
A computational model for color assimilation illusions
and color constancy

Oguzhan Ulucan , Diclehan Ulucan , and Marc Ebner

University of Greifswald, Institute of Mathematics and Computer Science
17489 Greifswald, Germany

{oguzhan.ulucan,diclehan.ulucan,marc.ebner}@uni-greifswald.de

Input Image Input Target Output Target

Fig. 1: Color assimilation illusion. (Left-to-right) Input image, input target’s reflectance, and es-
timated reflectance via our method. In the input image, we perceive the colors of the letters as if
they are different. However, when we remove the context as shown in the input target, we can see
that the reflectances of ACCV and HANOI are the same within themselves.

Abstract. Our visual system unconsciously estimates the objects’ reflectance in
the scene. Even under different illumination conditions, it can discount the effects
of the illuminant to recognize the true colors of the objects. Yet, under some cir-
cumstances, the perceived color can differ from the actual reflectance. Color illu-
sions can be given as an example of such circumstances. While computer vision
studies aim at estimating the scene’s illuminant, computational biology studies
mostly aim at reproducing our sensation on color illusions. However, as stated in
many studies, an algorithm mimicking our perception should be deceived by color
illusions, while estimating the reflectance under varying illumination conditions.
Yet, to the best of our knowledge, there is no study that mimics our sensation
on color illusions and also investigates computational color constancy in detail
by using a single method. Based on this motivation, we develop a single method
that mimics our behavior on color assimilation illusions and performs color con-
stancy. In particular, we propose a multiresolution color constancy strategy that
operates in scale-space. In our approach, we make use of a variant of the local
space average color method which we further modify by considering the gradi-
ent changes of the scene. According to the experimental results, our algorithm
mimics our sensation on color illusions, and it presents competitive results on 4
different color constancy benchmarks.
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1 Introduction

Color is not a physical quantity but the product of the complex mechanisms of the hu-
man brain that devotes more than 20% of its capacity to visual processing [77,91]. One
of the interesting aspects of our visual system is its ability to recognize the physical
reflectance of the objects by discounting the effects of the environmental context, i.e.,
light source [17, 27, 43, 55]. This phenomenon is called as color constancy, and it is
performed unconsciously. However, under certain circumstances, the context might de-
ceive our visual system so that the colors we perceive can be quite different from the
actual physical reflectance of the object.

We can exemplify color illusions as a circumstance where the context deceives our
visual system. An example of color illusions is provided in Fig. 1. We perceive the col-
ors of ACCV as purplish and orangish, and HANOI as yellowish and bluish, while the
reflectances of ACCV and HANOI are in fact identical within themselves. This can be
observed by removing the context/inducers, i.e., the surrounding area outside the target
region, from the input image as demonstrated in the input target. The reason why we
perceive the colors of the letters, i.e., target region, different from each other is that
the context causes their colors to be shifted towards that of their local neighbors. These
types of illusions are related to Munker-White illusions which can be created by placing
identical gray patches, on top of black and white stripes [88, 89]. As demonstrated in
the first two images in Fig. 2, even though the brightness of all gray patches is the same,
we perceive them as if they are different. The reason behind this phenomenon can be
explained by the assimilation effect. While the gray patches on top of the black stripes
have more white pixels in their neighborhood, gray patches on top of the white stripes
have more black neighboring pixels. This structure causes the perceived brightness of
the gray patches to shift towards that of their local neighbors. Thus, we perceive the
gray patches having more white neighboring pixels brighter than those with more black
pixels in their neighborhood. As we present in Fig. 2, when we remove the context, we
can see that the gray patches have in fact the same brightness. Furthermore, by using
colored stripes and patches rather than using shades of gray we can create color assimi-
lation illusions such as in Fig. 1 and Fig. 2. In this case, instead of the brightness of the
target region, the color of it shifts towards that of its local neighbors. Consequently, lo-
cality is a crucial feature for the illusion perception, i.e., our perception is significantly
affected by the information present in the local neighborhood of the target region.

Munker-White Illusion Color Assimilation Illusion

Fig. 2: Example of the Munker-White and color assimilation illusions [8]. In the Munker-White
illusion, due to the assimilation effect, we perceive the gray patches on top of the black inducers
brighter than the ones on top of the white inducers, although their brightness is identical. Sim-
ilarly, in the color assimilation illusion, although the reflectance of the target region is red, its
color shifts towards its local neighbors, hence, we perceive it as orangish and purplish.
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A computational model for color assimilation illusions and color constancy 3

