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Abstract. The precise detection of cephalometric landmarks on two-
dimensional (2D) radiographs or three-dimensional (3D) computed to-
mography (CT) images is a fundamental step in various medical fields,
especially in research on orthodontics and maxillofacial surgery. Deep
learning-based detectors have demonstrated remarkable accuracy in 2D
cephalometric analysis, whereas conventional single-view approaches are
limited by their reliance on information from a single perspective. This
study proposes GeoRefineNet, a novel multistage framework that lever-
ages information from multiple CT scans acquired at various angles. By
incorporating geometric knowledge through a 3D heatmap reconstruction
process, GeoRefineNet improves robustness, accuracy, and adaptability
to various cephalometric configurations. The proposed framework pre-
dicts 3D landmark positions on CT images, e!ectively addressing chal-
lenges associated with high-dimensional input data and limited training
examples. GeoRefineNet surpasses the existing state-of-the-art models in
the 2D and 3D domains, as demonstrated by its superior performance
on numerical and clinical datasets. These findings indicate that GeoRe-
fineNet o!ers a promising avenue for improving the accuracy and reli-
ability of cephalometric landmark detection fostering further advances
in clinical diagnosis and treatment planning. Our code is available at
https://github.com/Thanaporn09/GeoRefineNet.git.

Keywords: Cephalometric landmark detection · Cone-Beam CT ·
Heatmap reconstruction · Multistage deep learning framework

1 Introduction

The precise identification of cephalometric landmarks on two-dimensional
(2D) radiographs or three-dimensional (3D) computed tomography (CT) images
is pivotal for clinical practice, such as maxillofacial surgery and orthodontics.
Further, CT imaging provides a more detailed visualization of the craniofacial
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area than traditional cephalometric radiographs. It also enhances the accuracy
of landmark identification crucial for diagnosis, planning treatments, and evalu-
ating patient outcomes [8, 13].

Deep learning technologies have demonstrated impressive success in cephalo-
metric analysis, particularly in detecting 2D cephalometric landmarks [12,16,17,
19,28], especially within the domain of X-ray imaging [1], which contains only a
single view of each patient. Consequently, existing methods have been designed
to achieve high accuracy on single-view images, limiting their e!ectiveness in
multiview landmark detection applications. Single-view approaches often fail to
capture complex 3D anatomical relationships and the contextual information re-
garding surrounding structures. Recognizing these limitations, there is a growing
interest in leveraging multiview information to improve detection accuracy.

In CT landmark detection, multiview information is particularly advanta-
geous, providing additional data and increasing the robustness of detection meth-
ods against variations in anatomy, patient positioning, and imaging conditions.
In some 2D projection views, landmarks might be obscured by the surrounding
anatomy, but they can be identified in other views. Using clearer views to inform
detection tasks in more challenging views can enhance the overall accuracy and
reduce false positives and negatives. Moreover, a multiview analysis o!ers bet-
ter handling of occlusions, making landmark detection more reliable. Although
multi-view consistency has been shown to improve performance in spinal X-ray
landmark detection [29], this approach increases computational costs and limits
scalability due to its reliance on fusing feature representations from each view.
To address these limitations, we propose GeoRefineNet, a novel framework for
cephalometric landmark detection. GeoRefineNet leverages geometric informa-
tion from multiple CT scans acquired from diverse angles, via a 3D heatmap
reconstruction process, to enhance the robustness, accuracy, and adaptability of
deep learning detectors without incurring additional model complexity or com-
putational cost.

Accurate 3D cephalometric landmark detection remains a challenge due to
the scarcity of robust methodologies and is hampered by high-dimensional input
data and limited training examples. Although the existing methods [4,10,12,15,
27] leverage the entire 3D CT volume, this approach inherently restricts the abil-
ity to overcome these limitations. We propose a novel framework that predicts
3D landmark positions directly on CT images by back-projecting the 2D out-
put’s landmark position from multiple angles acquired from GeoRefineNet. This
approach o!ers two critical advantages: 1) accurate landmark detection with-
out incurring the computational cost of high-dimensional input and 2) reduced
overfitting risk due to the limited size of the training dataset.

