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Abstract. This work presents iS-MAP, a neural implicit RGB-D SLAM
approach based on multi-scale hybrid representation in structural envi-
ronments. iS-MAP encodes the scene using an efficient hybrid feature
representation, which combines a 3D hash grid and multi-scale 2D fea-
ture planes. This hybrid representation is then decoded into TSDF and
RGB values, leading to robust reconstruction and multilevel detail un-
derstanding. Additionally, we introduce Manhattan matching loss and
structural consistency loss to fully incorporate the prior constraints of
structured planes and lines. Compared with only color and depth losses,
our structured losses are capable of guiding network optimization at the
semantic level, resulting in more reasonable scene regularization. Exper-
imental results on synthetic and real-world scene datasets demonstrate
that our approach performs either better or competitive to existing neu-
ral implicit RGB-D SLAM methods in mapping and tracking accuracy,
and predicts the most plausible reconstruction results for the unobserved
structural regions. The source code will be released soon.

Keywords: Neural implicit mapping · Self localization · RGB-D SLAM
· Structural constraints

1 Introduction

Simultaneous localization and mapping (SLAM) has long been studied as a fun-
damental problem in the field of computer vision and robotics, focusing on
reconstructing the environment and self-localizing tasks. During the past two
decades, visual SLAM has become more popular due to its low cost and ease of
implementation, resulting in various sparse visual SLAM [3,13,20,21] and dense
visual SLAM [22, 23, 38]. Despite the significant progress in tracking accuracy,
these methods are mapping based on point cloud [13,20], cost volumes [23], sur-
fels [28, 38], or voxels [22] representations, which present serious challenges in
achieving high-resolution and accurate reconstructions.

To achieve high-quality 3D scene reconstruction, emerging neural implicit
representations, specifically represented by NeRF [18] have been employed for
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2 H.Wang, Y.Cao, Y.Shou et al.

Fig. 1: We present iS-MAP, a neural RGB-D SLAM method for structured scenes. We
propose a novel 2D-3D hybrid TSDF volume rendering technique with structured plane
and line constraints. Our method shows reduced artifacts, high-fidelity reconstruction,
and reasonable scene regularization

SLAM mapping, and neural implicit dense SLAM [11, 14, 26, 27, 31, 36, 37, 39,
42, 43] has been developed, allowing for reconstructing 3D surfaces with low
memory consumption while maintaining stable camera tracking. These studies
have primarily focused on man-made buildings, i.e., structural environments,
which typically have numerous regularized plane and line features. While few
efforts have incorporated structural regularities into the tracking and implicit
mapping stages. Recently, Structerf-SLAM [36] has attempted to introduce plane
features into neural implicit SLAM. However, its scene representation method
struggles to ensure high-quality 3D reconstruction and overlooks the structural
line feature in the environment.

In this study, we propose iS-MAP, a neural implicit dense SLAM approach
with hybrid feature encoding and structural constraints. Our approach integrates
3D and 2D features using a hash grid and multi-scale plane fusion. Additionally,
we introduce prior structural constraints in the mapping and tracking stages, re-
spectively, to achieve more accurate localization and scene reconstruction. Fig.
1 illustrates an example of using structured plane and line constraints for im-
proved scene reconstruction. In summary, the contributions of this article can
be concluded as follows.

– We present a TSDF-based neural implicit SLAM approach that leverages a
hash grid and multi-scale feature plane hybrid encoding, considering both
3D spatial features and 2D detailed features of the scene.

– In the mapping stage, structural consistency loss for plane and line regions
has been employed to ensure the reconstructions are well-regularized and
accurate.
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iS-MAP 3

– In the tracking stage, scene base planes are established according to the
Manhattan hypothesis to align subsequent planes, leading to fast and stable
data association and reduced drift.

– Extensive evaluations are conducted on both synthetic and real-world datasets
to demonstrate iS-MAP method attains state-of-the-art reconstruction and
camera tracking performance. Especially in unobserved structured regions,
our method also achieves the most reasonable result.