Color constancy and color illusions are beneficial tools in the fields of computa-
tional biology [43, 74] and computer vision [50, 81]. Even though computer vision and
computational biology prioritize different aspects, they both have emphasized the rela-
tionship between color illusions and color constancy [21, 51, 67, 86]. In computational
biology, both phenomena are analyzed to better understand how the human visual sys-
tem processes the visual information. Although myriad studies have been carried out
for color constancy and color illusions, unfortunately, the exact relationship between
them is still a puzzle. If this relationship could be unraveled biologically, while also
explaining how our visual system performs color constancy and is fooled by color il-
lusions, then we would obtain an accurate model of human color processing. Thus, it
would be possible to design better systems for both digital photography and computer
vision applications [29]. On the other hand, in computer vision, both phenomena are
investigated hardly together to develop artificial systems that mimic the human visual
system [51, 81]. What we find rather surprising is that in computer vision, color illu-
sions have not been investigated in depth as color constancy although the natural link
between color illusions and color constancy might provide us beneficial cues to de-
velop algorithms that perform more accurately [51]. Only in a few recent studies, it is
demonstrated that color assimilation illusions are indeed beneficial tools to improve the
performance of color constancy algorithms [81,86]. Hence, these phenomena should be
further investigated together in order to understand the extent of their link’s benefits. In
short, while in computational biology, illusions are analyzed in detail, color constancy,
i.e., estimating the (shaded) reflectance by discounting the illuminant, is rather not ana-
lyzed as in computer vision. On the other hand, in computer vision, illuminant estima-
tion is widely studied, yet color illusions are rarely considered. However, as pointed out
in computational biology, a method designed for mimicking our perception should be
deceived by color illusions and perform color constancy together [21].

In this paper, we aim at developing a single method that can both reproduce our
sensation on color illusions and perform color constancy. In other words, we design an
algorithm that solves both phenomena without focusing on developing a method explic-
itly for one phenomenon or other. To design a single method we combine the best of
two worlds, i.e., we consider the observations provided in computational biology while
also benefiting from the ability of estimating the illuminant as performed in computer
vision studies. We develop a method that relies on low-level processing, in particular,
to scale-space representations, and space average color which can be obtained by using
spatial filters, based on the following observations in human color processing. Firstly,
the information we require for illumination estimation is available in the stimulus at the
proper scale [74, 75]. Secondly, the global changes caused by the illuminant are essen-
tially carried in the low spatial frequency component, hence removing the blurry content
from the image can provide us an output similar to our perception [24, 74, 75]. Finally,
the human visual system might be discounting the illuminant based on space average
color [18, 27, 64], which is also explicitly demonstrated in Land’s experiments [61].

There exist several methods/investigations that try to mimic our perception of il-
lusions [13, 21, 50, 51, 53, 59, 66, 67, 69, 81, 92]. Algorithms performing low-level pro-
cessing for mimicking our sensation on illusions mostly utilize a set of spatial filters
such as exponential filters [92], or oriented difference of Gaussians/Laplacians at mul-
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tiple scales [13, 73]. These algorithms usually consider the lightness/brightness illu-
sions, i.e., the Munker-White illusion, and they do not provide explicit investigations
on computational color constancy as we do in our study. The studies that are most sim-
ilar to our algorithm are the ones that use spatial filters. However, as aforementioned,
these methods only aim at reproducing our perception of illusions. Also, most of these
methods provide the results of the spatial filters as their final outputs, while we aim to
produce an output image with the same algorithmic process for both the illusions and
color constancy.

It is important to mention that we do not suggest that our approach is a perfect
model of the human visual system whose mechanisms have not been fully discovered
yet. In other words, we are not arguing that our algorithm does carry out the exact
operations performed by the human visual system. We only aim to develop a method
for computational color constancy and the perception of color assimilation illusions
from the perspective of computer vision. To the best of our knowledge, this is the first
color constancy study that solves both phenomena together while providing an analysis
of color constancy from the perspective of computer vision.

The remainder of this paper is organized as follows. In Sec. 2, we provide a general
overview of image formation and color constancy. In Sec. 3, we revisit the local space
average color algorithm and introduce our method. Then, in Sec. 4 we discuss our re-
sults for color illusions, and in Sec. 5 we demonstrate the efficiency of our algorithm
on color constancy. Afterwards, in Sec. 6 we provide a summary of our study.

2 Image Formation Model and Computational Color Constancy

Before introducing our algorithm we would like to provide a brief summary of the
commonly used image formation model in the field of color constancy since we conduct
our investigations from the perspective of computational color constancy.

We begin visual information processing when the light falls onto the retina where it
is measured by the photoreceptors, i.e., cones, while cameras begin visual information
processing when a sensor array measures the incident light. If we assume that we have
a camera consisting of three different sensors, then each sensor measures the energy of
the incident light by responding to a specific part of the visible spectrum, i.e., short-,
middle-, and long-wavelength. As a result, for every spatial location (x, y) the mea-
sured signal I(x, y) depends on the irradiance E(x, y) hitting the sensors of the camera
and the sensor sensitivity function S of the capturing device containing the sensors re-
sponses of a specific wavelength. Thus, we can model the measured signal as follows:

I(x, y) =

∫
w

E(x, y;λ)Si(λ)dλ, (1)

where i ∈ {long, middle, short}, and λ is the wavelength of the visible spectrum w.
In color constancy, we mostly build our methods upon two assumptions; (i) the sur-

face is Lambartian, i.e., it is equally reflecting the light into all directions, and (ii) there
is a point light source L(x, y;λ) illuminating the scene. Based on these assumptions,
the irradiance hitting the sensors of the camera can be formulated as follows:

E(x, y;λ) = G(x, y)R(x, y;λ)L(x, y;λ), (2)
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A computational model for color assimilation illusions and color constancy 5

where R(x, y;λ) is the reflectance, and G(x, y) is the scaling factor which can be rep-
resented as cos α, where α is the angle between the surface normal vector and a vector
pointing in the direction of the light source. Thus, by using Eq. (1) and Eq. (2) we can
model an image as follows:

I(x, y) = G(x, y)

∫
w

R(x, y;λ)L(x, y;λ)Si(λ)dλ. (3)

In computational color constancy, we aim at estimating the illuminant L from the
color cast image I in order to produce a canonical image, i.e., a white-balanced im-
age. However, even when we simplify the image formation model and represent it as
in Eq. (3), color constancy remains an under-constrained problem since the number of
unknown elements is higher than the number of known components. In order to over-
come the ill-posed nature of color constancy, generally relaxations are made by assum-
ing that the scene is illuminated by a single light source, the camera sensor responses
are narrow-band, i.e., they can be approximated by Dirac’s delta functions, and the
scene geometry G(x, y) has no impact on the illumination estimation task [27]. With
these oversimplifications, a color cast image is assumed to be scaled by a uniform light
source, and it is represented as the element-wise product of the (shaded) reflectance R
and the global light source L as follows:

I(x, y) = R(x, y) ◦· L. (4)

Over the last decades, numerous global color constancy algorithms have been pro-
posed to estimate the color vector of the light source [27]. These algorithms can be
simply grouped into two categories, namely, traditional methods and data-driven mod-
els. Traditional methods make use of image statistics, and there are two well-known
traditional algorithms, i.e., white-patch Retinex and gray world [18, 62]. The former
takes into account that the human visual system might be discounting the illuminant
based on the highest luminance patch and estimates the illuminant by computing the
maximum responses of the image channels separately [62]. The latter considers that the
scene’s space-average color is crucial for human color constancy and takes the mean of
the pixels of each image channel individually [18]. Since these two methods are devel-
oped based on investigations of the human visual system and it is known that methods
based on biological findings have a tendency to perform effectively, these two algo-
rithms lay the foundations of several other color constancy studies [20, 35, 46, 57, 71,
72, 83, 84, 87]. Indeed, there are also other traditional color constancy approaches that
mimic different mechanisms of the human visual system to discount the illuminant of
the scene [39, 41, 42, 81, 93].

Even though traditional methods are cost-efficient, their accuracy in estimating the
illuminant is not sufficient in case a limited number of distinct colors is present in the
scene, i.e., scenes with close-up shootings or with dominant sky/grass regions [19].
On the other hand, data-driven methods can usually achieve high performance when
uniformly colored areas dominate the scene. Examples of data-driven algorithms in-
clude diverse strategies such as gamut-based methods [12, 33, 34, 36, 47], Bayesian ap-
proaches [15, 16, 45], and neural network-based models [1, 11, 22, 25, 54, 60]. While
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data-driven models generally outperform traditional algorithms on well-known bench-
marks, their performance tends to decrease when they are tested on scenes with out-
of-ordinary statistical distributions and/or scenes captured by cameras with unknown
characteristics [40, 71, 82]. The decrease in their effectiveness can be explained by the
facts that (i) data-driven methods expect similar training and test sets, (ii) well-known
benchmarks contain similar lighting conditions, i.e., illuminants on the edges and out-
side the color temperature curve are rarely included, and (iii) most datasets are formed
with capturing devices having similar sensor response specifications [19, 82].

The majority of traditional and data-driven methods previously exemplified tackle
the ill-posed problem by assuming that there is a single illuminant in the scene. Al-
though, this assumption allows us to produce visually pleasing images, it is usually
violated in the real world due to the presence of interreflections, shadows, and multiple
light sources in the scene [14,29]. In case multiple illuminants are present in the scene,
the image formation model given in Eq. (1) can be rewritten as follows [32]:

I(x, y) =

∫
w

n∑
j=1

βj(x, y)Ej(x, y;λ)Si(λ)dλ, (5)

where n is the number of illuminants, and β ∈ R+ is the weighting factor, which
depends on the intensities of the light sources and the scene’s geometry.

Compared to the global color constancy algorithms, the number of multi-illuminant
color constancy methods is quite limited. One of the earliest attempts to produce pixel-
wise estimates of the light source is the local space average color algorithm created by
Ebner [26]. Afterwards, several methods have been developed that rely on both tradi-
tional and data-driven strategies [7, 9, 11, 22, 41, 49, 56, 85, 93].

3 Method

As aforementioned in Sec. 1, our simple yet effective approach relying on low-level
processing can produce output images for both color assimilation illusions and color
constancy. In this section, we first revisit the local space average color [26], and then
we introduce our approach.

3.1 Revisiting Local Space Average Color

We use the local space average color algorithm proposed by Ebner [26] that relies purely
on low-level processing and has several connections with the human visual system. In
this section, we briefly mention the reasons that led us to consider this algorithm in our
approach, and then we explain the algorithm while presenting our modification.

Both in behavioral experiments and computational biology studies it is shown that
local space average color might be used in the human visual system since local contrasts
between neighboring cones carry important cues for human color constancy [37,44,79],
while it is discussed in detail that space average color over a large local area is another
cue for color constancy and color perception [26, 44, 64]. Also, the importance of the
interaction between local spaces in color perception is explicitly demonstrated in Land’s
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A computational model for color assimilation illusions and color constancy 7

experiments where it is shown that our visual system processes the color information of
the object by taking the surroundings into account [61]. Land demonstrated that when
a single green or yellow patch of a Mondrian image is observed in isolation/void mode,
the color of the patch is perceived as grayish-white. However, when the surrounding
patches are added, i.e., the Mondrian is viewed as a whole, the actual reflectance of the
green or yellow patch can be observed. Due to its biological basis, and being a learning-
free multi-illuminant color constancy algorithm that relies on low-level processing, we
utilized local space average color in our approach.

