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Abstract. Monocular 3D object detection has been an important part
of autonomous driving support systems. In recent years, we have seen
enormous improvement in both detection quality and runtime perfor-
mance. This work presents MonoDSSM, the first to utilize the Mamba
architecture to push the performance further while maintaining the de-
tection quality. In short, our contributions are: (1) introduce Mamba-
based encoder-decoder architecture to extract 3D features, and (2) pro-
pose a novel Cross-Mamba module to fuse the depth-aware features and
context-aware features using the State-Space-Models (SSMs). In addi-
tion, we employ the multi-scale feature prediction strategy to enhance the
predicted depth map quality. Our experiments demonstrate that the pro-
posed architecture yields competitive performance on the KITTI dataset
while significantly improving the model’s e!ectiveness in both model size
and computational cost. Our MonoDSSM achieves a comparable detec-
tion quality to the baseline, with 2.2x fewer parameters and a 1.28x faster
computation time.
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1 Introduction

The ability to precisely locate and identify objects in 3D space underpins a
revolution in various fields. From navigating self-driving cars in complex en-
vironments to guiding robots in intricate tasks, 3D object detection serves as
the cornerstone, empowering these applications with an accurate understanding
of their surroundings. Past research leveraging LiDAR [12, 18, 24, 43, 44, 57, 63]
and multi-camera [20, 27, 32, 54, 56] setups have yielded excellent results due to
their detailed depth of information. However, these approaches still face some
limitations. They depend on multiple sensors, which makes them susceptible to
failure with inappropriate settings and unsuitable for budget-conscious deploy-
ments. Therefore, monocular 3D detection algorithms stand out as a promising
alternative. They o!er a robust and practical solution for scenarios with limited
resources by requiring only a single camera.
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Despite impressive progress, recent monocular 3D object detection meth-
ods [2,5,8,23,26,31,35,36] remain limited by the absence of depth cues. Several
works have concentrated on producing estimated depth maps and using them
to aid the learning detection process [3, 11, 21, 52, 60] to overcome this prob-
lem. Also, recent work MonoDTR [21] focuses on improving the context features
extracted by the model’s backbone by combining them with depth-aware infor-
mation based on Transformer architecture. While these methods improved object
localization through estimated depth, they still faced two challenges. Firstly, the
overall optimization process of 3D object detection is sensitive to depth informa-
tion, training on the guidance of inaccurate depth maps can lead to sub-optimal
3D detection performance. Secondly, with Transformer-based architecture, han-
dling depth and context information e!ectively can produce large computational
overhead.

To address these challenges, we introduce MonoDSSMs, an e"cient monoc-
ular 3D object detection framework with a novel Mamba-based architecture.
Inspired by the recent success of Mamba [10, 16], a novel State Space Models
(SSMs) [9, 10, 16, 17, 38, 47] in capturing long-range dependencies, we introduce
an encoder-decoder architecture based on Mamba (Fig. 2a). We propose Bi-
Mamba2 (Fig. 2b), a bidirectional-scan Mamba model to capture long-range vi-
sual features. By traversing in two routes, we can obtain global information with
only much smaller features (DLA-34) than those extracted from the larger back-
bone (DLA-102) when using Transformer. We present CrossMamba (Fig. 2b)
replacing the Attention mechanism in Transformer for the decoder, enabling
MonoDSSMs to e!ectively fuse both depth and contextual features while main-
taining computational e"ciency. Also, to improve object depth estimation, we
employ a multi-scale feature enhancement strategy that generates more precise
depth cues (Fig. 4). We summarize our contributions as follows:

– We propose MonoDSSMs, an e"cient monocular 3D object detection frame-
work that utilizes Mamba-based encoder-decoder architecture. To the best of
our knowledge, we are the first to leverage Mamba architecture in supporting
the monocular 3D object detection task. With a simple scan strategy, global
context can be captured with much smaller features, which can boost our
computational e"ciency while maintaining a competitive detection perfor-
mance.

– We introduce CrossMamba, a novel architecture for feature fusion based on
Mamba to integrate context and depth-aware features e"ciently. Our module
serves as an alternative to the Cross-Attention mechanism, which fuses the
queried depth information to obtain finer features.