2 Related Work

2.1 Dense Visual SLAM

Dense visual SLAM has been an interesting area for several decades due to its ex-
cellent ability for mapping. KinectFusion [22] utilized commercial RGB-D sensors
to perform camera tracking by ICP and mapping via TSDF-Fusion. In contrast,
ElasticFusion [38] adopts a map-centric approach, reconstructing a surf-based
map of the environment. Further extensions include tracking pose optimization
and loop closure [6, 23, 28]. Recently, methods incorporating deep learning have
also shown outstanding performance, exhibiting superior accuracy and robust-
ness compared to traditional methods. DeepV2D [32] employs neural networks
to iteratively optimize depth and pose estimation. CodeSLAM [2] utilizes the
optical flow definition for geometric residual calculation. DeepSLAM [15] em-
ploys an RCNN network for motion prediction. DROID-SLAM [33] employs a
differentiable Dense Bundle Adjustment block for BA. However, these methods
are still confronted with a significant challenge of high memory consumption
when the resolution increases.

2.2 Structural Constraints

Structural constraints have often been leveraged in depth estimation [10,35] and
scene reconstruction [4, 8]. Our main focus is on its application in SLAM tasks.
Point-plane SLAM [27] uses points and planes as primitives for registration. L-
SLAM [12] uses the Manhattan Worlds hypothesis to further reduce rotation
drift. Structure-SLAM [16] uses CNN to predict the normals of planes and lines
to optimize the rotation of the shift and the reconstruction of the scene. Struct-
SLAM [41] optimizes attitude estimation by adding line and plane structural
features to an extended Kalman filter. PLP-SLAM [29] combinessemantic in-
formation from points and lines, performing a piecewise planar reconstruction
(PPR). While these approaches introduce structural constraints, the scene rep-
resentation and overall pipeline still follow the traditional SLAM approach.

2.3 Neural Implicit SLAM

Recently, neural implicit representation has shown outstanding potential in a
variety of tasks, such as scene reconstruction [9, 25, 40] and new view synthesis
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[1,17,18]. iMAP [31] is the first attempt to combine neural implicit representation
with dense SLAM system, which employs an MLP for mapping and tracking.
NICE-SLAM [43] utilizes a hierarchical layered feature grid to expand it to
larger environments. Vox-Fusion [39] uses an octree-based approach to facilitate
progressive mapping. MLM-SLAM [14] utilizes multi-MLPs to eliminate the need
for pre-training of feature grids. ESLAM [11] employs feature planes on coarse
and fine scales, which are more efficient than feature grids. Co-SLAM [37] uses
joint encoding to ensure rapid convergence of the mapping process. SNI-SLAM
[42] enables neural implicit semantic mapping. Point-SLAM [27] uses neural
point clouds to represent scenes. However, none of these approaches leverage
the structural constraints present in structural environments. Structerf-SLAM
[36] utilizes feature grid representation and introduces planar constraints, but it
stores each plane for matching, which reduces data association efficiency. It also
neglects linear structural feature constraints in the environment. In comparison,
our method, which employs a hash grid and multi-scale feature plane hybrid
encoding, matches only the Manhattan base planes and maintains planar and
linear consistency, achieving more efficient and accurate scene reconstruction.

3 Method

An overview of the proposed method is shown in Fig. 2, iS-MAP is a hierarchi-
cal hybrid encoding neural implicit SLAM system that incorporates structural
constraints. The system enhances the 3D hash grid through multi-scale feature
planes for scene encoding and introduces structural features to further strengthen
prior constraints. The 3D-2D feature encoding with TSDF volume rendering is
first introduced in Sec.3.1. Then, the planar and linear consistency and the Man-
hattan matching constraint in the structured scene are introduced in Sec.3.2.
Finally, in Sec.3.3, we detail the method for global tracking and mapping.

