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Abstract. Removing undesired shading from human images is crucial in
supporting various real-world applications. While recent advancements in
deep learning-based methods show promise in addressing this challenge,
there persists a struggle to accurately separate texture from shading,
which often results in unresolved shading artifacts and altered texture
patterns. This issue is exacerbated by dataset limitations, such as the
lack of diverse real-world clothing styles in realistic datasets and over-
simplified assumptions about human reflectance and illumination envi-
ronments. To address this problem, our paper introduces a novel semi-
supervised deep learning method to effectively assemble both real and
synthetic data for better disentanglement of texture and shading. We
present a global sparsity constraint designed on both labeled and unla-
beled data to minimize color variations in the inferred shading map,
enhancing texture recovery. By applying this constraint, our method
demonstrates improved handling of a broad range of fashion-related tex-
tures in the real-world test. Additionally, we address the disparity be-
tween real and synthetic data with a novel domain adaptation module
to realize effective transfer from synthetic to real images. This mod-
ule is designed based on the insights of gamma correction, and demon-
strates improved shadow removal in real-world images. By integrating
these methods, our approach achieves state-of-the-art results, reducing
unwanted shading artifacts while maintaining the integrity of underlying
textures in real-world scenarios.

Keywords: De-lighting · Full-body · Semi-supervised Learning

1 Introduction

Removing unwanted lighting features from an image to reveal its true albedo,
a process known as "de-lighting," is an important step in various computer
graphics and vision applications. Recently human relighting [18, 27, 36, 47], vir-
tual try-on [13,24], and avatar creation [5,15], have become popular, where hu-
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2 J. Weir et al .

Fig. 1: Given an input, image (top row), our method estimates its albedo image (bot-
tom row), removing shading artifacts while preserving texture.

man image de-lighting has contributed a critical component in generalizing these
downstream tasks to adapt seamlessly to various real-world lighting conditions.

Previous studies on human de-lighting have primarily focused on faces and
upper-body portraits [25, 41, 46]. Full-body de-lighting exhibits more challenges
due to greater color and texture variations, along with more complex shadows
and occlusions resulting from diverse body poses and shapes. Prior research has
stressed the importance of large datasets with sufficient variations on different
poses, clothing, and lighting conditions [16,48] for training reliable lighting-aware
models.

Recent works have established ground-truth datasets using specially designed
capturing setups such as light stages [26, 27, 36]. Although the captured data is
realistic, such setups are costly and come with many on-site constraints, lim-
iting accessibility for the broader research community and posing challenges in
capturing human subjects with sufficient diversity. As an alternative, virtual
3D human models from various commercial/non-commercial sources have been
employed [16, 18] for creating resembling synthetic datasets. While these data
creations are more widely accessible and controllable on shape, pose, and albedo
texture diversity, diversity issues still persist due to the limited variability of
clothing and fashion accessories. Moreover, the synthetic procedure often over-
simplifies human reflectance properties, leading to a domain gap in full-body
human representation, especially in accurately conveying complex shading fea-
tures, such as specular highlights, subsurface scattering, and the effects of mul-
tiple light bounces. Data limitations existing in both synthetic and real-world
capturing hinder the learning capability of neural networks on real-world images
and exacerbate the de-lighting performance in the wild test scenarios, mani-
festing as unresolved shading artifacts and unintentional alterations of texture
patterns.
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Full-body Human De-lighting 3

In this paper, we present a novel semi-supervised deep learning method for
human de-lighting (see Fig. 1) . We devise a novel network architecture and
training scheme to take advantage of the utility of labeled synthetic data and
overcome its limitations by exploiting a vast dataset of unlabeled real-world
photos. The rendered images of 3D human models under diverse illumination
conditions, paired with their intrinsic ground-truths facilitate learning for the
de-lighting task. Simultaneously, a large dataset of unlabeled real-world images
serves to regularize texture overfitting and bridge the shading discrepancies be-
tween the synthetic and realistic domains in a semi-supervised manner.