– We also take advantage of a multi-scale features depth prediction strategy to
achieve a more precise depth map which can improve detection performance
by quality depth hints.
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2 Related Work

Monocular 3D Object Detection. Monocular 3D object detection faces a
significant challenge: the lack of depth information in a single image leads to in-
accurate object localization. Recent research has focused on improving models’
ability to predict object depth. There are two main approaches to depth estima-
tion: direct regression [62] and geometry-based depth derived from the pinhole
camera model [4]. Building on these methods and the success of incorporating
uncertainty with depth estimation [5, 36, 45], several studies have explored pre-
dicting both types of depth simultaneously and utilizing uncertainty fusion to
achieve a more accurate final depth value [28, 61, 65]. Additionally, leveraging
ground plane information has shown promising results [3, 39, 55], especially in
addressing the ill-pose depth estimation from monocular images.
Depth-assisted Monocular 3D Object Detection. To further improve the
performance, many approaches propose using depth information to aid 3D object
detection [3, 11, 21, 52, 60]. Early approaches focused on specialized convolution
methods to combine visual features with depth maps. For instance, Ding et
al . [11] introduced a novel depth-guided filtering module to leverage the benefits
of predicted depth maps, while Bui et al . [3] employed pixel-adaptive convolu-
tion [48] to seamlessly integrate depth information and guide the learning process
across all output channels. With the rise of transformers in various tasks, recent
works like MonoDTR [21] and MonoDETR [60] have achieved significant im-
provements by utilizing discrete depth maps and encoder-decoder transformer
architectures.
Transformer. Originally introduced for sequential modeling in natural lan-
guage processing (NLP), the Transformer architecture [51] has revolutionized
the field with its impressive performance. The key to Transformer’s success is
its self-attention mechanism, which allows the model to capture long-range de-
pendencies within the data. This capability has proven highly e!ective not only
in NLP but also in recent visual recognition tasks [13, 34, 50]. The application
of Transformers has even extended to monocular 3D object detection, achieving
promising results [21,60]. This success paves the way for exciting new directions
in 3D object detection research.
State Space Models. While Transformers have achieved impressive results
across various domains and tasks, their self-attention mechanism su!ers from
quadratic complexity. This becomes a major bottleneck when handling long se-
quences like lengthy sentences or high-resolution images. To address this chal-
lenge, State Space Models (SSMs) have recently emerged as a promising al-
ternative for managing long-range dependencies [9, 10, 16, 17, 38, 47]. Similar to
Transformers, which initially thrived in language tasks, SSMs or Mamba [10,16]
are demonstrating potential in computer vision as well. However, the original
Mamba block is designed for the 1-D sequence, which is not suitable for vision
tasks requiring spatial-aware understanding. To address this, [19,22,25,29,33,64]
proposed several scan directions to capture the spatial relationships between pix-
els within an image, essential for accurate image representation. In this work,
we propose a novel architecture for monocular 3D object detection that employs
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Mamba’s ability to capture long-range dependency features and improve model
e"ciency.

3 MonoDSSMs

3.1 Overall Architecture

Fig. 1 illustrates the overview of our proposed framework. We use a small ar-
chitecture, DLA-34 [58] as our backbone to extract visual features. Following
MonoDTR [21], we then adopted two branches to parallel extract depth-aware
and context-aware features. In the depth-aware branch, the MSDFE module
(Sec. 3.4) is presented to learn depth-aware features through auxiliary discretiza-
tion depth supervision. On the other hand, several convolution layers are applied
in the context-aware branch to extract the needed features. Then, to integrate
these two kinds of features, we proposed a novel Mamba-based encoder-decoder
architecture (Sec. 3.3) and follow [21] to utilize depth-positional hint to the
context-aware feature a depth positional encoding. Finally, we adopt a single-
stage detector with prior-based 2D-3D anchor boxes [30, 41] and loss from [21]
for 3D object detection.

