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Abstract. Event cameras, as bio-inspired vision sensors with a high dy-
namic range, are capable of addressing the problems of local overexpo-
sure or underexposure that conventional frame-based cameras encounter
in scenarios with high dynamic range or fluctuating lighting conditions.
Due to the modality gap between the two types of cameras, simple di-
rect fusion is not feasible. Additionally, the ghosting artifacts caused by
the deviation in the camera positions and frame-rates also affects the
quality of final fused image. To solve the problems, this paper proposes
a joint framework that combines locally poor-exposed frames with event
streams captured by the event camera to enhance the images with de-
tailed textures in high dynamic range scenarios. Specifically, a lightweight
multi-scale receptive field block is employed for rapid modality conver-
sion from event streams to frames. Besides, a dual-branch fusion module
is proposed to align features and remove ghosting artifacts. Experimen-
tal results demonstrate that the proposed method effectively mitigates
information loss in both highly bright and dark regions of images across
a range of extreme lighting conditions, generating the both realistic and
natural images.
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1 Introduction

The dynamic range of illumination in a natural scene varies greatly. Due to the
constraints inherent in conventional frame-based cameras, the dynamic range
captured in a single image is significantly narrower compared to that of natural
scenes [28], which leads to the instances of local overexposure or underexposure.
This challenge not only severely impacts image quality but also complicates
downstream tasks, e.g ., object detection, tracking and visual SLAM.

Currently, numerous studies focus on broadening the dynamic range of con-
ventional cameras using the images with different exposure times [37]. The ex-
isting methods are categorized into two ways: High Dynamic Range (HDR) im-
age reconstruction and multi-exposure image fusion (MEF). The former merges
snapshots taken at different exposure times using the Camera Response Func-
tion (CRF) to reconstruct HDR images [2,41], displayed on the ordinary display
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device through tone mapping (TM). The latter approach directly employs MEF
technology to fuse input images with different exposure times into an image
with rich information and vivid colors [32, 40], which do not consider camera
curve calibration, HDR reconstruction, and tone mapping. However, in dynamic
scenes, the ego-motion of cameras and moving objects within the scene cause
misalignment in multi-exposure image sequences, leading to blurred and ghosting
artifacts in the fusion results. Additionally, the high frame rate imaging require-
ments in high-speed scenes constrain the camera exposure time, resulting in the
loss of scene information in dark areas.

Unlike conventional cameras that capture images at fixed frame rates, event
cameras, inspired by biological vision systems [4], measure changes in light in-
tensity and generate asynchronous events to capture scene information. Event
cameras have advantages including high dynamic range (140 dB), high temporal
resolution (1 µs), and low power consumption. However, event streams represent
a fundamentally different format from conventional images, rendering existing
computer vision algorithms inapplicable. As a result, the common approach is to
reconstruct images from event streams. Some methods [25,27,35] have explored
various strategies to enhance image reconstruction quality in different scenar-
ios. Nevertheless, these event-based methods lack sufficient image information
to compute the absolute intensity of each pixel. Furthermore, while maintaining
image reconstruction quality, the models should be as lightweight as possible to
preserve the low latency of event cameras, which has not been fully explored.

Event-based cameras, with their high dynamic range capabilities, are ben-
eficial to capture contour details in high dynamic range and motion scenarios,
overcoming the overexposure and underexposure challenges faced by conven-
tional cameras. Yet, conventional cameras still offer richer detail in well-exposed
areas. Therefore, we exploit to leverage event streams to supplement the scene
information of a single overexposure or underexposure image for high-quality
enhancing in high dynamic range scenes. Since event cameras do not capture
color information, our approach focuses on enhancing grayscale frames.

To achieve our objective, two challenges require to be addressed: (i) The
modality conversion from the event streams to images is challenging. We aim
to maintain the reconstructed image quality from the event streams while opti-
mizing the model’s real-time performance to handle high-speed dynamic scenes.
(ii) Effectively aligning and fusing scene information from frames and the event
streams is another challenge. There is a frame-rate difference and a spatial de-
viation between the two types of cameras, which necessitates the design of a
robust alignment strategy to avoid ghosting artifacts.