We address texture overfitting on both labeled data and unlabeled data by
designing a new loss constraint on the ratio between the source image and its es-
timated albedo. Assuming such ratio images represent the removed shading and
should have a sparse color palette influenced by light directions and occlusions,
we propose a global sparsity loss that reduces the overall color variation in this
shading map for each normal direction, leading to better albedo estimation. We
further adapted this loss to accommodate unlabeled data, allowing our model to
learn a vast range of garments and fashion styles from an extensive dataset of
images in the wild.

Furthermore, we observe that the domain gap between real-world images
and rendered 3D models can be narrowed by adjusting the gamma settings.
Consequently, to address unresolved shadows in real images, we propose a novel
transfer learning paradigm with a domain adaptation module geared towards
learning per-image gamma adjustments and a fine-tuning of adjusted images.
This approach adapts our pre-trained de-lighting network to better handle real-
world images with more complex shading. Our contributions are summarized
as:

– A novel semi-supervised human de-lighting method that is trained using a
sparse set of synthetic 3D human images with intrinsic ground-truth, and
a large set of unlabeled real photos, achieving robustness with regards to
diminishing shading artifacts while maintaining non-shading based content.

– A global sparsity loss applicable to both labeled and unlabeled data to min-
imize color variance in the inferred shading, leading to more stable texture
recovery, and enabling the learning of texture patterns from a broad set of
unlabeled images.

– A novel synthetic-to-real transfer learning paradigm with a domain adap-
tation module for per-image gamma adjustments, improving the model’s
robustness to complex real-world shadows.

2 Related work

Classical methods: Early research on estimating human reflectance from monoc-
ular images primarily employed optimization frameworks with the help of sta-
tistical priors like morphable face models [4, 9, 11, 38, 44], and simple lighting
assumptions such as directional light or spherical harmonics [29]. To tackle this
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4 J. Weir et al .

problem in more general scenes, numerous works utilize image-based priors. For
instance, Shen et al . [32] implemented a local reflectance constraint on neighbor-
ing pixels with similar chromaticity, since shading typically manifests as intensity
variation. Other studies [6, 7] propose global-sparsity constraints on the albedo
map through entropy minimization, noting that most objects are composed of a
limited palette of base colors. Nonetheless, these methods rely on overly simplis-
tic assumptions about the intrinsic characteristics of real-world images, which
may not generalize well to complex images such as full-body humans.
Deep supervised Learning: In recent times, CNN-based methods have emerged
as highly effective solutions for de-lighting and relighting humans in diverse
and uncontrolled environments [16, 27, 31, 34, 39, 43]. The pioneering work by
Kanamori et al . [18] introduced the first full-body relighting method using a
large dataset of human images with ground-truth intrinsics. Since then, further
advancements have been made to enhance its capability in generating challeng-
ing shading elements like specularities and cast shadows [20, 34, 37]. However,
most of these techniques rely on a simple image-to-image translation pipeline
for albedo estimation, which may not effectively remove all shading artifacts.

Weir et al . [41] utilized residual image learning and a masked loss function
to improve the disentanglement between shading and reflectance, while Ji et
al . [16] suggested that skip-connections in the widely used U-Net architecture [30]
were responsible for shading entanglement and proposed an alternative network
architecture based on HR-Net [35].
Deep semi-supervised learning: Various studies have delved into semi su-
pervised learning to address the constraints inherent in synthetic datasets. SfS-
Net [31] employed a photometric reconstruction loss to capture intricate facial
details from real-world photos. Lumos [43] proposed a portrait relighting method
with synthetic-to-real domain adaptation, focusing on correcting the albedo im-
age. While these methods are good at preserving original texture details, their
reliance on generating a re-lit image constrains them based on the expressive
capabilities of the underlying relighting framework.