The primary contributions of this paper are as follows:

– GeoRefineNet, an innovative cephalometric landmark detection framework
that leverages geometric information across multiple views, has been intro-
duced. This method is achieved by projecting 2D position onto a 3D heatmap
in a reconstruction process, bridging the gap between 2D projections and 3D
spatial detection.
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Fig. 1: Overall architecture of the proposed framework, GeoRefineNet.

– The integration of GeoRefineNet with 3D reconstruction processes facilitates
the precise detection of landmarks in 3D space.

– GeoRefineNet surpasses existing models in accuracy across 2D projection
and 3D imaging domains. This performance is validated using two CT image
datasets: the 4D extended cardiac-torso (XCAT) head phantom dataset and
patient CT scans from the CQ500 dataset [5].

2 Methods

This section introduces GeoRefineNet, a multistage deep learning framework
for cone-beam CT (CBCT) cephalometric landmark detection that utilizes geo-
metric information to refine landmark positions. GeoRefineNet consists of three
primary stages: initial heatmap prediction, 3D heatmap reconstruction and re-
finement, and landmark localization using the refined heatmap as guidance. Fig-
ure 1 presents the overall architecture of GeoRefineNet.

2.1 Stage 1: Initial heatmap prediction

In the initial stage, we employed a deep learning anatomical landmark de-
tector based on heatmap regression approaches to generate the initial heatmap,
representing the predicted positions of landmarks on the 2D projection images
of the CBCT scans. Typically, a heatmap regression-based detector comprises
two main components: the encoder and the decoder. The encoder extracts the
feature representation from the input image and generally serves as the backbone
of the classification model, without the fully connected layer, in the natural im-
age domain landmark detector. The decoder utilizes the feature representation
from the encoder to generate the heatmap that corresponds to the landmark
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Fig. 2: Two- and three-dimensional transformation process..

positions. In medical imaging, heatmap regression-based landmark detectors are
typically designed based on the UNet architecture [20].

The standard label representation for the heatmap regression-based method
is a coordinate heatmap, generated as a 2-dimensional Gaussian distribution/kernel
centered at the labeled coordinate of each landmark. In this study, the standard
deviation of the Gaussian distribution is defined as two. The loss function em-
ployed is the mean square error (MSE) or L2 loss, calculated using the coordinate
heatmap ground truth and the predicted heatmap. The predicted heatmap from
the landmark detector serves as the initial heatmap for the subsequent stage.

2.2 Stage 2: 3D heatmap reconstruction and refinement

To mitigate the predicted errors in the first stage, we first reconstructed the
initial heatmaps from the previous stage in a 3D space, using CBCT geomet-
ric information. Subsequently, we determined the positions of the 3D reference
landmarks using 3D heatmap information. Finally, we forward-projected these
positions onto a 2D space and encoded them as 2D Gaussian kernels, generating
refined 2D heatmaps as guidance for the final landmark localization.

The projection matrix Pi P R3ˆ4 plays a fundamental role in both the forward
projection (3D to 2D) and the reconstruction (2D to 3D) processes. The projec-
tion matrix can be decomposed into extrinsic and intrinsic parts. The extrinsic
part includes the translation ti P R3ˆ1 and the rotation Ri P R3ˆ3 of the camera
center in the world coordinate system. The intrinsic matrix Ki P R3ˆ3 describes
the mapping from the 3D camera coordinates to the 2D pixel coordinates. The
decomposition of Pi is expressed as follows:

Pi “ Ki ¨ rRi|tis (1)
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To reconstruct the 3D heatmap from the initial 2D heatmaps obtained at each
projection angle, we employed a 2D filtered backprojection algorithm [9] that
leverages the known cone-beam computed tomography (CBCT) geometry. The
filtered backprojection algorithm consists of three main steps: (1) pre-scaling the
projections using cosine weighting to account for the varying distances between
the X-ray source and detector pixels; (2) applying row-wise ramp filtering to the
pre-scaled data using the Fourier transform of the Ram-Lak filter to enhance
high-frequency components; and (3) backprojecting the ramp-filtered projections
into the 3D volume using the known CBCT geometry.