In this paper, in response to the degradation in high dynamic range scenes,
we propose the an event-based image enhancement framework, which takes the
event stream and locally overexposure or underexposure frames as inputs and
outputs high-quality images with detailed textures. Fig. 1 shows the visual results
of our proposed framework. Specifically, an event encoder is proposed based
on receptive field blocks (RFB) to extract multi-scale features from the event
streams, enabling fast and efficient modality conversion. To suppress ghosting
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Fig. 1: The visual results of our event-based image enhancement method

artifacts during fusion, a dual-branch fusion module (DFM) is designed based
on deformable convolutional block and spatial attention block to achieve feature
alignment and fusion from event streams to frame. To sum up, the contributions
of this paper are as follows:

– An event-based image enhancement framework is proposed to solve the visual
degradation problem in high dynamic range scenes.

– To solve the problem arising from the modality conversion of event streams
into images, receptive field blocks are employed to facilitate swift and efficient
transformation of event streams into image representations.

– To suppress ghosting artifacts, a dual-branch feature alignment module is
designed to achieve feature alignment from event streams to images.

– Extensive experiments on an outdoor driving scene dataset demonstrate the
effectiveness of the proposed framework in high dynamic range scenarios.

The remainder of the paper is organized as follows. Section 2 reviews the
related work. Section 3 introduces the methodology. Section 4 presents the ex-
periments. Section 5 makes a conclusion.

2 Related Work

2.1 Frame-based imaging in high dynamic range scenes

Compared to HDR image reconstruction, multi-exposure fusion methods are
simpler, more cost-effective, and efficient alternative for achieving high dynamic
range imaging tasks [37]. To counter the challenges in dynamic scenes, recent
approaches leverage motion detection and image registration to reduce motion
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artifacts [19,30]. Specifically, learning-based methods are utilized for optical flow
estimation and deep image fusion [22, 23]. Additionally, attention mechanisms
are integrated into the system to bolster the robustness of optical flow-based
registration [8, 38]. Although numerous studies have investigated deep learning
for exposure correction in images, recovering details in overexposed or under-
exposed areas without additional cues is still a significant challenge [1, 6]. As a
result, a model that better captures the complex relationships between different
exposure levels and the original scene is required in the task.

2.2 Event-based image reconstruction

As the representation of event streams is different from conventional images,
related work on event-based image reconstruction is discussed in this section. Due
to the high dynamic range of event cameras, reconstructing images from pure
events holds tremendous potential for perception in dynamic scenes. Early works
[5, 14] achieved image reconstruction by moving the event-camera in a static
scene. To address the movement restriction, Bardow et al . [3] and Munda et al .
[21] proposed a dynamic energy minimization framework to reconstruct intensity
images in motion scenes. Recently, Wang et al . [33] and Mostafavi et al . [20]
used generative adversarial networks (GANs) to reconstruct images from events.
Rebecq et al . [25] and Scheerlinck et al . [27] achieved stable reconstruction results
through a recurrent neural network. Weng et al . [35] presented a hybrid CNN-
Transformer network to further promote the reconstruction quality. However,
these event-based methods lack sufficient events information to compute the
absolute intensity of each pixel in the complicated scenarios.

2.3 Combination of event and frame-based camera

Conventional cameras are constrained by the limited dynamic range while event-
cameras capture the visual information across a much broader dynamic range
with limited texture features. By integrating event-cameras with frame-based
cameras, the strengths of both technologies allow for the retention of texture de-
tails while also capturing the full range of light levels, thus improving the overall
visual information. Wang et al . [31] proposed a sparse learning and integra-
tion method aimed at enhancing image clarity through deblurring and achieving
super-resolution. Han et al . [10] suggested reconstructing intensity maps from
the combination of events and low dynamic range (LDR) frames. Jiang et al . [12]
proposed a event-guided low-illumination image enhancement method. Yang et
al . [42] proposed a reconstruction framework with events and LDR videos.

