed a specialized sampling technique to maintain consistency, resulting
in natural and fluid long dance sequences. DanceFusion has been rigorously
evaluated through user studies and standard measures. Experimental results
demonstrates that DanceFusion can produce long and diverse dance sequences
with high temporal coherence.
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