3 Method

In Fig. 2, we depict the workflow of our de-lighting network. To improve per-
formance, we condition the albedo network on inferred geometry and semantic
labels, following the approach of prior works [16, 27, 39]. Our Prior-Net calcu-
lates normal and semantic parse maps from the input image. Concurrently, our
proposed domain adaptation module assesses gamma adjustment parameters γ1
& γ2 for both the input and albedo images. The resultant normal, parse map,
and gamma (γ1)-adjusted input images are then processed through our Alb-Net
to infer the albedo image, which is subsequently adjusted by γ2.

During the training process, we use a combination of two datasets: synthetic
dataset, DS , which comprises rendered human models with ground-truth albedo,
normal, and parsing labels, and real dataset, DR, which consists of photographs
captured in real-world scenarios, and contains parsing labels only. The images
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Full-body Human De-lighting 5

Fig. 2: Our semi-supervised training and inference pipeline for human de-lighting.

from the real dataset, DR, are used for global-sparsity loss calculation and do-
main adaptation training, aiming to enhance the model’s ability to generalize
to diverse texture patterns and real-world shading features. For convenience, we
use subscripts S, R and M (e.g., IS, IR, IM) to represent batches of images
containing only synthetic, only real, and a mix of both, respectively.

3.1 Baseline Model Design

Prior-Net: The Prior-Net network was trained with the loss function Lprior

formulated as:

Lprior = λL1∥NS − ÑS∥1 + λV ggV gg
(
NS, ÑS

)
+ λFF

(
PM, P̃M

)
, (1)

where NS and ÑS represent the ground-truth and predicted normal maps, re-
spectively, obtained from the synthetic dataset DS , Similarly, PM and P̃M rep-
resent the ground-truth and predicted parsing maps. V gg represents the VGG-16
perceptual loss [17,33], and F represents the multi-class focal loss [39]. We assign
the values λL1, λV gg, and λF as 1, 5, and 100 respectively.

The parsing map identifies up to seven semantic regions: face, hair, hat, bag,
arms, legs, and clothes, which are passed to the albedo network (denoted as
Alb-Net) Alb-Net in the second stage to support the de-lighting process. The
selection of semantic labels is based on two key observations. Firstly, the re-
flectance of skin regions generally exhibits less variation compared to that of
hair and clothes. Secondly, certain objects such as limbs, hats, and hand-held
items often cause significant occlusions. By categorizing these regions in an initial
stage, we can effectively guide our Alb-Net to achieve more robust de-lighting.
An ablation of the parsing map prior is illustrated in Fig. 4 and Tab. 1.

Alb-Net: We use the HR-Net architecture proposed by [16] as the backbone for
our Alb-Net network. The baseline model is trained on our synthetic data using
the loss function Lbas formulated as:
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6 J. Weir et al .

Fig. 3: The motivation behind our global sparsity loss, where (d) and (e) represent
the ratios (a)

(b) and (a)
(c) respectively. The inaccurate color estimation of the shorts in (c)

affects the shading in (e), resulting in a visually noticeable error as indicated by the
contrast.

Lbas = λL1∥AS − ÃS∥1 + 2λV ggV gg
(
AS, ÃS

)
, (2)

where AS and ÃS denote the ground-truth and predicted albedos from the
synthetic dataset DS . While this baseline loss effectively removes shading arti-
facts on synthetic testing data, it struggles to generalize well to the diverse tex-
ture space of human images in real-world scenarios. Addressing and contributing
to this issue will be the focus of the next section.

3.2 Global Sparsity Loss

Given an input image I, its shading S can be expressed in terms of a ratio
image [14, 47] between itself and its albedo, given by S = I

A . In a scenario
with Lambertian reflectance and directional lighting, the color at any point on
this shading map depends on the light intensity, light angle of incidence, and
occluding objects in the scene. This means the global color variance should be
sparse with respect to each normal direction. This point is illustrated in Fig. 3,
where we show the inferred shading map with respect to both the ground-truth
albedo A, and a predicted albedo Ã. Comparing Fig. 3 (e) and (d), we can
see that if the color of a certain region is predicted incorrectly, it will result in
significant color changes in the ratio image. Therefore, a sparse shading map
is linked with more globally consistent albedo inference, this motivates us to
limit the color palette of the inferred shading S̃ to attain more accurate shading
removal and avoid unintended removal of non-shading based content.