3.1 3D-2D Hybrid Encoding with TSDF Volume Rendering

We propose a multi-scale 2D-3D hybrid feature coding for TSDF volume ren-
dering. For 3D features, we utilize a hash grid [19] where the spatial resolution
of each level is incrementally set between the coarsest Rmin and the finest Rmax

resolution. At each sampling point xi, we query the 3D features ν(xi) using tri-
linear interpolation. For 2D features, we employ a three-directional multi-scale
feature plane with four resolutions. Unlike the multi-dimensional features with
only coarse and fine resolutions in [11], using fewer dimensions to extract scene
features at multiple scales further enhances the perception of scene details and
mitigates the hash collisions. On each feature plane, we query the plane features
in three directions of the sampling points by linear interpolation. These features
are concatenated to form the 2D features ρ(xi), which is challenging in feature
grids due to significant memory consumption. The geometric decoder φg then
accepts both 3D and 2D features, outputting the predicted TSDF value si and
the TSDF feature vector hi of xi.
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Fig. 2: Overview of the system: We sample the 3D points along the ray from each pixel
and then encode the sample points by hybrid hash and multi-scale feature plane, and
decode them to the TSDF value si and the TSDF feature hi by the geometric decoder
φg. Considering the consistency of geometry and appearance, hi is then concatenated
with the feature plane encoding ρ(xi) to predict the raw color ci by appearance decoder
φc. After TSDF volume rendering, the scene representation is optimized by minimizing
sdf loss Lsdf , smooth loss Lsmo, depth loss Ld , color loss Lc and structural consistency
loss Lcon in the mapping thread. Additionally, we also added Manhattan matching loss
Lcoor to the tracking thread to further optimize the camera pose.

(si, hi) = φg(ν(xi), ρ(xi)) (1)

To improve color-geometric consistency, we concatenate the TSDF feature hi

and the multi-scale plane feature ρ(xi) to the color decoder φc and compute the
color value ci as Eq. (2).

ci = φc(hi, ρ(xi)) (2)

We render depth and color by integrating the predicted values along the
sampled rays. Given the camera origin o and the ray direction r, we sample a
total of N points, including Nstr points along the ray and Nsur points near the
surface. For each point xi, we calculate their TSDF value si and color value
ci using Eq. (1) and Eq. (2). Subsequently, following the approach of [11, 24],
we convert the TSDF value to volume density and calculate the termination
probability wi at each point of the ray.
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σ(xi) =
1

β
Sigmoid

(
si
β

)
(3)

wi = exp

(
−

i−1∑
k=1

σ(xk)

)
(1− exp (−σ(xi))) (4)

where β denotes a learnable parameter modulating the sharpness along the sur-
face boundary.

Finally, for each ray, its depth and color can be rendered as Eq. (5).

D̂ =

N∑
i=1

widi Î =

N∑
i=1

wici (5)

3.2 Structural Prior Constraints

Segmentation of Line and Plane To integrate structural priors into our
system, we select a keyframe every k frames and apply RANSAC [7] and LSD
[34] methods to segment planes and lines with point counts exceeding a certain
threshold, respectively. Fig. 1 shows an example of extracted plane and line
segments. Notably, due to the typical sparse pixel sampling of volume rendering,
we only generate sparse point clouds from the depth map and accelerate plane
segmentation.

Structural Consistency Constraint Inspired by the self-supervised depth
estimation [10,36], we introduced structural consistency loss in the plane region
and line region respectively. Without specific regularization, volume rendering
may not be able to maintain the flatness on plane regions in different views.
Therefore, we apply a planar consistency loss to constrain these regions. For each
plane, we randomly select four pixels and project them to 3D points A,B,C,
and D using the render depth in Section 3.1.

The cross product of
−−→
AB and

−→
AC should be orthogonal to the plane contain-

ing A , B , C and D. Thus, the dot product of
−−→
AB ×

−→
AC and

−−→
AD should be

equal to zero. The planar consistency loss Lpc can be expressed as Eq. (6).

Lpc =
1

Np

Np∑
i=0

∣∣∣−−−→AiBi ×
−−−→
AiCi ·

−−−→
AiDi

∣∣∣ (6)

where Np denotes the number of 4-point sets selected from plane regions ran-
domly.

