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Abstract. LiDAR super-resolution can improve the quality of point
cloud data, which is critical for improving many downstream tasks such
as object detection, identification, and tracking. Traditional LiDAR super-
resolution models often struggle with issues like block artifacts, staircase
edges, and misleading edges. To address these challenges, a novel super-
resolution model of LiDAR based on fractional-order total variation
(FOTV) is proposed in this paper. We propose a FOTV regularization
optimization problem, utilizing an end-to-end trainable iterative network
to capture data attributes.This enables the precise reconstruction of fine
details and complex structures in point clouds. Specifically, the half-
quadratic splitting algorithm divides the problem into data fidelity and
prior regularization subproblems. We then propose a deep unfolding
network, which iteratively deals with the two subproblems within the
FOTV-HQS framework. Numerous experiments have shown that our
approach significantly reduces the number of parameters by up to 99.68%
and maintains good performance, making it ideal for applications with
limited compute and storage resources.
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1 Introduction

Light Detection and Ranging (LiDAR) is a cornerstone technology for numerous
applications in autonomous systems, including robot navigation[1], autonomous
driving [2], and 3D reconstruction [3]. It provides precise 3D representations of
the environment by emitting pulsed laser light, capturing fine details crucial
for object detection, tracking, and terrain modeling. Unlike traditional imaging
sensors that rely on ambient light, LiDAR functions e!ectively in varied lighting
conditions, including nighttime, giving it a significant advantage in applications
requiring robust and reliable environmental perception [4].
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Fig. 1: The input point cloud from a 16-channel LiDAR sensor is reconstructed
into a 64-channel point cloud using super-resolution technology, without the need
to directly acquire a higher-channel LiDAR sensor.

As application scenarios become increasingly complex, the technological
demands on LiDAR performance also escalate. One significant demand is to
increase the density of the sensed point clouds, which depends on the number
of channels in the sensor. LiDARs with more channels produce denser point
clouds, capturing more environmental details and greatly benefiting tasks such as
object detection, recognition, tracking, and motion planning. However, pursuing
higher resolution in LiDAR technology faces significant challenges. Low-channel
LiDAR systems, which are more commonly used, cannot capture high-resolution
data directly. These systems often struggle to provide the detailed and dense
point clouds necessary for advanced applications in robotics and autonomous
navigation.

The advent of super-resolution (SR) techniques o!ers a promising way to
overcome these limitations. By augmenting the resolution of LiDAR data beyond
the native capabilities of the sensor (Figure 1), these methods aim to unlock
finer environmental details without necessitating the direct acquisition of higher-
channel sensors. Yet, traditional approaches to LiDAR super-resolution, including
interpolation and conventional learning-based methods, often face challenges such
as noise amplification and loss of detail, highlighting the need for more advanced
solutions.

In this paper, we propose a novel fractional-order total variation (FOTV)
model for LiDAR super-resolution. The energy function of the proposed model
consists of two terms: the data fidelity term and the FOTV regularization term.
The data fidelity term ensures the similarity between the reconstructed range
image and the ground truth range image, while the FOTV regularization term
serves to better reconstruct the tiny features and complex structures in the point
cloud. We first solve the proposed model by means of the half-quadratic splitting
(HQS) algorithm, which divides the model into two subproblems. Additionally,
we propose a deep unfolding super-resolution network that iteratively processes
the LiDAR super-resolution model based on the FOTV-HQS framework. This
network alternates between solving the two sub-problems, one related to the data
fidelity term, and the other to the FOTV regularization prior term. We then
solve it through the deep unfolding network by replacing the iterative formulas
of the two subproblems with neural network modules.
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The main contributions of this work are as follows:
1) A novel LiDAR super-resolution model based on fractional-order total

variation has been proposed. This model leverages the characteristics of fractional-
order to better reconstruct tiny features and complex structures in the point
cloud, avoiding issues such as block artifacts, staircase edges and false edge near
the edges that are common with traditional regularized super-resolution models.