The reconstructed 3D heatmap for the n´th landmark, denoted as V npx, y, zq
, is obtained by aggregating the filtered and backprojected initial heatmaps H

n
i

from all projection angles i P r1, ..., Is, where I is set to 360 in our implementa-
tion:

V
npx, y, zq “

Iÿ

i“0

Bi ¨ fipHn
i q (2)

where fi represents the filtering function applied during the ramp filtering step,
and Bi is the backprojection operator, which reverse the projection process by
distributing the filtered 2D projection data back into the 3D volume along the
paths defined by Pi

Typically, the predicted landmark positions in each 2D projection image
include detection errors stemming from ambiguity in landmark features or limi-
tations in model capacity. In this study, we mitigated individual image detection
errors by leveraging the landmark positions from multiple 2D projection im-
ages of the same patients, estimating the 3D reference landmarks via the 3D
heatmap volume, as demonstrated in Figure 3. The coordinates of the high-
est intensity position in the 3D heatmap volume of each landmark, denoted as
L
n
3D,ref pxn

ref , y
n
ref , z

n
ref q, are defined as the 3D reference position for each land-

mark as follows:

L
n
3D,ref pxn

ref , y
n
ref , z

n
ref q “ argmaxpx,y,zqV

npx, y, zq (3)

The 3D reference positions of various landmarks were individually estimated.
Subsequently, each of these reference landmarks n underwent forward projection
onto the projections, resulting in 2D reference positions denoted as Lni

2D,ref pun
i , v

n
i q.

Mapping the 3D reference landmarks onto the i-th projection image in 2D is ex-
pressed in Equation 4 using homogeneous coordinates:

L
ni
2D,ref pun

i , v
n
i q “ Pi ¨ Ln

3D,ref pxn
ref , y

n
ref , z

n
ref q (4)

Finally, we generated the refined 2D heatmap, denoted as Ĥn
i , by encoding 2D

reference landmark coordinates as 2D Gaussian kernels with a standard deviation
(sigma) of two for all landmarks.

2.3 Stage 3: Landmark localization using the refined heatmap as
guidance

To enhance the detectability of deep learning-based landmark detectors,
we utilized refined heatmaps as attention maps, incorporating prior landmark
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position-related information to guide the detectors. These attention maps pro-
vide focused regional or spatial information related to landmark positions, thereby
improving the feature extraction and localization capabilities of the detectors.

The refined heatmap Ĥ
n
i has dimensions of h ˆ w ˆ N , where each channel

represents the heatmap for a specific landmark n. To generate the attention
map Ai for each 2D projection image, we aggregated the heatmaps of each
landmark into a single comprehensive heatmap, defined as the merged heatmap.
Subsequently, the merged heatmap undergoes the sigmoid activation function,
denoted by ω, to compute the attention scores, transforming the significance of
features into a probabilistic distribution [7]. Furthermore, applying the sigmoid
activation function to normalize the merged heatmap before multiplying it with
the input image aids in managing gradient flow. The attention map generation
process is presented in Equation 5.

Ai “ ωp
Nÿ

n“1

Ĥ
n
i q (5)

Afterward, the attention map is applied to the 2D projection images through
elementwise multiplication, serving as the input images for landmark localiza-
tion, as depicted in Figure 1. In this stage, the attention map scales the pixel
values of the input images instead of zeroing them out, ensuring that gradients
can flow back through the network to prevent gradient vanishing. This method
provides spatial information related to landmark positions without increasing
the model’s complexity or computational requirements.