The local space average color algorithm assumes that the effects of the light source
are spatially varying. It estimates the colors of the illuminant present in the scene by
iteratively updating the following equations:

a′i(x, y) =
1

| N(x, y) |
∑

(x′,y′)∈N(x,y)

ai(x
′, y′) (6)

ai(x, y) = Ii(x, y)p+ a′i(x, y)(1− p), (7)

where a is the space average color, N is the set of neighborhood pixels, p is the param-
eter that adjusts the size of the region where the local space average color is computed,
i.e., a small p value indicates that local space average color is computed for a large
region, and subscript i represents the color channels of the image, i ∈ {r, g, b}.

Even though iteratively updating ai over time allows us to estimate the illuminant,
convergence may take time which increases the computational cost of the algorithm.
Therefore, the simplest way to reduce the run-time while obtaining similar results is to
replace the iterative approach with a convolution operation as follows:

ai(x, y) = k(x, y)

∫ ∫
Ii(x, y)g(x− x′, y − y′)dx′dy′, (8)

where the scaling factor k is chosen such that

k(x, y)

∫ ∫
Ii(x, y)g(x

′, y′)dx′dy′ = 1, (9)

where g is the 2D Gaussian kernel formulated as g(x, y;σ) = 1
2πσ2 exp(−x2+y2

2σ2 ), σ is
the controlling parameter of the Gaussian kernel that is usually set to a constant such as
σ = γ (max{h,w}/2) where h and w are the height and width of the image, respec-
tively. The γ parameter has to be selected such that local averaging can be performed
over a sufficient area that contains different objects with diverse reflectances. The rea-
son is that the local space average color algorithm assumes that the world is achromatic
on average and this hypothesis is only valid when there is a sufficient number of diverse
colors present in the scene [27]. According to practical experiments, setting γ to 0.95
for single illuminant cases and 0.095 for the multi illuminant cases produces satisfying
results. Therefore, γ can be assigned to a value between 0.095 and 0.95 according to the
illumination conditions of the scene, i.e., for single illumination conditions, γ should
be chosen larger, whereas, for mixed illumination conditions, it should be smaller.

After obtaining a, the input’s (shaded) reflectance o can be obtained as follows:

o(x, y) ≈ I(x, y)

fa(x, y)
, (10)
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where f is a factor that scales all color channels equally and it is assigned to 2 assuming
a perpendicular orientation between the object and the camera [27].

In 2013, Ebner and Hansen [30] demonstrated a variant of the algorithm where
the local averaging is performed according to the depth information of the scene. The
main idea is built upon the fact that separate objects present in the scene may cause
large depth discontinuities. Thus, areas divided by the large depth differences should
be treated separately when estimating the illuminant. One of the main drawbacks of
this algorithm is that the depth information might not be easily accessible, and the
range data might be noisy which may severely affect the calculation of the estimates.
Therefore, we follow the main idea of the prior work, but instead of relying on depth
information, we utilize the gradients of the scene since it is known that large depth
discontinuities cause large gradient changes [90]. To respect the edges and preserve the
coherence of the local information [28], we refine the local estimates by using an edge-
aware smoothing filter [52]. Since guided filtering assumes that the processed image is
locally a linear transform of the guidance image [52], this post-processing step helps us
to respect gradient changes in the local estimates according to the input image.

3.2 Proposed Algorithm

Our method reconciles two computationally opposing perceptual phenomena, i.e., it
obtains canonical images from scenes with a color cast and it is deceived by color as-
similation illusions. As aforementioned, our algorithm relies on computations in scale-
space and the local space average color method modified with an edge-aware smoothing
filter. We perform operations in scale-space since the information we need for accurate
local estimates is available in the stimulus at the proper scale [74, 75]. We discount the
effects of the blurry content from the input at each scale to obtain an output similar to
our perception since it is known that the changes arising from the context are carried in
the low spatial frequency element and removing the blurry content from the input can
generate images similar to our perception [24, 74, 75]. In the remainder of this section,
we introduce our algorithm step-by-step.

We apply preprocessing in case an sRGB image and/or a natural scene is given as
input to our algorithm. For the former, we apply gamma correction to obtain a linear
relationship between pixels [27], where it is worth mentioning that this is an oversimpli-
fication neglecting the non-linearity introduced by most cameras before producing the
final sRGB images [2]. For the latter, we remove the 3% of the darkest and the brightest
pixels to reduce possible noise since natural scenes may contain saturated pixels.