For the line regions, the linear consistency loss follows the strategy of planar
consistency loss. Three pixels with their corresponding 3D points are randomly
selected from a line region, denoted as E, F , and G. The cross product of vectors−−→
EF ×

−−→
GF should be a zero vector, making it a loss term, as shown in Fig. 3
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Fig. 3: Introduced structural prior constraints: Manhattan matching (left) and struc-
tural consistency (right).

(right). Similarly, we calculate the linear consistency loss Llc using Nl 3-point
sets from the line segments as Eq. (7).

Llc =
1

Nl

Nl∑
i=0

∣∣∣−−→EiFi ×
−−→
GiFi

∣∣∣ (7)

Finally, the structural consistency loss Lcon can be expressed as the weighted
sum of Lpc and Llc.

Lcon = λpcLpc + λlcLlc (8)

Manhattan Matching Constraint According to the Manhattan World (MW)
hypothesis, planes in the structured scene are typically aligned with three pri-
mary directions. We parameterize the segmented planes using the Hessian form
to apply this hypothesis, denoted as π = [n, d], where, n = (nx, ny, nz) is the
normal of the plane and d is the distance from the camera origin to the plane.
Since the MW hypothesis is concerned only with the plane direction, we consider
only the plane normal n in the Hessian form.

For the planes in the initial frame of each scene, we categorize them based
on their normal directions. Planes with normal angles less than 10 degrees are
classified. Subsequently, the plane with the most points in each category forms
the base plane set of the scene. According to the MW hypothesis, subsequent
planes should be parallel or vertical to these base planes. However, to avoid
the influence of outliers and irregular planes, we only apply MW constraints to
subsequently matched planes.

For each new frame, its planes are matched with the base planes. Specifically,
for a plane πc in the new frame, we project its normal nc to the world coordinate
system using the rotation matrix Rcw in the 6DoF pose, as Eq. (9).

n
′

c = R−1
cw · nc (9)

Then we check the angles between it and the base plane normals for match-
ing. If the angle between the current plane πc and a base plane πi exceeds the
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threshold θp, they are considered parallel and the parallel matching loss Lp can
be calculated using the dot product of the normal vectors.

Lp = 1−−→nwi · −→nc
′

(10)

where nwi is the normal of parallel base plane πi.
While if the normal angle between the current plane πc and a base plane

πj is lower than the threshold θv, they are considered vertical and the vertical
matching loss Lv can be calculated as Eq. (11).

Lv = −−→nwj · −→nc
′

(11)

If the current plane doesn’t match any parallel or vertical base plane, we
don’t process it. Fig. 3 (left) illustrates an example of the orientation alignment
between the new frame’s plane ([ax, bx, cx]) and the base plane ([Ax, Bx, Cx]).
Finally, the Manhattan matching loss Lcoor is calculated as Eq. (12).

Lcoor = λpLp + λvLv (12)

3.3 Tracking and Mapping

Mapping When the first frame {I0, D0} comes, we initialize our scene represen-
tation and create the base planes of the scene. For subsequent inputs, we update
the scene representation on every keyframe. We first choose M pixels randomly
from a sliding window of W keyframes. Next, we use the scene representation
from Sec.3.1 to render and calculate the color and depth loss.

Lc =
1

M

M∑
m=1

∣∣∣Im − Îm

∣∣∣ (13)

Ld =
1

|Rd|
∑
r∈Rd

∣∣∣Dm − D̂m

∣∣∣ (14)

where Rd is a set of rays with effective depth values in M pixels. Following [11],
we also apply TSDF loss to every sampled point. Specifically, for sample points
inside and outside the deep surface truncation region P tr

r and P fs
r , we use Ltr

and Lfs respectively to calculate their TSDF loss, as Eq. (15) and Eq. (16).