2.4 3D detection using 3D heatmap reconstruction

To determine the landmark position in 3D space, the final 2D coordinates
from the last stage of GeoRefineNet are back-projected into 3D space, estimating
the 3D landmarks’ positions. This process mirrors the procedure used in stage
2 of GeoRefineNet.

3 Experiments

3.1 Dataset

To evaluate the performance of GeoRefineNet, we conducted experiments
on two CBCT datasets, including the XCAT phantom CT dataset and pub-
licly accessible actual patient CT volumes from the CQ500 dataset [5]. For the
XCAT CT dataset, head models were generated from the 4D XCAT phantom
CT dataset [21] for 27 patients with varying anatomical sizes and genders. We
manually labeled 11 cephalometric landmarks on the CT phantom volumes. The
average resolution of the CT volume is 800 ˆ 800 ˆ 248. Moreover, the isotropic
voxel spacing is 0.5 ˆ 0.5 ˆ 1 mm.

The publicly available CQ500 dataset consists of CBCT scans depicting pa-
tients with diverse medical conditions. This dataset includes scans that highlight
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deformed shapes of patients’ heads, presenting a considerable challenge for la-
beling landmark positions. Therefore, we specifically chose CBCT scans from a
subgroup of 22 patients identified as normal, ensuring that the scans cover areas
from the crown of the head to the upper teeth. Each CT volume was manually
annotated with 10 landmarks. The average resolution of the CT volume is 512
ˆ 512 ˆ 293, with varying isotropic voxel spacing across patients.

To ensure the reliability of the quality of manual landmark labeling by follow-
ing a standardized procedure, as outlined in a previous study [11]. Specifically,
two annotators independently labeled the landmarks using the same set of de-
tailed instructions. To assess consistency between the annotators, we calculated
the inter-annotator agreement using Cohen’s kappa, which resulted in a score of
0.83, indicating strong agreement.

We conducted forward projection on the 3D CT volumes and landmarks at
360 angles per patient to acquire 2D images and landmark labels for the 2D
cephalometric landmark detection task on the XCAT CT and CQ500 datasets.
The total number of images for 2D landmark detection is 9,720 and 7,920 for
the XCAT and CQ500 datasets, respectively. Each 2D projection in XCAT has
dimensions of 620 × 480 pixels with 0.616 mm pixel spacing, while in CQ500, it
has dimensions of 800 × 600 pixels with 0.638 mm pixel spacing.

3.2 Implementation details

In the experiments, we implemented the proposed framework using MMPose
[6], an open-source toolbox for pose estimation based on PyTorch, for the 2D
cephalometric landmark detection task. Additionally, we performed three-fold
cross-validation for all experiments in this study. For 2D landmark detection on
the XCAT CT dataset, the framework was trained with an initial learning rate
set to 0.0004, and the input images were resized to 1216 × 960 pixels. For 2D
landmark detection on the CQ500 dataset, the initial learning rate was set to
0.0005, with an input image size of 800 × 600 pixels. The framework was trained
for 100 epochs on both datasets using the AdamW optimizer.

Furthermore, we implemented the reconstruction projector using the PYRO-
NN library [23], an open-source library for reconstruction operations, to generate
the 3D heatmap volume in stage 2. In the reconstruction process, we adopted the
Ram-Lak filter in the Fourier domain. For all experiments, the evaluation metrics
included the mean radial error (MRE, mm) and the successful detection rate
(SDR,%) under 2, 2.5, 3, and 4 mm conditions. MRE is the average of absolute
euclidean error distance between the ground truth and predicted landmarks, and
can be described as

R “
a
εx2 ` εy2, MRE “

!N
i“1 Ri

N
, (6)

where N indicates the number of landmarks. SDR is calculated as the percentage
of successfully predicted landmark coordinates within ranges of 2 mm, 2.5 mm,
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3 mm, and 4 mm, and is formulated as

SDR “ # accurate detections

# total detections
ˆ 100% (7)

3.3 Performance evaluation

This section quantitatively compares GeoRefineNet with the state-of-the-art
methods for 2D and 3D cephalometric landmark detection tasks. Additionally,
we conducted ablation studies on the proposed framework to evaluate the contri-
butions of its components. The metrics indicating the best performance in each
table below are in bold font.