We achieve this by designing a global sparsity loss based on a minimum
entropy. Prior de-lighting works [6, 7, 10] utilized minimum entropy losses on
the albedo for shading removal. However, the color variation in human images
can be extensive, especially when considering the diversity in fashion. It is thus
unreasonable to assume minimal color variation in the albedo. Instead, we focus
on the sparsity assumption for the shading map and avoid blurring or miscoloring
of vital texture patterns. Our global sparsity G(·) is defined as follows:
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Full-body Human De-lighting 7

G(S,N) = E

[
−log

(
1

n

n∑
i=1

KDE(d(S,N, i))

)]
. (3)

Here, KDE is the kernel density estimator [10] to approximate the probability
density function. S and N are the shading and normal maps respectively, n
denotes the sample size, and d calculates the distance of each pixel value in the
shading map S relative to the pixel Si, which we defined as:

d(S,N, i) = (S − Si)⊙ exp

(
− (N ·Ni − 1)2

σ2

)
, (4)

where ⊙ represents pixel-wise multiplication. The exponential factor in the equa-
tion serves to emphasize the importance of the distance penalty when the normal
vectors are similar, effectively preventing unnecessary penalization of shading
removal in the presence of non-uniform lighting. The variance parameter σ de-
termines the acceptable cosine angle between the normals. We assign n and σ
to 50 and 0.1 respectively.

Then, we incorporate the global sparsity loss using the following equations:

LGS1 = λGS1 ·G
(
DS

ÃS

,NS

)
, (5)

To ensure unbiased global sparsity calculation, we eliminate cast-shadows
from our estimated shading maps using the ratio image DS

ÃS
where DS is the

input image rendered without cast-shadows. Here, λGS1 is assigned a value of
800.

Since no ground-truth labels exist for real data DR, two considerations must
be taken into account: Firstly, the true color of any pixel in IR with a max value
of 1 is unknown. Thus, we drop these pixels from our calculation. Secondly, we
cannot isolate cast-shadows from the equation like in LGS1. Instead, we mitigate
the shadow bias by operating on the shading’s chromaticity value. In general,
cast shadows are characterized by variations in image luminance, while changes
in chromaticity values are typically attributed to variations in reflectance [32]. By
operating on chromaticity, we minimize the penalty for shadow removal while
still penalizing texture removal. The final global sparsity loss function to real
data DR, LGS2, is defined as:

LGS2 = λGS2 ·G(∥S̃R∥, ÑR), (6)

where ∥S̃R∥ denotes the chromaticity values of the inferred shading map S̃R =
IR
ÃR

, and the parameter λGS2 is assigned a value of 100.

3.3 Domain Adaptation

In real-world data, direct illumination and cast shadows can differ from syn-
thetic data due to physical phenomena like multiple light bounces and realistic
reflectance. This leads to visual changes, such as brighter regions under direct
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8 J. Weir et al .

illumination and shadowed areas appearing brighter due to residual lighting
effects. This becomes problematic when training on synthetic human models,
which only capture Lambertian reflectance, as the resulting domain gap limits
the models performance with real-world images.

To improve shading removal, rather than attempting to model or capture
these realistic shading effects in the synthetic data, we take advantage of the
simplistic shading distribution that the Alb-Net model has already learned from
the synthetic dataset, and design a domain adaptation network that modifies
the real images such that they are more closely aligned to the distribution of the
synthetic images, albeit with greater texture variety. Intuitively, the addition of
physically-based light transport properties to a previously Lambertian rendering
can only increase the overall brightness of each pixel, and in most cases, decrease
the overall contrast between the brightest and darkest pixels in the image as light
rays interact with surfaces that would have otherwise been shadowed. For this
reason, we assume the synthetic counterpart of each real image will be darker
with more pronounced shadows. Hence, our domain adaptation takes the form
of a simple gamma adjustment on the input image:

I = Iγ1 : 1 < γ1 < 2.2, (7)

where γ1 is the input gamma coefficient which, since 0 ≤ I ≤ 1, will com-
press each pixel towards the dark values and increase image contrast (see Fig. 2
(c)). When applied to real images, a higher γ1 generally leads to better shadow
removal performance due to enhanced shadow clarity, but also has the poten-
tial to alter physical appearance, producing a dark or desaturated albedo (see
Fig. 2 (d)). For this reason, we train our first domain adaptation network DA1
(see Fig. 2) to estimate the most optimal gamma value γ1 for each input image
before it’s passed to the de-lighting network.

To resolve the loss of texture and enable more flexibility for the values of
γ1, we design a second gamma adjustment network DA2 (see Fig. 2), which
estimates γ2 to be applied to the resulting de-lit image:

̂̃
A = Ãγ2 : 0 < γ2 ≤ 1. (8)

Where ̂̃A is the adapted albedo image. Here, γ2 has the effect of expanding each
pixel in Ã to higher values, compensating for the lost image brightness resulting
from the initial adjustment.

Once the baseline training of the Alb-Net model has converged, we freeze its
model parameters and train the domain adaptation networks on our real dataset
DR by optimizing both DA1 and DA2 with the following loss function:

LDA = 1

k3∇(maxrgb(S̃R))
+ k1G(∥̂̃SR∥, ÑR) + k2G(

̂̃
SR, ÑR), (9)

where ̂̃SR = IR̂̃
AR

, ∇ is the total variation loss (TV) and maxrgb returns the
maximum of each RGB value in the image. Inverse TV loss is applied to shading
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Full-body Human De-lighting 9

Fig. 4: Parsemap conditioning ablation. Each triplet of images illustrates (left to right)
input, output without parse, output with parse.

intensity to promote the removal of shading artifacts, which are primarily local-
ized to specific regions. Simultaneously, we minimize the shading global sparsity
to regularize potential texture distortions in the albedo. The constants k1, k2,
and k3 are empirically set to 350, 10, and 25,000 respectively.

4 Data and Implementation

Synthetic dataset: We compiled a synthetic dataset with intrinsic ground-
truth labels, denoted as DS , consisting of 150 3D models of virtual human
subjects (134 for training, 16 for testing)3 obtained from different commercial
sources. Each model was posed under three different camera angles and different
illumination conditions from which we extracted normal, albedo, foreground-
mask, and 154 physically-based renderings in various indoor and outdoor set-
tings [2,3]. To extract ground-truth parse maps, we applied a pre-trained human
parsing network [1, 21] to our albedo images which detects up to 18 parsing re-
gions. To enhance the diversity of our dataset and improve the generalization
capabilities of the trained model, we apply region-specific data augmentation [42]
which introduces random color shifts to various non-skin regions of the training
images. Additionally, we insert directional lights into the environment maps to
boost robustness to strong shadows. More details can be found in the supple-
mentary document.

Real-world dataset: As for the real dataset, DR, we utilized the ICCV-15
fashion dataset [22, 23], which comprises a large number of (17,706) full-body
portraits captured across a wide range of indoor and outdoor environments but
without any albedo ground-truth. Each image is also accompanied by a parse
map, which are utilized during Prior-Net training (see Eq. 1). All the training
images will be resized to 512× 384 resolution for input into the network.