Ltr =
1

|Rd|
∑
r∈Rd

1

|P tr
r |

∑
p∈P tr

r

(d(p) + s(p) · tr −D(r))
2 (15)

Lfs =
1

|Rd|
∑
r∈Rd

1∣∣∣P fs
r

∣∣∣
∑

p∈P fs
r

(s(p)− 1)
2 (16)

where d(p) represents the planar depth of point p to the camera, s(p) is the
predicted TSDF value, tr is the truncation distance, and D(r) is the ray depth
measured by the sensor. Notably, for points within the truncated region P tr

r , we
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set the importance of points where |d(p)−D(r)| < 0.4tr to be four times higher
than that of other points, thereby focusing more on points near the surface.

The final SDF loss is weighted by the two:

Lsdf = λtrLtr + λfsLfs (17)

To reduce the noisy reconstructions caused by hash collisions in unobserved
regions, we regularize the hash feature ν(xi) by Lsmo in a small random region
in each iteration as [37].

Lsmo =
1

|η|
∑
x∈η

(
∆2

x +∆2
y +∆2

z

)
(18)

where ∆x,y,z = ν(xi+εx,y,z)−ν(xi) denotes the feature-metric difference between
adjacent sampled vertices on the hash grid along the three dimensions.

The structural consistency loss Lcon is utilized to further reinforce the struc-
tured prior constraints. Finally, we use Eq. (19) to jointly optimize the scene
representation and keyframe poses as local bundle adjustment (BA).

min (λdLd + λsdfLsdf + λmcLc + λsmoLsmo + Lcon) (19)

Tracking For camera tracking, we calculate the color loss, depth loss, and SDF
loss using the same methods employed in the mapping thread. After obtaining
the base planes of the first input frame {I0, D0}, we incorporate the Manhattan
matching loss term Lcoor every keyframe, as described in Sec.3.2. Ultimately,
Eq. (20) is used for optimizing the current camera pose [R|t]j .

min (λdLd + λsdfLsdf + λtcLc + Lcoor) (20)

4 Experiments

4.1 Experiments Details and Implementation

Dataset We evaluate the performance of iS-MAP on both synthetic and real-
world sequences. (1) Replica [30], a synthetic dataset consisting of 8 high-quality
room reconstructions. (2) ScanNet [5], a dataset collected from multiple sensors,
containing challenging real-world RGB-D sequences.

Baselines and Metrics We use metrics from Co-SLAM [37] to measure the
performance of our methods and existing state-of-the-art dense neural RGB-D
SLAM methods [11,27,31,36,37,39,43]. For reconstruction quality, we use Depth
L1(cm), Accuracy(cm), Completion(cm) and Completion ratio(< 5cm%). For
tracking accuracy, we choose the commonly used ATE ·RMSE.
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10 H.Wang, Y.Cao, Y.Shou et al.

Implementation Details We run our system on a PC with a Intel Xeon Gold
5218R CPU and an NVIDIA Quadro P6000GPU. The hash grid resolution is 2
cm, and the hash map size is 16, resulting in a 36-dimension hash feature. For
multi-scale feature planes, we vary the resolution 3 cm, 6 cm, 24 cm, and 48 cm
from low to high. All feature planes have 3 channels in three inverse directions,
yielding a 36-dimensional plane feature. The geometric decoders consist of two-
layer MLPs with 64 channels in the hidden layer. The color decoders are also
two-layer MLPs, with 64 and 32 channels in the hidden layers. We respectively
select 256 and 128 sets of points for planar and linear consistency computation.
For Replica, the weight of each loss are λtc = 2, λmc = 4, λp = 0.2, λv = 0.02,
λpc = 0.05, λlc = 0.05 and λsmo = 0.01. While for the ScanNet datase, we set
λtc = 5, λmc = 5, λp = 0.2, λv = 0.02, λpc = 0.05, λlc = 0.005 and λsmo = 0.25.
We also keep the remaining hyperparameters consistent with ESLAM [11] as our
reference.

Table 1: Comparison of the average reconstruction results for our method and other
NeRF-based SLAM methods in Replica datasets. The best results were highlighted
in red and the second best results were highlighted in blue. For the details of the
evaluations for each scene, refer to the supplementary.