Comparisons with state-of-the-art methods: We evaluated the perfor-
mance of GeoRefineNet in 2D cephalometric landmark detection using 2D pro-
jection images from the XCAT CT and CQ500 datasets. Table 1 presents the
performance comparison of the proposed method with previous state-of-the-art
methods on the XCAT CT and CQ500 datasets for the 2D cephalometric land-
mark detection task.

For the XCAT CT dataset, the GeoRefineNet combined with HTC and Mul-
tiresolution learning demonstrates significant improvements over other methods.
The MRE for GeoRefineNet with HTC and Multiresolution is 1.61 mm with a
standard deviation of 1.47 mm, which is the lowest among all compared methods.
The SDRs at 2 mm, 2.5 mm, 3 mm, and 4 mm are 75.76%, 84.6%, 89.72%, and
95.06%, respectively. These values indicate a substantial enhancement in detec-
tion accuracy, especially when compared to standalone models such as Hourglass,
HRNet-W48, and UNet, which exhibit lower SDRs and higher MREs.

In the CQ500 dataset, the GeoRefineNet combined with HTC and Multires-
olution learning also outperforms other methods. The MRE achieved is 4.58 mm
with a standard deviation of 3.56 mm. The SDRs for 2 mm, 2.5 mm, 3 mm, and
4 mm are 25.61%, 35.84%, 45.38%, and 60.39%, respectively. This performance

Table 1: Performance comparison of the proposed method with previous state-of-the-
art methods on the XCAT CT and CQ500 datasets on a 2D task.

Model #Param(M)
XCAT CT dataset CQ500 dataset

MRE(SD)Ó SDR(%)Ò MRE(SD)Ó SDR(%)Ò
2mm 2.5mm 3mm 4mm 2mm 2.5mm 3mm 4mm

Natural-domain landmark detectors
Hourglass [14] 94.85 2.63 (2.66) 48.01 61.48 71.94 84.69 7.88 (10.92) 11.62 16.26 22.20 34.23

HRNet-W48 [22] 65.33 2.96 (3.82) 43.27 56.14 66.74 81.04 7.15 (9.03) 12.12 18.05 24.53 38.16
HRFormer-S [26] 44.04 2.58 (2.64) 48.32 62.12 72.60 85.60 6.39 (6.63) 13.34 19.75 26.40 40.61

UNet [20] 35.35 2.80 (4.88) 49.35 62.50 72.29 84.81 9.62 (18.01) 14.18 20.75 27.52 40.50
PVT-Tiny [25] 16.91 3.33 (4.07) 37.16 49.54 60.48 76.48 7.75 (8.00) 11.35 16.92 22.94 34.37

Conformer-Ti [18] 22.32 3.05 (3.51) 41.07 53.79 64.52 79.43 8.90 (10.13) 9.81 14.53 26.18 30.58
Medical-domain landmark detectors

GU2Net [31] 2.74 3.64 (5.02) 37.09 48.86 58.42 73.20 11.19 (17.60) 10.19 18.20 19.90 30.25
AFPF [3] 78.97 3.14 (8.99) 56.83 68.85 77.47 87.54 14.65 (30.524) 12.90 18.73 24.50 35.41

FARNet [2] 20.68 2.91 (3.44) 42.97 55.50 66.55 80.90 8.03 (13.97) 9.25 14.29 20.06 32.60
GeoRefineNet - FARNet 20.68 2.27 (1.63) 53.47 67.57 77.48 88.93 6.23 (6.21) 13.78 20.72 26.83 40.97

HTC+Multiresolution learning [24] 16.20 1.93 (2.27) 66.74 77.30 84.19 91.82 5.24 (5.39) 20.05 28.41 36.76 51.97
GeoRefineNet - HTC+Multiresolution 16.20 1.61 (1.47) 75.76 84.62 89.72 95.06 4.58 (3.56) 25.61 35.84 45.38 60.39
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Table 2: Performance comparison of the proposed method with previous state-of-the-
art methods on the XCAT CT and CQ500 datasets on a 3D task.