3 Methodology

This section introduces our proposed event-based image enhancement method
under high dynamic range scenes. We first introduce the event representation
method. Then, we describe the specific architecture of our approach and the loss
functions used for training.
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Fig. 2: Overview of our proposed image enhancement framework. The event streams
and poorly exposed frames are used as input to obtain the event and frame features
by event encoder and image encoder respectively. Next, the final enhanced output is
fused and reconstructed by the dual-branch fusion and reconstruction module.

3.1 Event Representation

The event streams obtained from an event-camera is represented by εn = {ek}Nk=1,
where N is the number of events. Each ei ∈ εn can be represented by a tuple
(xi, yi, ti, pi), where x and y represent the spatial position of the event, t rep-
resents the timestamp of the event, and p = ±1 represents the polarity of the
event. In order to input the event stream εn into frame-based reconstruction, we
need to convert it into a fixed-size tensor representation [43]. The event stream
is transformed into an event voxel grid E using time bilinear interpolation. E is
divided into B bins using the following equation:

Ej∈[0,B−1] =

N∑
i=0

pimax

(
0, 1−

∣∣∣∣j − ti − t0
∆t

(B − 1)

∣∣∣∣) (1)

where ∆t = tN−1 − t0 is the time span of the N events (tN−1 is the end
time and t0 is the start time), and this method evenly distributes the entire
stream εn in [t0, tN−1] into B contiguous bins. In this paper, we set B = 5
for all experiments. Eventually, we convert the event stream to an event tensor
E ∈ R5×W×H , where W and H are the spatial sizes of the frame.

3.2 Network Architecture

As illustrated in Fig. 2, our proposed model consists of an event encoder, an im-
age encoder, a dual-branch fusion module, and a reconstruction module. Instead
of adopting a U-Net [26] style structure, which downsamples the input first before
upsampling, our model operates at full resolution to preserve the informative de-
tails. To address the challenges brought about by the different modalities of event
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Fig. 3: The detailed structure of event encoder based on receptive field blocks.

streams and frame in image enhancement tasks, namely, image frames are only
adjusted in the original domain, while event streams need to be reconstructed
across domains, we design the event encoder and image encoder with different
architectures. A dual-branch fusion module is leveraged to achieve multi-modal
feature fusion. Finally, the enhanced clear images could be obtained from the
fused feature using the reconstruction module. We introduce the structures of
event encoder, image encoder and reconstruction module in detail respectively,
and the most critical dual-branch fusion module will be explained separately in
the Sec. 3.3.
Event Encoder. We propose an event encoder based on the Receptive Field
Block (RFB) [17], which can capture a broader range of contextual information
by expanding the receptive field. As shown in Fig. 3, the RFB module contains
three branches, each branch has convolutions with a different kernel size and
different dilation rate. The features from each branch are aggregated through a
concatenation and 1 × 1 convolution, effectively extracts and integrates multi-
scale features from event data. Given the event tensor E ∈ R5×W×H , the head
which consists of a convolution with ReLU is employed to obtain the initial event
feature f0

E ∈ RC×W×H . In our work, we set C as 16. Then f0
E is passed to the

stack of 3 RFBs for layer-by-layer feature extraction and fusion, generating the
event feature fE ∈ RC×W×H .
Image Encoder. As shown in Fig. 2, given the frame F ∈ R1×W×H , the head
is employed for obtain the initial image feature f0