Depth L1↓ Acc.↓ Comp.↓ Comp.Ratio↑ RMSE↓

iMAP [31] 4.64 3.62 4.93 80.50 2.58
NICE-SLAM [43] 1.90 2.37 2.63 91.13 1.95
Vox-Fusion [39] 2.91 1.88 2.56 90.94 1.03
Structerf-SLAM [36] 1.86 2.30 2.56 91.42 0.88
Co-SLAM [37] 1.51 2.10 2.08 93.44 0.86
ESLAM [11] 0.95 2.08 1.75 96.43 0.63
Ours 0.75 1.96 1.66 96.64 0.48

4.2 Results and Discussion

Replica We used the same rendered RGB-D sequence provided by iMAP [31]
and conducted a quantitative evaluation of the results. As shown in Tab 1,
our method achieves favorable results in all aspects except for the Accuracy,
with a 21% improvement in Depth L1. Vox-Fusion [39] achieved the highest
Accuracy by ignoring predictions in unobserved regions, resulting in almost the
worst performance in other reconstruction metrics. Although our method only
obtained suboptimal Accuracy, it made a better overall balance. We also select
three sequences from the Replica dataset and visualize the reconstruction mesh
in Fig. 4 qualitatively. The hybrid encoding of the hash grid and multi-scale
feature plane enables our method to preserve finer details, such as plants in
vases and the gap in cabinets. The structural constraints further regularize the
reconstruction of planes and lines in space. For instance, areas like walls, floors,
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Fig. 4: Reconstruction results of our method with the baseline on the Replica dataset
[30]. We visualize three selected scenes and highlight details with colored boxes. Our
method achieves higher precision in geometric details and more accurate structural
features.

edges of tables and chairs exhibit overall flatter profiles with fewer artifacts
and fluctuations. We also report the RMSE of camera tracking for the replica
dataset in Tab. 1. Our method achieves the best results and up to 24% relative
increase in tracking accuracy.

ScanNet We also benchmark iS-MAP and other methods on five randomly
selected large scenes from ScanNet [5] to evaluate their scalability in real-world
scenes. Due to the ScanNet dataset did not have complete ground truth meshes,
we qualitatively analyzed the reconstruction results. As shown in Fig. 5. Our

Table 2: Camera tracking result on ScanNet(RMSE). The best results are in bold

Method 0000 0059 0106 0169 0207 Avg
iMAP* [31] 55.95 32.06 17.50 70.51 11.91 37.58
NICE-SLAM [43] 8.64 12.25 8.09 10.28 5.59 8.97
Vox-Fusion [39] 8.39 9.18 7.44 6.53 5.57 7.42
Structerf-SLAM [36] 7.28 6.07 8.50 7.35 7.28 7.30
Point-SLAM [27] 10.24 7.81 8.65 22.16 9.54 7.92
Co-SLAM [37] 7.18 12.29 9.57 6.62 7.13 8.12
ESLAM [11] 7.32 8.55 7.51 6.57 5.71 7.13
Ours 6.45 8.63 7.32 5.85 4.61 6.57
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Fig. 5: Reconstruction results and corresponding normal maps of our method with the
baseline on the ScanNet dataset [5]. To better show the difference, we use red boxes in
the figures to indicate the improvements.

method can better restore the details of objects on the desk and provide a more
square and complete desktop.

We quantitatively compared the camera tracking result in Tab. 2, our method
has notably achieved the best results, exhibiting superior robustness. This is at-
tributed to structural consistency prior constraints and stable Manhattan match-
ing data association, which can reduce the drift issue during camera tracking.

Prediction for Unobserved Structural Regions One of the key strengths of
neural implicit SLAM is its excellent predictive ability. For unobserved structural
regions like walls, floors and ceilings, which are prevalent in real scenes, our
approach benefits from prior regularization of structural consistency, enabling it
to make the most reasonable predictions. As illustrated in Fig. 6, we selected
reconstruction results from several typical scenes in Replica [30], in which the
regions of the ceilings or walls have not been observed completely due to the
camera angles, indicated by black holes in the figure. These regions reconstructed
by our method are the flattest, aligning closely with the real scene.