Afterwards, we obtain a lightness layer. Lightness is the visual perception of the
luminance and our visual system adapts to the luminance in our surroundings by maxi-
mizing the response range available to itself [74]. If we map this adaptation to computer
vision it can be explained as adjusting the statistical distribution of a certain dimension
of an image so that the number of levels that can be differentiated along that certain
dimension is maximized. The lightness adaptation in the human visual system can be
mimicked by histogram equalization in computer vision [74]. Based on this observa-
tion, to mimic the behavior of our visual system, i.e., to adjust the scene’s perceived
luminance, we extract a lightness layer from the (preprocessed) input image. To obtain
the lightness layer, we take the mean of each color channel individually and scale the
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A computational model for color assimilation illusions and color constancy 9

input image according to these values, i.e., we apply the gray world algorithm [18].
Then, we convert the scaled RGB image into CIELAB color space by using D65 as
white point, while in our experiments we observed that utilizing other white points has
negligible impact on the results. Subsequently, we extract the lightness component L∗,
and we perform histogram equalization [94] on L∗ to adjust its contrast and utilize the
resulting image as our lightness layer at the end of our process.

Then, in order to perform operations in scale-space we create two image pyramids.
We form one image pyramid for the input image and one for the local estimations.
We determine the number of the pyramids’ scales M based on the image resolution as
M = ⌊log(min(h,w))/log(2)⌋ − 2 where h and w are the height and width of the
image. The last two coarsest layers are discarded due to the significant degradation of
locality at these layers. Subsequently, we find the representations of the input image
at multiple levels in the image pyramid. Afterwards, we utilize the local space average
color algorithm explained in Sec. 3.1 to find the local estimates of the scene for each
pyramid level. It is worth mentioning that we compute the local space average color at
each scale separately rather than computing it only at the finest scale and then carry this
estimation into scale-space. We follow this approach to preserve the fine details in the
estimations at each scale more accurately. If we would compute the local space average
color only at the finest level and carry these estimations into scale-space we would
distort locality through downsampling, which we would like to avoid since locality
is critical in particular for assimilation illusions and multi-illuminant color constancy
(visual investigations are provided in the supplementary material).

After we form the scale-space representations of the input image and the local esti-
mates, we perform an operation that we call multiresolution color constancy for which
we take inspiration from the study of Mertens et al. [68]. Their method is widely utilized
in the field of image fusion, where the output image is obtained by weighted averaging
multiple images with their corresponding weight maps. In their strategy, the Laplacian
pyramid of the input images and the Gaussian pyramid of the corresponding weights are
computed. Fusion is carried out at each scale and then the resulting pyramid is collapsed
into an output image. This multiresolution blending approach allows the preservation of
both the fine details and the structure of flat regions in the fused images. Motivated by
this idea, we propose a multiresolution color constancy strategy that can both produce
white-balanced images and mimic our sensation on color assimilation illusions. In our
case, we do not have multiple input images but one pyramid for the input images and
one pyramid for its local estimations (see illustration in the supplementary material).

Let us explain our strategy by considering the input image and its local estimates at
the m-th scale of both pyramids, where m ∈ M . We form the Laplacian pyramid of the
input image L{Im(x, y)} and the Gaussian pyramid of the local estimates G{am(x, y)},
where the number of levels T is computed according to the image resolution as ex-
plained before. Then, we estimate the (shaded) reflectance at a scale t by applying a
similar operation to Eq. (10) as follows:

P{om(x, y)}t = L{Im(x, y)}t

G{am(x, y)}t
, t = 1, 2, . . . , T, (11)

where we form the resulting pyramid P{om(x, y)} by repeating this operation for all
levels in T .
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Subsequently, we collapse the pyramid P{om(x, y)} to obtain a final output for the
m-th scale. To collapse P{om(x, y)}, we first upsample the image in the coarsest scale
to match the size of the image in the consecutive finer level as follows:

U ′ = upsample(P{om(x, y)}T , size(P{om(x, y)}T−1)), (12)

where U ′ is the upsampled image, upsample is a function that matches the size of
P{om(x, y)}T to the size of P{om(x, y)}T−1.

After obtaining U ′, we linearly combine it with the image on the consecutive finer
level as follows:

U = average(U ′,P{om(x, y)}T−1), (13)

where U is the new image at the level T − 1, and average represents the linear combi-
nation operation.

Afterwards, we upsample U to linearly combine it with its consecutive finer level
T − 2. We perform Eq. (12) and Eq. (13) until we reach the finest level of the pyramid.
The computed image at the finest scale represents the estimated reflectance for the m-th
scale. We repeat this procedure for all m ∈ M .

Then, we collapse the resulting pyramid for the estimated reflectances by utilizing
Eq. (12) and Eq. (13). The resulting image is the (shaded) reflectance of the input image.

This method allows us to perform two computationally opposing perceptual phe-
nomena with a single method. If we would not adopt such a strategy, and directly divide
the input image with its local estimations only on a single scale, we could not repro-
duce our sensation on color illusions, even though we would be able to perform color
constancy (a brief explanation is provided in the supplementary material).

Lastly, in order to obtain the final output image, we apply the following procedure.
We convert the estimated reflectance image into CIELAB color space and take the a∗

and b∗ channels. Then, we merge these channels with the previously extracted lightness
layer. Subsequently, we convert the resulting image into RGB color space and obtain
our final output image.

4 Results on Color Illusions

In this section, first we explain how we form our color illusion set, and then we provide
our analysis of color illusions.