Implementation: We used PyTorch [28] to implement our model, training it on
two NVIDIA RTX 6000 graphics cards. We first train our Prior-Net (Sec. 3.1)

3 The dataset contained multiple instances of individuals captured with various cloth-
ing and poses. We ensured that no individuals were repeated between the train and
test sets.
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10 J. Weir et al .

network until Lprior converges after 5 epochs, froze its parameters, and pro-
ceeded to train the Alb-Net network for an additional 5 epochs, aiming for the
convergence of the combined losses Lbas + LGS1 + LGS2. During training, each
batch consisted of four images from the real dataset DS and two images from the
unlabeled dataset DR. After completing this step, we froze the parameters of the
initially trained Alb-Net and initiated the training of our Domain Adaptation
module with real data (refer to Sec. 3.3). Training for 5 epochs on the entire DR

dataset. For optimization, we utilized the Adam optimizer [19] with a learning
rate of 1e− 4 for Prior-Net and Alb-Net, and 1e− 6 for the domain adaptation
module. The inference time for the full model was 154ms on a single graphics
card.

5 Results

We evaluated our method against the two recent state-of-the-art methods ca-
pable of full-body de-lighting: Total Relighting (TR) [27] and Geometry-aware
Single-image Full-body Human Relighting (GSFR) [16]. Two versions of each
are tested: The author implemented models, and our implementations of them
retrained using our dataset DS , denoted GSFR (retrained) and TR (retrained).
From the qualitative results in Fig. 5, we can see that the original prior works
(f & g) can more faithfully preserve texture than our retrained versions (d &
e), but struggle under hard shadows (second row) and abnormally colored illu-
mination (bottom row). Our method (c) more effectively resolves harsh shading
artifacts and achieves more accurate color inference. This is further illustrated
in the wild test (i), where ours clearly achieves more accurate albedo estimation
(second and fourth rows) and shadow removal (first and third rows) than prior
works. Quantitative results in Tab. 1 show that our method outperforms prior
work in terms of MSE, si-MSE 4 [8], PSNR, SSIM [40] and LPIPS [45] on our
testing dataset.

5.1 Global Sparsity Evaluation

We assess the advantages of incorporating global sparsity loss in Fig. 6. When
employing only the baseline loss Lbas, our model tends to eliminate texture
patterns and desaturate vibrant colors. The introduction of LGS1 to the synthetic
data DS yields improved results; however, it falls short in addressing complex
textures not present in our synthetic training dataset, evident in the removal of
glasses (rows 1 & 3) and the washed-out texture patterns (rows 2, 3 and 5).

The model trained with LGS2 accommodates such features by learning a
broader range of textures from our unlabeled dataset DR. Nevertheless, it tends
to miscalculate the brightness of certain regions, as evidenced by the shirt logo in
the top row and lightened skin-tone in the fourth row. This discrepancy may be
attributed to the fact that LGS2 operates on chromaticity values of the shading
map rather than color (refer to Sec. 3.2 for more details).
4 scale-invariant MSE. The error remains constant regardless of intensity scaling
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Table 1: Quantitative results on the synthetic testing dataset.

Method MSE↓ si-MSE↓ PSNR↑ SSIM↑ LPIPS↓
GSFR 3.719 2.100 13.426 0.783 0.057
TR 5.762 3.084 12.358 0.820 0.093

GSFR (retrained) 0.728 0.463 20.720 0.930 0.036
TR (retrained) 1.012 0.752 19.329 0.917 0.044
w/o GS1 & GS2 0.733 0.461 21.093 0.937 0.032

w/o GS1 0.741 0.407 21.122 0.936 0.031
w/o GS2 0.704 0.381 20.912 0.936 0.030
w/o parse 0.687 0.355 20.965 0.936 0.029
Ours Full 0.646 0.362 21.562 0.940 0.027

Table 2: Quantitative domain adaptation ablation on the Multi-PIE testing dataset.

Method MSE↓ si-MSE↓ PSNR↑ SSIM↑ LPIPS×100 ↓
w/o DA 0.477 0.362 22.542 0.935 0.832
w/ DA 0.520 0.397 22.960 0.942 0.764

Our full model, trained using both LGS1 and LGS2, achieves the most con-
sistent and plausible results in preserving the original texture. This is verified
quantitatively in the last row of Tab. 1.