2) We design a deep unfolding super-resolution network based on FOTV-HQS
framework to iteratively process the LiDAR super-resolution model. This network
integrates the flexibility of reconstruction-based methods with the advantages
of learning-based methods, providing an avenue to bridge the gap between
reconstruction-based and learning-based methods.

3) Numerous experiments was conducted on datasets of point cloud range
images. Compared to other state-of-the-art deep learning networks, the proposed
deep unfolding network based on the FOTV-HQS experiments demonstrated a
99.68% reduction in the number of parameters while also performing well on
other quantitative and qualitative metrics.

2 Related Work

2.1 LiDAR super-resolution

LiDAR super-resolution is a crucial task we are working on. The objective is to
enhance the resolution of LiDAR data, particularly by increasing the density of
point clouds in the vertical direction, allowing for a more detailed representation
of the scanned environment. In this realm, Shan et al . [5] propose a LiDAR super-
resolution methodology that transforms 3D point clouds into 2D image space for
enhancement via a deep convolutional neural network. Gkillas et al . [6] explore
LiDAR super-resolution from a federated learning perspective, enhancing model
robustness and diversity by utilizing private data from autonomous vehicles in
varied conditions. Kwon et al . [7] propose the Implicit LiDAR Network (ILN) for
LiDAR super-resolution, leveraging non-linear weights for pixel interpolation and
integrating attention mechanisms from Transformer architecture. Eskandar et
al . [8] propose a novel Height-Aware Lidar Super-resolution model (HALS), which
utilizes a height-aware distribution with a multi-branch generator architecture
for LiDAR super-resolution.

2.2 Fractional-order total variation regularization for SR

Another problem related to our work is super-resolution based on fractional-
order total variation regularization. Image super-resolution utilizes computer
signal processing and algorithms to reconstruct high-resolution (HR) images
from low-resolution (LR) frames. Various methods have been developed to en-
hance super-resolution performance, categorized into interpolation-based [9,10],
reconstruction-based [11,12,13], and learning-based [14,15,16,17,18] approaches.
Super-resolution, a classic ill-posed inverse problem in low-level computer vision,
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Fig. 2: Di!erential Amplitude-Frequency Characteristic Curve.

traditionally employs regularization techniques like Tikhonov and total variation
(TV) regularization to overcome this ill-posedness. However, these models often
lose high-frequency and edge information and exhibit staircasing e!ects. As shown
in Figure 2, fractional di!erential enhance high-frequency information in signals
while preserving mid and low-frequency information better than integer-order
di!erentiation. This is especially beneficial for images with rich textures due
to their high self-similarity. Recently, fractional di!erentiation theory has been
widely applied in image processing, yielding significant research achievements.
Applying fractional di!erentiation to super-resolution techniques has become
a new trend. Ren et al . [19] propose a fractional-order total variation (FOTV)
regularization model for super-resolution, e!ectively handling image texture
details while maintaining edge and structure information. Laghrib et al . [20]
propose a super-resolution method incorporating a nonconvex data fitting term
and a FOTV regularization term, e!ectively reducing complex noises like impulse
noise and better preserving image features. Yang et al . [21] propose a hybrid
single-image super-resolution model that integrates TV and FOTV, utilizing
the alternating direction multiplier method for adaptive reconstruction with
textural features. Yao et al . [22] achieve e"cient image reconstruction through
a scalar auxiliary variable approach with adaptive time stepping in a hybrid
super-resolution framework of TV and FOTV.

3 Proposed Method

LiDAR super-resolution enhances point cloud data quality, essential for tasks
such as object detection, identification, and tracking. However, traditional models
often face challenges like block artifacts, staircase edges, and misleading edges.
To address these issues, we propose a novel fractional-order total variation model
for LiDAR super-resolution, as shown in Figure 3, leveraging a dual-component
energy function to enhance the reconstruction of vertical resolution in point clouds.
Utilizing the HQS algorithm and a deep unfolding network designed around the
FOTV-HQS framework, our model iteratively tackles two sub-problems, o!ering
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Fig. 3: Overall structure of the proposed method. This method is structured into
two distinct modules: LiDAR super-resolution model based on FOTV-HQS and
a deep unfolding LiDAR super-resolution network.

a sophisticated solution to traditional super-resolution limitations. This method
is structured into two distinct modules: LiDAR super-resolution model based on
FOTV-HQS and a deep unfolding LiDAR super-resolution network.