As explained in Sec. 1, we are deceived by color assimilation illusions due to the
influence of the context, i.e., inducers [70]. The frequency of occurrence of the inducer
and its thickness control the strength of the illusion effect (an example demonstration for
the effects of the context is provided in the supplementary material). Hence, we form our
color illusion set by taking the inducer’s frequency of occurrence and its thickness into
account. We choose different shapes for the target region while we select various colors
for both the context and the target area. As a result, we form an illusion set that includes
a range of images that begin to evoke an illusion effect to images with a strong illusion
sensation (example images of illusions are provided in the supplementary material). It is
worth mentioning that the images created by ourselves are available upon request [80].
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A computational model for color assimilation illusions and color constancy 11

In order to evaluate an algorithm’s performance on reproducing our sensation on
color illusions, there are two common approaches; (i) conducting visual analysis of the
target region, and (ii) presenting the intensity change within the target area. Neither
of these two approaches includes a quantitative analysis since there is no error met-
ric designed for this task and there is no color assimilation illusion dataset including
ground truth information. The lack of metrics and datasets can be considered among
the challenges/limitations in this field. Creating an error metric and an illusion dataset
are troublesome tasks since even if we consider only observers with normal vision, the
sensory processing of individuals varies from each other [31, 78], thus they may not
perceive a color illusion entirely the same. For instance, even if different observers per-
ceive a target area as green, the perceived shade of green may be different among the
observers, which is the reason behind providing the intensity change within the target
image or performing visual inspections in several studies reproducing our sensation on
color illusions [21, 38, 67]. In this study, to investigate the performance of our algo-
rithm in mimicking our sensation on color assimilation illusions, we prefer to carry out
a visual inspection by considering the target regions of the images.

Input Image Input Target Estimations Output Target

Fig. 3: Results of the proposed method on color illusions. When we look at the input images,
we perceive their target regions as if they have different colors. However, as demonstrated in the
images in second column, they have the same color. As shown in the output’s target regions, our
method mimics our perception of color illusions having different inducer frequencies/thicknesses,
colors, and shapes. Note that, the colors in the output target may seem darker than our perception
in the input image due to the black background in the output target. The images in the first
three rows are our designs, while the subsequent rows contain images courtesy of David Novick,
Akiyoshi Kitaoka, and Michael Bach, respectively.
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We would like to note that while we cannot measure our sensation quantitatively, as
a close alternative, to present quantitative analysis one might perform experiments sim-
ilar to color-matching experiments with human observers having normal color vision,
i.e., without any color deficiency [86]. In such an experiment, one may ask the observers
to match the colors of the target region with a patch whose RGB values can be adjusted
by the observers. Consequently, in the end, we can obtain ground truth RGB values of
the target region which we can utilize to carry out quantitative analysis to evaluate the
algorithms mimicking our sensation on color illusions. Nonetheless, due to constraints
in technical capacity and resource availability, creating a benchmark for color assimila-
tion illusions including ground truths by conducting experiments with human observers
is deemed to be beyond the scope of our study.

We demonstrate our results on various color illusions containing different shapes,
and color combinations in Fig. 3 (for further visual results, please refer to the supple-
mentary material). We provide both our estimations at different scales and the output
targets. As we can see, our algorithm can mimic our sensation on various color illusions.

It is worth mentioning that in our recent study [86], we considered the pixel-wise
estimations of the modified color constancy algorithms as the reproduction of our sen-
sation on color illusions. We mentioned that the reproduction of illusions is highly de-
pendent on the inducer’s frequency of occurrence and thickness. While this dependency
is valid for algorithms operating on a single scale, it can be overcome by a scale-space
approach as we propose in this work. This can be explained by the fact that even if the
parameter for spatial filtering is insufficient for the finer scales, it is adequate for the
coarser scales. Since our multiresolution color constancy strategy allows us to consider
multiple scales, we can give more importance to the coarser scales where the illusion
sensation is stronger. Hence, when we collapse the pyramid we can produce results
that are close to our perception of assimilation illusions without relying on explicit pa-
rameters for the inducer’s frequency of occurrence and thickness. This outcome can
be associated with the fact that as the information we need for accurately estimating
the illuminant is available in the stimulus at the proper scale [74, 75], the information
we need to reproduce the color illusions might also be available at the proper scale.
This would also indicate that there is a strong relationship between color assimilation
illusions and color constancy which should not be neglected and further investigated.

5 Results on Color Constancy

In this section, we explain our experimental setup and provide statistical results. De-
tailed information about the datasets and error metrics, as well as visual results, can be
found in the supplementary material.

To evaluate the performance of our method, we utilize the angular error and the △E
metric [65, 76], and we use 4 different datasets, namely, the Multiple Illuminant and
Multiple Object (MIMO) dataset [9], the Mixed-Illumination Test Set [4], the Rendered
WB Dataset (Set 2) [6], and the rendered version of the Cube+ [6].

To provide consistent results with other studies that we utilized for comparison we
report the mean and second quartile (Q2) of the angular error for the MIMO dataset,
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Table 1: Statistical results on 4 benchmarks. The results are reported based on the recent publi-
cations of Ulucan et al. [86], Kinli et al. [58], and Afifi et al. [6]. The top results are highlighted
by using color coding as, the best: green, second-best: blue, and third-best: red. AC and AT are
the auto-color and auto-tone functions of Adobe Photoshop, respectively.