4.3 Ablation Studies

Runtime and Complexity We evaluate the speed, memory and computational
complexity of our method and others on office0 of Replica [30], as shown in
Tab. 3. We report the tracking and mapping time for each frame, the scene
representation and decoder size (#Param), and the number of floating-point
operations (FLOPs) required for querying color and volume density of one 3D
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Fig. 6: The reconstruction results of unobserved regions. Benefit from regularization
of structural consistency, our method achieves the most reasonable predictions.

Table 3: Runtime and computation analysis results on Replica office0 [30]. The best
results are in bold.

Tracking(s)↓ Mapping(s)↓ #Param↓ FLOPs[×103]↓
NICE-SLAM [43] 1.02 2.29 12.18 M 104.16
Point-SLAM [11] 0.85 9.85 27.23 M −
ESLAM [11] 0.14 0.52 6.79 M 53.12
Ours 0.21 0.98 2.43 M 34.85

point. Notably, because the neural point cloud in Point-SLAM [27] dynamically
grows during running, its FLOPs cannot be calculated using a fixed value.

Scene Representation and Optimization Policy Tab. 4 (top) presents the
evaluation of different scene representation policy on room0 of Replica [30] and
scene0207 of ScanNet [5]. Our comprehensive model demonstrates higher recon-
struction accuracy and more precise location compared to only using 2D multi-
scale feature planes (a) or single 3D hash (b). We also examined the performance
without TSDF features in the geometric prediction phase (c) like ESLAM [11].

As shown in Tab. 4 (bottom), our various optimization choices and their
interpretations are as follows. (d) We do not consider color rendering and ignore
the Lc (Sec.3.1).

(e) We do not employ structural consistency constraints and disregard the
Lcon (Sec.3.2). (f) We do not employ Manhattan matching constraints and ne-
glect the Lcoor (Sec.3.2). (g) We do not exploit smooth loss for the hash grid
and ignore the Lsmo (Sec.3.3). (h) We evaluate our full model.
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14 H.Wang, Y.Cao, Y.Shou et al.

Table 4: The results of Replica room0 and ScanNet scene0207 with various optimiza-
tion configurations. The best results are in bold. For further ablation analysis and
qualitative results, refer to the supplementary.

room0 sc.207

Scene Representation Acc.↓ Comp.↓ RMSE↓ RMSE↓
a. No Hash Grid 2.23 1.79 0.65 6.03
b. No Feature Plane 2.72 2.19 1.02 4.73
c. No TSDF Frature 2.28 1.83 0.60 4.62

Optimization Choice

d. No Color Loss 2.24 1.78 0.63 4.71
e. No Stru. Consist. Loss 2.46 1.81 0.63 4.75
f. No Man. Match. Loss 2.36 1.85 0.68 4.95
g. No Smooth Loss 2.38 1.80 0.61 5.85
h. Full Model 2.23 1.78 0.58 4.61

5 CONCLUSION

This article presents iS-MAP, an RGB-D SLAM system based on neural im-
plicit mapping for structural environments. Our method utilizes hash grid and
multi-scale feature plane hybrid encoding to achieve a hierarchical scene repre-
sentation that considers both 2D and 3D details. We also maintain the struc-
tural consistency of planes and lines and consider matching associations based
on the Manhattan hypothesis to better suit structured scenes. We conducted
comprehensive experiments on synthetic and real datasets, demonstrating that
our method outperforms existing approaches in both reconstruction and camera
tracking while also being competitive in terms of runtime and memory usage.
Moreover, our method predicts the most reasonable reconstruction results for
the unobserved structural regions.

iS-MAP still has shortcomings. The pre-processing plane-line segmentation
of images consumes extra running time and reduces overall speed. Enhancing
the efficiency of segmentation and accelerating processing is a future direction.
Additionally, extending loop closure and addressing dynamic targets are also
intriguing questions we hope to address in future work.
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