3.1 FOTV LiDAR super-resolution model

Mathematically, super-resolution is an ill-posed inverse problem. We consider
a high-resolution point cloud derived from an H-channel LiDAR sensor. To
simplify data processing and reduce the computing resource requirements, the
high-resolution point cloud is projected into a range image X → RH→W , where
H denotes the vertical resolution and W denotes the horizontal resolution.
The corresponding low-resolution range image Y → RH

s
→W , where s is the

downsampling scale, can be obtained by the following degenerate model:

Y = SX +N, (1)

where S → RH

s
→H denotes the downsampler operator and N is a zero-mean

Gaussian noise term. A classical way to overcome this ill-posedness is to add a
regularization term to the energy function. Within a regularization-based frame-
work, this ill-posed problem is typically formulated as the following optimization
problem [19]:

argmin
X

1

2
↑Y ↓ SX↑2

F
+ ωtvTV

ε(X), (2)

where 1
2↑Y ↓ SX↑2

F
serves as the data fidelity term, ensuring that the recon-

structed point cloud range image corresponds mathematically to the observed
image. The notation ↑ · ↑F denotes the Frobenius norm. TV ε(X) is the FOTV
regularization term, which acts as a prior to capture and preserve key structural
features of range images. It balances edge preservation and noise suppression to
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optimize the final super-resolution e!ect. The parameter ωtv is the regularization
parameter used to control the balance between these two terms.

For implementation, we consider a discretized version of Equation 2. Conse-
quently, the FOTV LiDAR super-resolution model is articulated as the following
optimization problem:

argmin
X

1

2
↑Y ↓ SX↑2

F
+ ωtv↑Dε

X↑1, (3)

where D
ε
X denotes the ε-order discrete fractional-order gradient of X. In

practical numerical computations, the G-L fractional-order gradient is calculated
through di!erential approximation, which mainly relies on the discrete sampling
data of the signal. This makes it particularly suitable for processing digital signals
or point cloud data. Therefore, we employ the G-L fractional-order gradient for
addressing the LiDAR super-resolution problem. The discrete G-L fractional-order
gradient GL

a
D

ε

x
f(x) is defined as

GL

a
D

ε

x
f(x) = lim

h↑0

1

hε

↔ x→a

h ↗∑

k=0

(↓1)kϑ (ε+ 1)

ϑ (k + 1)ϑ (ε↓ k + 1)
f(x↓ kh), (4)

where the Gamma function ϑ (ϖ) =
∫↓
0 e

↔x
x
ϑ↔1

dx = (ϖ ↓ 1)!, and h denotes the
step size.

3.2 LiDAR super-resolution based on FOTV-HQS

To solve the cost function proposed in Equation 3, we employ the half-quadratic
splitting (HQS) algorithm [23]. This algorithm is instrumental in decomposing the
optimization problem into more tractable subproblems, facilitating an iterative
approach to finding a solution. The HQS method is particularly advantageous due
to its ability to e"ciently handle such separable convex programming problems,
thereby improving convergence rates and solution accuracy. First, we introduce an
auxiliary variable Z → RH→W , the optimization problem proposed in Equation 3
is rewritten in the following form:

argmin
X,Z

1

2
↑Y ↓ SX↑2

F
+ ωtv↑Z↑1 s.t. Z = D

ε
X. (5)

Subsequently, by employing Augmented Lagrange Method (ALM), the op-
timization problem is transformed into minimizing the following loss function:

Lϖ(X,Z) =
1

2
↑Y ↓ SX↑2

F
+ ωtv↑Z↑1 +

ϱ

2
↑Z ↓D

ε
X↑2

F
, (6)

where 1
2↑Y ↓ SX↑2

F
denotes the original data fidelity term, ωtv↑z↑1 represents

the Lagrange multiplier term, and ϖ

2 ↑Z ↓D
ε
X↑2

F
is the quadratic penalty term.