Real-World Laboratory

MIMO Dataset Mean Q2 Mean Q2

Si
ng

le
-I

llu
m

in
an

tM
et

ho
ds

White-Patch Retinex [63] 6.8° 5.7° 7.8° 7.6°

Gray World [18] 5.3° 4.3° 3.5° 2.9°

Shades of Gray [35] 6.2° 3.7° 4.9° 4.6°

1st - Gray Edge [87] 8.0° 4.7° 4.3° 4.1°

Weighted Gray Edge [48] 7.9° 4.1° 4.4° 4.0°

Mean Shifted Gray Pixels [72] 5.8° 5.0° 13.3° 12.6°

Block-based Color Constancy [83] 4.8° 3.6° 3.1° 2.8°

Biologically Inspired Color Constancy [81] 5.0° 4.3° 4.2° 4.1°

Color Constancy Convolutional Autoencoder [60] 12.4° 12.3° 13.9° 14.1°

Sensor-Independent Color Constancy [2] 5.9° 5.1° 9.0° 9.0°

Cross-Camera Convolutional Color Constancy [1] 11.9° 13.0° 7.0° 7.1°

M
ul

ti-
Il

lu
m

in
an

tM
et

ho
ds

Local Space Average Color [26] 4.9° 4.2° 3.1° 3.0°

Gijsenij et al. with White-Patch Retinex [49] 4.2° 3.8° 5.1° 4.2°

Gijsenij et al. with Gray-World [49] 4.4° 4.3° 6.4° 5.9°

Conditional Random Fields with White-Patch Retinex [9] 4.1° 3.3° 3.0° 2.8°

Conditional Random Fields with Gray-World [9] 3.7° 3.4° 3.1° 2.8°

N-White Balancing with White-Patch Retinex [7] 4.1° 3.4° 2.6° 2.2°

N-White Balancing with Gray World [7] 4.6° 4.5° 3.7° 3.1°

Visual Mechanism based Color Constancy with Bottom-Up [41] 5.0° 4.0° 3.7° 3.4°

Retinal Inspired Color Constancy [93] 5.2° 4.3° 3.2° 2.7°

Color Constancy Adjustment based on Texture of Image [56] 3.8° 3.8° 2.6° 2.6°

Gray Pixels with 2 clusters [71] 3.7° 3.3° 3.0° 2.5°

Gray Pixels with 4 clusters [71] 3.9° 3.4° 2.7° 2.2°

CNNs-based Color Constancy [11] 3.3° 3.1° 2.3° 2.2°

GAN-based Color Constancy [22] 3.5° 2.9° - -

Proposed 3.2° 2.6° 2.7° 2.3°

Angular Error △E 2000 [76]
Rendered Mixed-Illumination Test Set Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Local Space Average Color [26] 4.8° 3.3° 4.6° 8.1° 11.0 8.1 10.4 14.7

Gray Pixels [72] 19.7° 11.9° 17.2° 27.1° 25.1 19.1 22.6 27.5

Grayness Index [71] 6.4° 4.7° 5.7° 7.1° 12.8 9.6 12.5 14.6

KNN White-Balance [6] 5.8° 4.3° 5.8° 6.9° 12.0 9.4 11.6 13.6

Interactive White-Balance [5] 5.9° 4.6° 5.6° 6.6° 11.4 8.9 10.9 12.8

Deep White-Balance [3] 4.5° 3.6° 4.2° 5.2° 10.9 8.6 9.8 12.0

Auto White-Balance for Mixed-Scenes [4] 5.4° 4.3° 4.9° 6.2° 10.6 9.4 10.7 11.8

Style White-Balance [58] 5.7° 4.5° 5.4° 6.3° 12.1 10.4 12.1 13.4

Proposed 4.8° 3.4° 4.4° 6.3° 8.9 6.7 8.5 12.0

Angular Error △E 2000 [76]
Rendered WB Dataset (Set 2) Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Local Space Average Color [26] 8.7° 4.3° 8.0° 14.2° 10.6 6.6 10.3 15.2

Adobe Photoshop (AC) [23] 10.2° 5.3° 8.6° 14.1° 11.7 7.6 11.4 15.0

Adobe Photoshop (AT) [23] 11.9° 7.0° 10.7° 15.9° 13.1 9.6 13.2 16.5

White-Patch Retinex [63] 13.2° 8.2° 12.6° 18.1° 12.9 9.0 13.4 17.1

Gray World [18] 8.6° 5.4° 7.9° 10.9° 10.7 7.7 10.1 13.2

Shades of Gray [35] 9.0° 5.3° 8.3° 12.0° 9.8 6.9 9.7 12.5

1st - Gray Edge [87] 12.5° 7.6° 11.9° 17.0° 13.0 9.1 12.9 16.6

2nd - Gray Edge [87] 12.8° 7.6° 12.1° 17.5° 13.2 9.0 13.1 17.0

Weighted Gray Edge [48] 13.5° 7.8° 12.6° 18.6° 14.0 9.0 13.7 18.6

Fully Convolutional Color Constancy [54] 10.4° 5.3° 9.3° 14.2° 10.8 7.4 10.6 13.8