F ∈ RC×W×H . Then we stack
2 residual blocks [11] as a lightweight encoder. In order to adjust the global
exposure of the frame, a convolutional block attention module (CBAM) [36] is
used to perform channel and spatial attention. Through the above steps, we
obtain the frame feature fF ∈ RC×W×H .
Reconstruction Module. In reconstruction stage, we decode the fused fea-
ture fEF obtained from the dual-branch fusion module (DFM) to reconstruct
the enhanced image. We stack two residual modules to fine-tune the fEF . The
enhanced image Fout ∈ R1×W×H is finally reconstructed using a tail consisting
of convolution and sigmoid.
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3.3 Dual-branch Fusion Module

Fig. 4: Dual-branch Fusion Module

The dual-branch fusion module (DFM) is proposed to effectively integrate
the features of the event and frame, as shown in Fig. 4. The DFM comprises two
routes, each taking the event features fE and the frame features fF as input.
One branch adopts a Spatial Attention Block [39] to produce the aggregated
feature fEFsa . A second branch adopts a Deformable Convolutional Block [18] to
produce the aligned feature fEFdc

. Then both fEFsa
and fEFdc

are concatenated
and fused through a convolution and a relu, generating the fused feature fEF .

Spatial Attention Block. As the Spatial Attention Block [39] allows the net-
work to extract features of particular areas of the inputs, we use it to adaptively
supplement poorly exposed regions of conventional frames with events without
the need for hand-crafted masks [10,42]. As depicted in Fig. 4, the event atten-
tion map ME is obtained from [fE , fF ] after 2 convolutions follows by a relu and
a sigmoid respectively. The weighted event feature fEsa

is computed by perform-
ing point-wise multiplication on fE and ME . Finally we obtain the aggregated
feature fEFsa by fusing [fEsa , fF ] through a convolution and a relu.

Deformable Convolutional Block. Deformable convolutions have been used
for image alignment in feature space, aiding video restoration [34] and HDR
reconstruction [18] tasks. Inspired by this, we design a lightweight deformable
convolutional block to adaptively align cross-modal features for conventional
frames and events. As depicted in Fig. 4, the offsets and the mask are predicted
according to fE and fF with a stack of convolutions and relu activations. With
offsets, mask and fE , the aligned event feature fEdc

of the conventional frame
can be computed by the deformable convolution. Similar to Spatial Attention
Block, we fuse fEdc

and fF to obtain the aligned feature fEFdc
.
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Fig. 5: Example samples of our training dataset.

3.4 Loss Functions

We train our network by minimizing the loss function which use a combination
of mean square error (MSE) loss and perceptual similarity (LPIPS) loss [13],
with equal weights. Our total loss L can be written as:

L = Lmse + Lperc (2)

The MSE loss Lmse is used to evaluate the pixel-level error between the
enhanced image Iout and groundtruth image Igt, which is defined as:

Lmse = ∥Igt − Iout∥22. (3)

The LPIPS loss Lperc is introduced to measure the feature similarity between
images, which is defined based on the feature maps extracted by the VGG16 [29]
model pre-trained on ImageNet [7]:

Lperc =
∑
l

(
||ϕl(Igt)− ϕl(Iout)||22

)
(4)

where ϕl represents the l -th layer of the feature extraction network.