3.2 E!cient Feature Extractor

Backbone. Previous works [21] adopted DLA-102 [58], a quite large model
with 33M parameters as the vision backbone to extract features. This choice is

Fig. 1: The overall architecture of our proposed MonoDSSMs. After feeding
the input image to the vision backbone, the MSDFE module is used to enhance the
depth-aware features, while several convolutions are applied to extract the context-
aware features. The Mamba encoder-decoder architecture is then employed to fuse
these features. Finally, anchor-based detection is applied to obtain the results.
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the main reason for forming ine"cient models. To enhance the e"ciency of the
model, we found that DLA-34 [58] can be an ideal vision backbone for a fast
and lightweight model while maintaining precision.
Feature Size. Given the input RGB image with resolution H→W , both DLA-34
and DLA-102 output a feature map with resolution H

8 → W

8 . The main di!erence
is that DLA-34 produces a feature map with 128 channels while DLA-102 is 256.
They then use this feature map to extract the depth/context-aware features and
then are fused by an encoder-decoder architecture. Such a large feature map can
result in computation overheads.

We found that integrating MonoDTR [21] with DLA-34 [58] as vision back-
bone and a small feature size C = 128 can build up a lightweight model with
fewer parameters and faster inference time, but a drop in performance is in-
evitable as described in Tab. 2. However, we noticed that this slight decrease
can be compensated by a model that can extract richer information with a sim-
ilar number of features compared to Transformers.

3.3 Depth-Aware Mamba

Preliminaries. Structure State Space Models (SSMs) is a sequence model that
can map a one-dimensional sequence x ↑ RL to y ↑ RL through a hidden state
h ↑ RL↑N so that:

h↓(t) = Ah(t) +Bx(t),

y(t) = Ch(t)
(1)

Fig. 2: The proposed Depth Aware Mamba. The core of our proposed Mon-
oDSSMs architecture is the integration of context and depth features. It employs (a) a
Mamba-based encoder-decoder architecture, (b) the proposed BiMamba2 block, which
extracts visual context using two di!erent scan routes, and (c) the CrossBiMamba2
module, which fuses the features based on Bidirectional Mamba.
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where A ↑ RN↑N , B ↑ RN↑1, C ↑ R1↑N are parameters of models.
Usually, when working on deep learning, the continuous system in Eq. (1) is
discretized by time scale parameter ! ↑ R to converting continuous variable A,
B to their discrete counterparts A, B by ZOH methods:

A = exp (!A)

B = (!A)→1 (A↓ I
)
·!B

(2)

This leads to a linear-time invariant system formulation as follows:

ht = Aht→1 +Bxt

yt = Cht

(3)

To enhance computation e"ciency, the SSMs model usually uses a global
convolution operator that can take advantage of parallel computation:

y = x↭K (4)

with
K =

(
CB,CAB, · · · ,CA

L→1
B
)

(5)

State-space models (SSMs), like other recurrent models, struggle to capture com-
plex contextual information e!ectively. This limitation stems from the linear
time-invariant properties found in Eq. (3). To overcome this challenge, a recent
study [16] introduced Mamba, a novel approach that utilizes an input-dependent
selection mechanism. This mechanism enhances the model’s ability to capture
context while maintaining e"ciency through a linear-time associative scan algo-
rithm. Building on the success of Mamba, [10] introduced Mamba2. This next-
generation model leverages semi-separable matrices, resulting in more e"cient
training and the ability of having larger recurrent state size.

Bidirectional Mamba. To handle the relative position of each pixel in
the image, we proposed BiMamba2 (Fig. 2b), a token mixing method that is
based on the building block of Mamba2 [10] with two di!erent scan routes Fig. 3
to capture global visual context. Specifically, the input sequence u ↑ RL↑D is
linearly projected to x ↑ RL↑De , z ↑ RL↑De with De is the expanded dimension
of the model and two sets of parameters (B,C,ω) for two scanning paths. For
each direction, x and corresponding parameter (B,C,ω) are concatenated and
fed to a 1D-conv layer. Then, they are processed by SSMs and a normalized
layer. The output of each scan direction is added together to get the final result.