Model #Param(M)
XCAT CT dataset CQ500 dataset

MRE(SD)Ó SDR(%)Ò MRE(SD)Ó SDR(%)Ò
2mm 2.5mm 3mm 4mm 2mm 2.5mm 3mm 4mm

3D UNet [30] 528.14 6.65 (3.57) 5.05 7.07 10.10 25.25 5.89 (3.34) 5.00 13.33 15.00 33.33
Multi-Phased Regression [15] 46.22 5.43 (2.67) 8.08 10.10 16.16 32.32 5.35 (2.35) 3.33 13.33 21.67 43.33

GeoRefineNet - HTC+Multiresolution 16.20 2.29 (0.77) 48.82 67.34 77.11 89.56 3.89 (1.47) 27.86 43.39 56.73 65.30

is markedly superior to that of other methods, including natural-domain land-
mark detectors like Hourglass and HRNet-W48, and medical-domain detectors
like GU2Net and AFPP, which show significantly higher MREs and lower SDRs.
Figure 3 presents the qualitative comparison of the proposed framework and
suboptimal methods.

Table 2 presents the performance comparison of the proposed method with
previous state-of-the-art methods on the XCAT CT and CQ500 datasets for
the 3D cephalometric landmark detection task. For the XCAT CT dataset, the
GeoRefineNet combined with HTC and Multiresolution learning demonstrates
significant improvements over other methods. The MRE for GeoRefineNet - HTC
and Multiresolution is 2.29 mm with a standard deviation of 0.77 mm, which
is the lowest among all compared methods. The SDRs at 2 mm, 2.5 mm, 3
mm, and 4 mm are 48.82%, 67.34%, 77.11%, and 89.56%, respectively. These
values indicate a substantial enhancement in detection accuracy, especially when
compared to other methods such as 3D UNet and Multi-Phased Regression,
which exhibit lower SDRs and higher MREs.

In the CQ500 dataset, the GeoRefineNet combined with HTC and Multires-
olution learning also outperforms other methods. The MRE achieved is 3.89 mm
with a standard deviation of 1.47 mm. The SDRs for 2 mm, 2.5 mm, 3 mm, and
4 mm are 27.86%, 43.39%, 56.73%, and 65.30%, respectively. This performance
is markedly superior to that of other methods, including 3D UNet and Multi-
Phased Regression, which show significantly higher MREs and lower SDRs. Fur-
thermore, the XCAT CT (27 patients) and CQ500 datasets (22 patients) are
small, rendering them susceptible to overfitting. However, the proposed frame-
work demonstrated promising results on these small datasets and significantly
outperformed the existing detection methods.

Ablation study: The ablation study results, as illustrated in Table 3, demon-
strate the significant impact of the proposed framework components on the per-
formance of the models on the XCAT CT and CQ500 datasets. For the XCAT
CT dataset, FARNet without stages 2 and 3 shows an MRE of 2.91 mm and
SDRs of 42.97%, 55.50%, 66.55%, and 80.90% under 2 mm, 2.5 mm, 3 mm,
and 4 mm conditions, respectively. Incorporating stage 2 improves the MRE
to 2.57 mm and SDRs to 46.38%, 60.19%, 71.15%, and 84.69%, while includ-
ing both Stages 2 and 3, further enhances the MRE to 2.27 mm and SDRs to
53.47%, 67.57%, 77.48%, and 88.93%. Similarly, for HTC with Multiresolution
learning, the absence of stage 3 results in an MRE of 1.93 mm and SDRs of
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Fig. 3: Comparison of the proposed method and other models on the XCAT CT and
CQ500 dataset in 2D landmark detection. Ground truth landmarks are green, and
predictions are red.