Quasi-Unsupervised Color Constancy [10] 10.5° 5.9° 9.4° 14.0° 10.7 7.0 10.5 13.9

WB-sRGB [6] 4.5° 2.3° 3.6° 6.0° 5.6 3.4 4.9 7.1

Proposed 7.8° 3.7° 7.1° 12.9° 10.3 6.1 10.0 15.2

Angular Error △E 2000 [76]
Rendered Cube+ Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Local Space Average Color [26] 6.1° 2.2° 5.3° 11.4° 8.6 4.4 8.0 13.8

White-Patch Retinex [63] 8.4° 2.2° 5.0° 13.2° 14.2 3.9 8.5 22.7

Gray World [18] 6.4° 2.5° 5.1° 9.1° 8.1 4.2 7.3 11.1

Shades of Gray [35] 6.7° 2.1° 4.2° 9.6° 7.6 3.0 5.7 11.1

1st - Gray Edge [87] 7.3° 2.1° 4.4° 10.8° 8.2 3.0 5.8 12.4

2nd - Gray Edge [87] 7.2° 2.1° 4.3° 10.6° 8.1 3.1 5.6 12.1

Weighted Gray Edge [48] 7.3° 2.0° 4.2° 10.6° 8.2 2.9 5.5 12.3

Fully Convolutional Color Constancy [54] 6.5° 3.3° 5.6° 8.6° 10.4 6.6 9.8 13.3

Quasi-Unsupervised Color Constancy [10] 6.1° 2.0° 3.9° 8.8° 7.3 2.9 5.2 10.4

WB-sRGB [6] 4.1° 2.0° 3.2° 5.0° 5.7 3.2 4.6 6.7

Proposed 5.5° 1.8° 4.7° 10.6° 8.3 3.9 7.7 13.8

while we provide the mean, first quartile (Q1), second quartile, and third quartile (Q3)
of both the angular error and △E 2000 for other datasets.

Table 1 presents the statistical results on all benchmarks. In terms of mean angu-
lar error, our approach is always among the three best-performing methods. Also, our
learning-free algorithm presents competitive results compared to the state-of-the-art
learning-based models, and it even outperforms some of them on different benchmarks.

For the MIMO dataset, our method achieves the best mean and Q2 of the angular
error on the Real-World set, while it is among the three best-performing methods on the
Laboratory set. Our statistical scores are slightly better on the Laboratory set which can
be explained by the fact that the scenes in this set do not contain as much complexity as
the ones in the Real-World set as also reported in other studies [71].

Additionally, we present results on three benchmarks that feature a higher number of
outdoor scenes, as well as more diverse and challenging illumination conditions, com-
pared to the MIMO dataset. As demonstrated in Tab. 1, on the Mixed-Illumination Test
Set, our method presents the best mean, Q1, and Q2 △E scores, while it achieves state-
of-the-art performance in terms of angular error. Moreover, our algorithm achieves com-
petitive results on the Rendered WB Dataset (Set 2) and the Rendered Cube+ datasets.
Overall, the data-driven WB-sRGB model presents the best scores for the Rendered
WB Dataset, while we achieve the second-best results in terms of angular error. These
results highlight the effectiveness of our approach across various benchmarks and chal-
lenging illumination conditions.
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As a final note, based on the statistical outcomes, we may argue that the relationship
between the color assimilation illusions and color constancy should be further investi-
gated since with a single learning-free algorithm based on low-level processing we can
both reproduce the color illusions and perform color constancy efficiently. Furthermore,
if we can successfully both mimic our sensation on color illusions and perform color
constancy with a simple yet effective learning-free approach, we may achieve even bet-
ter outcomes, in particular in terms of color constancy, if we design a neural network-
based model. Through the learning process, the model may adjust its parameters more
accurately than traditional methods. Furthermore, in case we train the model with color
illusions that are independent of sensor characteristics of the camera, we might be able
to prevent the data bias arising due to the capturing device’s specifications and the illu-
mination type [19, 82]. Consequently, we might develop more robust artificial models
mimicking the human visual system by minutely investigating color illusions from the
perspective of computational color constancy.

6 Conclusion

The human visual system can discount the illuminant and recognize the actual phys-
ical reflectance of objects, yet under certain circumstances it cannot identify the true
colors in a scene. Color illusions can be given as an example where our visual system
is deceived by the context. While both discounting the illuminant and being fooled by
color illusions are the result of the unknown mechanisms of our visual system, we do
not exactly know how we perform color constancy, and why we are fooled by the color
illusions. What we do know is that there is a relationship between these phenomena and
a perfect algorithm mimicking our visual system should both reproduce our sensation
on color illusions and perform color constancy. If we design an approach that can re-
spond to both phenomena, it would help to uncover the mechanisms of the human visual
system. From this motivation, we have developed a single method that can both repro-
duce our sensation on color illusions and perform color constancy by making use of
observations provided in numerous computational biology and computer vision stud-
ies. Our multiresolution color constancy strategy where we utilize scale-space within
scale-space allows us to address both phenomena through a single method. It enables
us to perform color constancy since we discount the illuminant at each scale, while it al-
lows us to mimic our sensation on illusions since we take the information at the coarser
levels where the illusion effect is stronger into account.

As future work, we will use our observations from our algorithm to analyze color
illusions from the perspective of learning-based color constancy models. Moreover, we
will focus on one of the challenges of the field, i.e., lack of evaluation benchmarks, by
creating a color assimilation illusion benchmark.
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