CrossMamba. While Mamba [10,16] o!ers a promising alternative to atten-
tion mechanisms [51] in various research fields and real-world applications. Their
ability in cross-modalities and feature fusion remains limited compared to Trans-
former models. To address this, we introduce CrossMamba, a novel approach for
feature fusion based on the state space models (SSMs). As illustrated in Fig. 2c,
let’s assume we need to fuse the feature between two sequences u1 ↑ RL↑D1

and u2 ↑ RL↑D2 . Instead of projecting u1 onto the parameter set (B,C,ω),
we linearly project u2 to serve as the input-dependence selection mechanism.
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Fig. 3: Illustration of scan methods. (a) The standard Mamba approach scans the
image from top-left to bottom-right pixels (blue routes), which limits its ability to
capture spatial relationships between them. (b) We utilize another scan path (yellow
routes) to help the model understand the relative position of each pixel in the image.
This allows Mamba to capture long-range visual context more e!ectively.

This projection approach allows the model to select important features of the
sequence u1 based on the information in u2 and enables the model to fuse them.
In this work, to drive visual data, we also follow BiMamba2 and integrate this
cross-input dependent selection mechanism with a bidirectional scan route to
the proposed CrossBiMamba2. The detailed design can be found in Fig. 2c.

Mamba Encoder-Decoder Architecture. Follow previous design on En-
coder Decoder architecture using Transformer [51], we proposed Mamba Encoder
Decoder architecture (Fig. 2a). As shown in Fig. 2a, we change the token mix-
ing approach from a self-attention mechanism to BiMamba2 in the encoder and
decoder to enhance the e"ciency and ability of two scanning routes for visual
context. In the decoder, we found that CrossBiMamba2 can be an alternative
method to CrossAttention [51] on feature fusion between the query and encode
sequence. To integrate context and depth-aware features, we enhance this archi-
tecture as a replacement approach for Depth-Aware Transformer [21]. Specifi-
cally, the context-aware feature is the input of the encoder with the BiMamba2
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method to extract the visual context, while the depth-aware feature is fed into
the decoder with another BiMamba2 block. In the end, these two features are
fused by the CrossBiMamba2 to enrich the visual context through the depth
maps.

3.4 Multi-scale Feature Enhancement

Multi-scale Feature for Depth Prediction. Due to the absence of depth
cues, previous works [3, 21, 60] directly predict the depth map from the ex-
tracted feature of the vision backbone and use this to guide the learning pro-
cess. However, these works merely apply several convolutional layers to predict
depth maps, which can lead to inaccurate depth hints for the model due to the
complexity of depth estimation. Recently, several works [1, 42] show that depth
estimation from front view image can benefit from multi-scale features. Being
inspired, we leverage Atrous Spatial Pyramid Pooling (ASPP) [6] to extract fea-
tures at various scales. This allows our model to generate more accurate depth
maps by exploiting the benefits of multi-scale information.

Depth-Aware Feature Enhancement. To generate the depth-aware fea-
ture, we introduced MSDFE (Fig. 4), a lightweight module leveraging an aux-
iliary depth estimation task and treating it as a classification problem [14, 40].
As illustrated in Fig. 4, given the input features from the backbone, we utilize
ASPP [6] to enhance the benefits of multi-scale features and a 1→ 1 convolution
layers to predict the probability of discretized depth bins. The probability repre-
sents the confidence of the depth value concerning each depth bin. To discretize
the depth ground truth from LiDAR, we utilize linear-increasing discretization
(LID) [40,49] to formulate the depth bins by Eq. (6):

dc = dmin +
dmax ↓ dmin

D → (D + 1)
→ di → (di + 1) (6)

where dc is the continuous depth value, [dmin, dmax] is the full depth range to
be discretized, D is the number of depth bins and di is the depth bin index.

Finally, followed [21], we adopted a group convolution to merge adjacent
depth bins and utilize [59] approach to enrich the input feature map and create
the final depth aware feature by aggregating the important depth features.

4 Experiments

4.1 Settings

Dataset. We assessed the performance of our MonoDSSMs on the KITTI 3D
dataset [15], a widely recognized benchmark for 3D object detection with 7481
images for training and 7581 images for testing. We follow [7] to divide training
samples into the training set (3712) and the validation set (3769). We conducted
ablation studies using this split to analyze the impact of di!erent components
of our MonoDSSMs.
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Fig. 4: The proposed Multi-scale depth aware feature enhancement (MS-
DFE). The input feature from the backbone is first upsampled to match the resolution
of the discretized depth map. Then it is fed to the ASPP module and 1→1 convolution
layers to predict the probability of discretized depth bins. A group-convolution layer
is then applied to the predicted depth map and fused with the input feature map to
produce the final depth-aware feature.