Table 3: Comparison of the e!ects of the proposed framework components.

Model Stage2 Stage3
XCAT CT dataset CQ500 dataset

MRE(SD)Ó
SDR(%)Ò

MRE(SD)Ó
SDR(%)Ò

2mm 2.5mm 3mm 4mm 2mm 2.5mm 3mm 4mm

FARNet [2]
✁ ✁ 2.91 (3.44) 42.97 55.50 66.55 80.90 8.03 (13.97) 9.25 14.29 20.06 32.60
✂ ✁ 2.57 (1.79) 46.38 60.19 71.15 84.24 7.37 (8.54) 11.04 18.19 24.01 37.41
✂ ✂ 2.27 (1.63) 53.47 67.57 77.48 88.93 6.23 (6.21) 13.78 20.72 26.83 40.97

HTC+Multiresolution learning [24]
✁ ✁ 1.93 (2.27) 66.74 77.30 84.19 91.82 5.24 (5.39) 20.05 28.41 36.76 51.97
✂ ✁ 1.75 (1.70) 67.75 79.58 85.94 92.76 4.93 (4.92) 22.62 32.25 42.35 56.64
✂ ✂ 1.61 (1.47) 75.76 84.62 89.72 95.06 4.58 (3.56) 25.61 35.84 45.38 60.39

66.74%, 77.30%, 84.19%, and 91.82%, whereas the complete model with both
stages achieves an MRE of 1.61 mm and SDRs of 75.76%, 84.62%, 89.72%, and
95.06%. On the CQ500 dataset, FARNet without stages 2 and 3 has an MRE
of 8.03 mm and SDRs of 9.25%, 14.29%, 20.06%, and 32.60%. Adding stage 2
reduces the MRE to 7.37 mm and improves SDRs to 11.04%, 18.19%, 24.01%,
and 37.41%. The full model with both stages achieves an MRE of 6.23 mm and
SDRs of 13.78%, 20.72%, 26.83%, and 40.97%. For HTC with Multiresolution
learning, excluding stage 3 results in an MRE of 5.24 mm and SDRs of 20.05%,
28.41%, 36.76%, and 51.97%, while the complete model yields an MRE of 4.58
mm and SDRs of 25.61%, 35.84%, 45.38%, and 60.39%. These results confirm
that including stages 2 and 3 significantly enhances model performance, with
the complete GeoRefineNet - HTC and Multiresolution configuration achieving
the best accuracy and reliability in 2D cephalometric landmark detection.

4 Conclusion

The proposed method, GeoRefineNet, presents a novel multistage approach
to localize cephalometric landmarks accurately in 2D and 3D CBCT scans. This
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method improves on traditional techniques by applying information from mul-
tiple views and employing geometric insight to create 3D heatmaps, leading to
more precise landmark detection. This method is more e!ective than the existing
solutions, with better results on the XCAT and CQ500 datasets.

GeoRefineNet enhances landmark localization accuracy by using a 3D heatmap
reconstruction and refinement process, combining landmark positions from mul-
tiple views to reduce the prediction errors of the 2D landmark detector. However,
GeoRefineNet’s reliance on geometric information from multiple views makes it
unsuitable for applications that use only single-view images, such as cephalo-
metric X-ray landmark detection. While specifically designed for cephalometric
CBCT landmark detection, it can also be applied to other CBCT tasks, such as
knee landmark detection.

This advancement has notable implications, especially for clinical practice in
orthodontics and maxillofacial surgery. By enhancing the accuracy of landmark
detection, GeoRefineNet supports more accurate diagnoses, better treatment
planning, and improved patient outcomes. The ability of this method to address
complex imaging data e"ciently and reduce the chance of overfitting makes
it a valuable tool for medical professionals. In the future, e!orts will focus on
bringing GeoRefineNet into everyday clinical use and testing its usefulness for
other medical imaging tasks.
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