4 Experiments

4.1 Experimental setup

Training dataset. For the training of our model, a large amount of triplets
(events, poorly exposed image, groudtruch image) are required. However, there
are no readily available datasets containing these triplets. To synthesize such a
dataset, We first leverage the training data obtained from an event-based im-
age reconstruction method E2VID [25], which yields a substantial number of
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corresponding event streams and images with a resolution of 240 × 180. The
event streams are generated by the event simulator ESIM [24], while MS-COCO
images [16] are mapped onto a 3D plane and random 6-DOF camera move-
ments are utilized to trigger events. From these data, we select those images
rich in scene texture and luminance information to form our groundtruth image,
which represent well-exposed images in high dynamic range scenes. We adjust
the exposure by modifying the pixel values of the groundtruth image to gen-
erate locally underexposed and overexposed images. Additionally, to mimic the
imaging perspective deviation caused by positional discrepancies between event
cameras and traditional cameras in real-world scenarios, we perform minor affine
transformations on the event streams for data augmentation. In total, there are
47852 frames for training, and 2523 frames for validation. Some examples are
shown in Fig. 5.
Testing dataset. We evaluate our model on a publicly released stereo event
camera dataset in driving scenarios: DESC [9]. In DESC, events and images are
from different cameras with different resolutions. As the calibration parameters
are provided, we warp the images to the event locations with a resolution of 640
× 480. Since DSEC covers a large variety of illumination conditions, we selected
well-exposed image sequences with rich scene information as groundtruth. Sim-
ilar to the training set, we adjust the exposure of the groundtruth images to
synthesize locally underexposed or overexposed images for testing.
Evaluation metrics. For quantitative evaluation, we consider three widely-
used evaluation metrics: (i) Peak Signal-to-Noise Ratio (PSNR): PSNR quan-
tifies the fidelity between the enhanced image and the ground truth. A higher
PSNR value suggests less distortion, indicating superior enhancement perfor-
mance.(ii) Structural Similarity Index (SSIM): SSIM assesses the resemblance
between two images based on three components: brightness, contrast, and struc-
ture. A higher SSIM value denotes better enhancement quality. (iii) Perceptual
Similarity (LPIPS): LPIPS evaluates the similarity of features between images
rather than comparing the images directly, as described in Eq. 4. A lower LPIPS
value signifies greater similarity.
Implementation details. Our network is implemented using the Pytorch frame-
work. Adam [15] is utilized as the optimizer with the initial learning rate 0.0002,
which is decayed by a factor of 0.9 every 20 epochs. Our model is trained for 100
epochs with batch size of 16 on 1 NVIDIA Tesla V100 GPU.

4.2 Comparisons with State-of-the-art Methods

We compare the proposed method to five state-of-the-art imaging methods, in-
cluding an frame-based exposure correction method: MSEC [1]; two pure event-
based image reconstruction method: FireNet [27] and E2VID [25]; the grayscale
variant of two event guided HDR reconstruction method: NeurImg-HDR [10]
and HDRev [42].
Quantitative evaluation. We quantitatively compare all methods on DSEC
dataset and summarize the results in Tab. 1. Our method outperforms existing
methods in terms of all metrics. Regarding PSNR, SSIM, and LPIPS, we improve
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Fig. 6: Visual quality comparisons on DSEC dataset.

6.007 dB, 0.287, and 0.118 respectively, compared to the second-best methods.
Event-based methods typically underperform frame-supported methods on all
metrics, due to the absence of image information.
Qualitative comparisons. We also conduct extensive qualitative comparisons
for all methods, as shown in Fig. 6. In over/under-exposed regions of the input
frames, most details are significantly lost. Frame-based MSEC [1] can perform
exposure correction to enhance image contrast, but can not restore the lost scene
details. Due to the sparsity of events, event-based E2VID [25] results in severe ar-
tifacts and fails to recover sufficient scene information. NeurImg-HDR [10] fuses
the reconstructed image of E2VID [25] with the frame. However, this post-fusion
method is seriously affected by the quality of the event-based reconstructed im-
age. HDRev [42] employs a fusion strategy using a shared representation space,
which results in overall image distortion. In comparison, Our proposed method
not only corrects image exposure and recovers the lost details, but also effectively
predicts the brightness information of overexposed or underexposed regions.

Furthermore, in Fig. 7 we show the image enhancement result of our method
in an extremely overexposed scene of a car exiting a tunnel. The enhanced image
restored the cliff curve outside the tunnel, which is important for improving
driving safety.
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Table 1: Quantitative comparison on DSEC dataset. ↑ (↓) means higher (lower) is
better. Best in bold, the second best with underline.