Evaluation metrics. We report detection results for three di"culty levels:
easy, moderate, and hard. Evaluation is based on the average precision (AP) of
3D bounding boxes and their corresponding bird’s-eye view (BEV) projections.
These are denoted as AP3D and APBEV , respectively, and are calculated at 40
recall positions as suggested by Simonelli et al . [46].

Implementation Details. Our network was trained for 120 epochs using
the Adam optimizer with a batch size of 12 images on a single NVIDIA 3090
GPU. The learning rate started at 0.0001 and gradually decreased throughout
training using a cosine annealing schedule. We leveraged techniques from pre-
vious work [21] for anchor box generation, incorporating 3D information from
the training data to improve accuracy. Only the top 100 pixels of each image
were analyzed to enhance speed during prediction. We normalize all images to a
standard resolution of 288→ 1280. Finally, to refine the detections, we applied a
confidence score threshold of 0.75 and Non-Maximum Suppression (NMS) with
an IoU threshold of 0.4 to remove redundant bounding boxes.
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Table 1: Detection performance of Car category on the KITTI 3D dataset.
Red numbers indicates the best results for specific metrics, while blue denotes the
second-best ones. All FPS values were obtained through individual speed tests con-
ducted on each model using a single NVIDIA GeForce RTX 3090 GPU.

Method FPS Test, AP3D Test, APBEV Val, AP3D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
SMOKE [35] 17.6 14.03 9.76 7.84 20.83 14.49 12.75 14.76 12.85 11.50
MonoPair [8] _ 13.04 9.99 8.65 19.28 14.83 12.89 16.28 12.30 10.42
RTM3D [26] 23.3 13.61 10.09 8.18 _ _ _ 19.47 16.29 15.57
Kinematic3D [2] 15.6 19.07 12.72 9.17 26.69 17.52 13.10 19.76 14.10 10.47
MonoRUn [5] 20.2 19.65 12.30 10.58 27.94 17.34 15.24 20.02 14.65 12.61
CaDDN [40] _ 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84
PGD [53] 23.9 19.05 11.76 9.39 26.89 16.51 13.49 19.27 13.23 10.65
MonoDLE [37] 25.0 17.23 12.26 10.29 24.79 18.89 16.00 17.45 13.66 11.68
MonoRCNN [45] 24.7 18.36 12.65 10.03 25.48 18.11 14.10 16.61 13.19 10.65
MonoFlex [61] 27.9 19.94 13.89 12.07 28.23 19.75 16.89 23.64 17.51 14.83
GUPNet [36] 28.7 20.11 14.20 11.77 _ _ _ 22.76 16.46 13.72
MonoGround [39] 28.2 21.37 14.36 12.62 30.07 20.47 17.74 25.24 18.69 15.58
MonoDTR [21] 27.0 21.99 15.39 12.73 28.59 20.38 17.14 24.52 18.57 15.51
MonoDSSMs-M 34.5 19.80 14.15 11.56 28.29 19.59 16.34 27.10 19.10 15.84
MonoDSSMs-A 34.7 21.47 14.55 11.78 28.84 19.54 16.30 26.62 18.95 15.61

Design Architecture. We introduce two variants of MonoDSSMs based
on the pipeline outlined in Fig. 1. MonoDSSMs-M utilizes our proposed Cross-
Mamba module for feature fusion within the Mamba-based encoder-decoder ar-
chitecture (Fig. 2a). Meanwhile, MonoDSSMs-A leverages CrossAttention [51]
as the fusion module in the decoder. We will compare the performance of these
two models against previous works.