5.2 Domain Adaptation Evaluation

We assess the advantages of domain adaptation qualitatively in Fig. 7. Upon inte-
grating the domain adaptation module, intricate shadows and highlights present
in skin and clothing regions are effectively eliminated. By emphasizing shadows
and reducing color distortions around shadows, our DA module enhances the
performance of a de-lighting network trained using synthetic data.

To quantitatively evaluate our DA module would require real-world images
with ground-truth albedos. Since no full-body dataset of this kind is publicly
available, we modify the popular face recognition dataset Multi-PIE [12] for
our purposes. Multi-PIE comprises a set of portrait images captured from the
shoulders up, under 18 directional lighting conditions. We generate input and
uniform-lighting images following the method outlined in Weir et al . [41]: color-
scaled versions of the directional lighting images are used as input to create
challenging illuminations, and the average over all directional lighting images is
used to approximate a smooth, uniformly-lit image. The ground-truth albedo
for this experiment is the uniformly-lit image processed through the respective
model to remove any remaining shadows. Our Multi-PIE evaluation dataset con-
sists of 1000 images spanning 140 unique subjects. The results in Tab. 2 indicate
that our DA-trained model achieves weaker scores on MSE and si-MSE but
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12 J. Weir et al .

Fig. 5: Comparisons with state-of-the-art methods TR [27] and GSFR [16]. Results on
our testing dataset are shown on the left, while in-the-wild results are shown on the
right.

stronger scores on PSNR, SSIM, and LPIPS metrics. This suggests that some of
the overall color/brightness accuracy was lost due to gamma adjustments, but
overall structural accuracy was increased due to enhanced shadow removal, as
demonstrated in the qualitative test in Fig. 8.

6 Conclusion

While our method demonstrates significant improvements on real-world shad-
ing, failure cases can arise from glossy surfaces such as leather jackets. This is
because no such materials were present in our synthetic dataset, so they are
indistinguishable from texture patterns even after domain adaptation. Secondly,
due to lack of intrinsic ground-truth images for our quantitative evaluation of
DA, we depend on de-lit images from our own model, which does not guarantee
an accurate ground-truth albedo.

This paper addresses critical challenges for removing undesired shading from
real-world human images, a task essential for numerous real-world applications.
Our work identifies and tackles issues arising from dataset quality by proposing a
novel semi-supervised deep learning method that effectively leverages both syn-
thetic and real-world data for improved disentanglement of texture from shading.
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Fig. 6: Illustration of our global sparsity loss: (b) the results of applying only the
baseline loss Lbas, (c) results without applying LGS2, (d) without applying LGS1, and
(e) is the results of the full method trained with both LGS1 and LGS2.

The incorporation of a global sparsity constraint and its adaptation to unlabeled
real-world data leads to significant improvements in handling a diverse range of
fashion-related textures in real-world tests. Our proposed domain adaptation
module, based on our insights into gamma adjustments, effectively narrows the
distribution gap between real and synthetic data, thereby enhancing the over-
all performance of shading removal. Through experimentation, we have demon-
strated our approach achieves state-of-the-art results, showcasing advancements
in the removal of undesired shading while preserving the integrity of original
textures in human images.

Acknowledgements: This work was supported by the Entrepreneurial Univer-
sity Programme from the Tertiary Education Commission in New Zealand, and
Culture, Sports and Tourism R&D Program through the Korea Creative Con-
tent Agency grant funded by the Ministry of Culture, Sports and Tourism in
2024 (Project Number: RS-2024-00399136).
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14 J. Weir et al .

Fig. 7: Ablation on the domain adaptation module on in-the-wild images. Red arrows
in the middle row indicate shadowed regions removed or softened by domain adaptation
(bottom row). Best viewed when zoomed in.

Fig. 8: Ablation on the domain adaptation module on images from the Multi-PIE
evaluation dataset. The results w/ DA has less pronounced shadow remaining. Best
viewed when zoomed in.

Fig. 9: Limitations: Our method struggles to remove shading from specular surfaces.
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