Methods PSNR ↑ SSIM ↑ LPIPS ↓

MSEC [1] 14.125 0.475 0.436
FireNet [27] 9.372 0.314 0.513
E2VID [25] 11.746 0.393 0.483
HDRev [42] 9.630 0.484 0.339
NeurImg-HDR [10] 12.384 0.414 0.422
Ours 20.132 0.771 0.211

Fig. 7: An exiting tunnel scenario in DSEC dataset. The scene information outside the
tunnel has been lost in the image frame.

4.3 Ablation study

Influence of Event Encoder. We evaluated the impact of our event encoder
by replacing the feature extractor RFBs with residual blocks. As shown in Tab.
2, when the RFB is removed, PSNR and SSIM drop significantly by 3.187 dB
and 0.071 respectively. In order to further verify the effectiveness of RFB. We
connect the event encoder and the tail block to build the purely event-based
reconstruction variant RFB-Net. As shown in Tab. 3, compare with FireNet
[27] and E2VID [25], RFB-Net achieves a balance between imaging quality and
computational performance. Especially for LPIPS, RFB-Net outperforms the
other two methods with only 51k parameters and 15.6 flops.
Influence of Image Encoder. We evaluated the impact of our image encoder
by directly removing the CBAM module. As shown in Tab. 2, We can see that
the PSNR and SSIM decreases sharply by 3.610 dB and 0.076 respectively, which
shows the effectiveness of the global attention adjustment for frame features in
our image enhancement task.
Influence of Dual-branch Fusion Module. We built three models to evaluate
the impact of the dual-branch fusion module (DFM). (i) W/o DFM. We replace
the DFM with a direct concatenation and convolution layer. (ii) W/o DCB. We
remove the deformable convolutional block in DFM. (iii) W/o SAB. We remove
the spatial attention block in DFM. Tab. 2 shows that the PSNR values of
these three models decreased by 3.795, 0.411 and 0.213 respectively. This result
shows the effectiveness of our dual-branch fusion module. Moreover, we visualize
the behavior of DFM in Fig. 8. In particular, we illustrate 2 pooly exposed
frames, the respective event features fE from event encoder, the weighted event
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Table 2: Ablation results

Methods PSNR ↑ SSIM ↑ LPIPS ↓

W/o RFB 17.450 0.712 0.241
W/o CABM 17.027 0.707 0.241
W/o DFM 16.842 0.689 0.253
W/o DCB 20.226 0.774 0.217
W/o SAB 20.450 0.768 0.218
Ours 20.637 0.783 0.204

Table 3: Quantitative comparison of the event-based variant RFB-Net with two other
methods, in terms of imaging quality and computational performance.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ Parameters(k) Flops(G)

FireNet [27] 9.372 0.314 0.513 38 12.6
E2VID [25] 11.746 0.393 0.483 10700 147.2
RFB-Net 10.589 0.363 0.462 51 15.6

Fig. 8: Qualitative representation of the behavior from dual-branch fusion module
(DFM). fE is the event feature from event encoder. fEsa is the weighted event feature
from spatial attention block (SAB). fEdc is the aligned event feature from deformable
convolutional block (DCB).

features fEsa
from spatial attention block and the aligned event features fEdc

from deformable convolutional block. Only the first channel is visualized for all
features. Fig. 8 effectively illustrates how the spatial attention block uses the
event features to restore scene details in overexposed and underexposed region
of the frames. And the deformable convolutional block effectively enhances the
event features and aligns them to the frame features.
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5 Conclusion

In this paper, we propose an event-based image enhancement framework to solve
the visual degradation problem in high dynamic range scenes. We architect
corresponding encoders for the two distinct modalities of input. We design a
dual-branch fusion strategy to achieve efficient cross-modal alignment and fu-
sion imaging between events and images. Extensive experiments demonstrate
the effectiveness of the proposed framework in high dynamic range scenarios.
Acknowledgments. This work was supported by Guangxi Key R & D Pro-
gram (No. GuikeAB24010324) and the Basic Research Operating Expenses of
Universities-Young Teachers Cultivation Programs (Grant No. 24qnpy143).
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