4.2 Quantitative Results

Experiment on the Car category of KITTI 3D test set. As shown in
Tab. 1, we compare our MonoDSSMs-M and MonoDSSMs-A with several state-
of-the-art monocular 3D object detection methods on the KITTI test set. It can
be observed that our approach achieves competitive performance compared with
other methods. However, our proposed model does not achieve outstanding re-
sults compared with the baseline, this can be explained by the trade-o! between
accuracy and e"ciency. Our setting MonoDSSMs-A only reduces about 2.4%,
5.5%, and 7.5% on the easy, moderate, and hard levels respectively for the AP3D

metric. However, for the APBEV metric, our model is even better at the easy
level and only reduces 4.1% and 5% on the remaining 2 levels. Meanwhile, the
inference speed is increased by 28.5% compared to the baseline.

Experiment on the Car category of KITTI 3D val set. We also
evaluated our approach on the KITTI validation dataset using the AP3D met-
rics as listed in Tab. 1. Our method outperforms previous works thanks to
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the Mamba-based encoder-decoder architecture and the multi-scale depth en-
hancement strategy. Specifically, compared to the baselines, MonoDTR [21],
MonoDSSMs-M achieves significant improvements in AP3D at the 0.7 IoU thresh-
old across three settings: 2.58/0.53/0.33. Similarly, MonoDSSMs-A shows im-
provements 2.10/0.38/0.10.

E!ciency analysis. We evaluated the speed of our models by processing
the entire KITTI validation dataset on a single NVIDIA 3090 GPU. The results,
shown in Tab. 1 demonstrate that our models achieve real-time performance at
34 FPS, signifying the e"ciency of our approach. Furthermore, our MonoDSSMs
are significantly faster than previous state-of-the-art monocular 3D object de-
tection methods, running at speeds 1.23x and 1.28x than MonoGround [39]
and MonoDTR [21], respectively.

4.3 Ablation Study

Model E!ciency. In Tab. 2, we first change the backbone of the baseline from
DLA-102 [58] to DLA-34 (b). As mentioned in the previous section, the perfor-
mance of our approach drops 2–7% in 3 di!erent levels of the evaluation metric.
However, the model has 2.3x fewer parameters and 1.33x faster computation
time, exceeds the threshold of 30 fps, which is both e"cient and applicable to
real-world applications.

E"ectiveness of Mamba. In Tab. 2, we conduct various experiments with
di!erent settings: (c) Replacing SelfAttention in the encoder and decoder of
Depth-Aware Transformer [21] with Mamba, (d) Replacing the original Mamba
with Bidirection Mamba to enhance the visual context. Firstly, we see that us-
ing Mamba (c) provides a modest performance improvement without sacrificing
e"ciency. Furthermore, Bidirection-Mamba (d) o!ers a significant boost in de-
tection accuracy with minimal computational overhead. These results highlight
the e!ectiveness of Mamba, particularly the novel Bidirection-Mamba architec-
ture, in handling visual data.

Multi scale depth prediction. To investigate the impact of multi-scale
depth map prediction on detection performance, we conducted an additional
experiment (e) as shown in Tab. 2. Our results demonstrate that incorporating
ASPP outperforms the simpler approach in prior work on the KITTI validation
set. Especially, employing various dilation rates during depth map feature ex-
traction significantly boosted performance, particularly for moderate and hard
di"culty levels. This improvement likely stems from capturing more accurate
depth information for distant objects.

Mamba-based feature fusion. As shown in Tab. 3, we employ MonoDSSMs-
A and MonoDSSMs-M to evaluate the e!ectiveness of the proposed Mamba-
based feature fusion. In the KITTI validation set, our experiments demon-
strate that the proposed CrossMamba achieves better detection performance
than CrossAttention, particularly at easier di"culty levels with a 2% gap. How-
ever, the KITTI test set results for MonoDSSMs-M are lower. This might be due
to some mismatch between the dataset distribution of the two sets. Despite this,
based on the positive results in the KITTI validation set, we believe that the
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Table 2: Analysis of di!erent components of our approach on the Car cat-
egory of the KITTI validation set. ‘DLA34’ denotes using DLA-34 [58] as backbone.
‘S6’, ‘BiS6’ denotes using Mamba2 [10] and the proposed BiMamba2 as an alternative
approach to SelfAttention [51]. ‘ASPP’ denotes the ASPP approach [6] for depth map
prediction by utilizing various dilation rates.

Ablation FPS Params AP3D@IoU=0.7 APBEV @IoU=0.7
DLA-34 S6 BiS6 ASPP Easy Mod. Hard Easy Mod. Hard

(a) 27.0 54.25 24.52 18.57 15.51 33.33 25.35 21.68
(b) ↫ 36.0 23.28 24.04 18.02 14.80 33.66 24.09 20.24
(c) ↫ ↫ 36.2 23.39 25.16 18.33 15.14 33.85 24.65 20.24
(d) ↫ ↫ 35.5 23.43 26.57 18.59 15.28 34.82 25.04 20.34
(e) ↫ ↫ ↫ 34.7 23.61 26.62 18.95 15.61 35.96 25.90 22.02

Table 3: Comparison of di!erent feature fusion methods on the Car category
of the KITTI dataset. ‘CA’ denotes Cross Attention [51] module as a feature fusion
method within the encoder-decoder architecture (MonoDSSMs-A). ‘CS6’ denotes the
proposed CrossMamba as an alternative approach to CA (MonoDSSMs-M).

Ablation Test, AP3D Test, APBEV Val, AP3D Val, APBEV

CA CS6 Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
↫ 21.47 14.55 11.78 28.84 19.54 16.30 26.62 18.95 15.61 35.96 25.90 22.02

↫ 19.80 14.15 11.56 28.29 19.59 16.34 27.10 19.10 15.84 37.73 25.86 22.12

proposed CrossMamba has promise as a powerful feature fusion approach based
on State Space Models (SSMs) and can be further developed in future work.

4.4 Qualitative Results

Fig. 5 presents qualitative examples from the KITTI validation set. Compared to
the baseline MonoDTR model, our MonoDSSMs model yields predictions that
are significantly closer to the ground truth. As we can observe in Fig. 5, our
prediction (blue boxes) is very close to the groundtruth (red boxes), while there
are still recognizable gaps between the baseline prediction (green boxes) and the
groundtruth. For sample (b), we can see that our proposed model can detect the
car that the baseline cannot. Still, the car in the bottom-left is hard to recognize
due to the occlusion. In sample (c), our model misses one car at the bottom
of the BEV. However, it is reasonable since the groundtruth is marked using
LiDAR scans. This explains why our model can detect one car (the blue box at
the bottom-left corner of the BEV) but it does not appear in the groundtruth
due to occlusion in the LiDAR scan. The baseline, in this case, missed that car
as well. Overall, the visualization results in Fig. 5 show that our proposed model
has immensely improved the detection accuracy from the baseline model.

3894



MonoDSSMs: E"cient 3D Object Detection with SSMs 13

Fig. 5: Qualitative examples on the KITTI validation set. We provide the
predictions on both the image view (top) and bird’s-eye view (bottom). Blue boxes
indicate predictions from MonoDSSMs in the image and BEV plane. Red boxes rep-
resent ground truth, while green boxes show predictions from the baseline model on
the BEV. For optimal viewing, zoom in and use color.
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5 Conclusion

In our work, we present MonoDSSMs, an e"cient monocular 3D object detec-
tion system with a cutting-edge Mamba-based architecture. The innovative Bi-
Mamba2 with bidirectional scan allows the model to capture long-range visual
context while maintaining e"ciency. Additionally, we introduce CrossMamba,
an alternative approach for CrossAttention to integrate depth/context-aware
features globally. Our utilization of a multi-scale strategy ensures the produc-
tion of a higher-quality depth map, enhancing depth cues for our models. Our
experiments demonstrate that MonoDSSMs achieve competitive results with sig-
nificantly faster inference times compared to previous work. MonoDSSMs stand
as a formidable Mamba-based baseline for future monocular 3D object detection
research.
Limitations. Despite the capability to achieve real-time detections, there is still
room for improving the performance of MonoDSSMs. As discussed in Sec. 4.2,
the accuracy on the KITTI 3D test set shows a slight decrease due to the e"-
ciency trade-o!. Although this small performance drop is acceptable for real-time
applications, future work will focus on improving accuracy while maintaining ef-
ficiency.

Acknowledgement. We acknowledge Ho Chi Minh City University of Tech-
nology (HCMUT), VNU-HCM for supporting this study.
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