Here, ϱ is a penalty parameter.
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Fig. 4: The architecture of the deep convolutional neural network-based denoiser
Gϱ(·) consists of four convolutional layers using spectral normalization. The first
three layers are each followed by a ReLU activation function and a Dropout oper-
ation. The final layer outputs a denoised image with the same spatial dimensions
as the input.

Layer 1

...

Layer 2 Layer K

Fig. 5: The overall architecture of the deep unfolding LiDAR super-resolution
network with K layers.

By utilizing the HQS algorithm, we decompose Equation 6 into two sub-
problems, which are addressed by iteratively updating the variables. In the
following, k denotes the current iteration step.

Data subproblem: Update X
(k+1) by minimizing:

X
(k+1) = argmin

X

L(X,Z
(k))

= argmin
X

1

2
↑Y ↓ SX↑2

F
+

ϱ
(k+1)

2
↑Z(k) ↓D

ε
X↑2

F
.

(7)

According to Equation 7, the penalty parameter ϱ is automatically updated
during the iterations according to the progress of the algorithm to minimize
the loss function. The penalty parameter in the k-th iteration is denoted by
ϱ
(k).For convenience, it is abbreviated as ϱ below. To solve the X-subproblem in

Equation 7, we consider the Euler-Lagrange equation of Equation 7 with respect
to X, which has the form

↓S
T (Y ↓ SX)↓ ϱD

εT (Z(k) ↓D
ε
X) = 0, (8)

and this leads to the closed form solution for X
(k+1) as

X
(k+1) = (ST

S + ϱD
εT

D
ε)↔1(ST

Y + ϱD
εT

Z
(k)). (9)
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Table 1: Super-resolution based on FOTV-HQS
Algorithm Super-resolution based on FOTV-HQS
Require: Low-resolution range image Y
Ensure: High-resolution range image X
1: Initialization: ω0 = 0.009, ε0 = 1.6, Z(0) = Upsample(Y )
2: Set the number of unfolding iterations K = 6
3: for i in range(K) do
4: Update X based on Equation 9
5: Update Z based on Equation 11
6: end for
7: Update X(K+1) based on Equation 9
8: return X(K+1)

Prior subproblem: Update Z
(k+1) by minimizing:

Z
(k+1) = argmin

Z

L(X(k+1)
, Z)

= argmin
Z

ωtv↑Z↑1 +
ϱ
(k+1)

2
↑Z ↓D

ε
X

(k+1)↑2
F
.

(10)

From a Bayesian perspective, Equation 10 is essentially a denoising task.
Building on this and drawing inspiration from the denoising convolutional neural
network (DnCNN) [24], we design a deep convolutional neural network-based
denoiser, denoted as Gϱ(·). The network structure is shown in Figure 4. Thus,
Equation 10 is rewritten as

Z
(k+1) = Gϱ(D

ε
X

(k+1)). (11)

The network Gϱ(·) can be e!ectively pre-trained using pairs of synthetically
generated noisy high-resolution images, contaminated with Gaussian noise ς,
and their corresponding ground truth images. These pairs are represented as
{Xj+ς, X

j}p
j=1. The pre-training process leverages a loss function that minimizes

the Frobenius norm of the discrepancy between the neural network’s output on
the noisy images and the ground truth images, expressed as

∑
p

j=1 ↑Gϱ(Xj +

ς; φ)↓X
j↑2

F
.

In summary, the FOTV-HQS-based super-resolution model consists of the
following two update rules:

{
X

(k+1) = (ST
S + ϱD

εT
D

ε)↔1(ST
Y + ϱD

εT
Z

(k))

Z
(k+1) = Gϱ(D

ε
X

(k+1))
. (12)

The process of the super-resolution algorithm based on FOTV-HQS is summarized
in Table 1.

3.3 Deep unfolding LiDAR super-resolution network

Inspired by the deep unfolding network for image super-resolution [16], we propose
a deep unfolding LiDAR super-resolution network designed to iteratively address
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the LiDAR super-resolution model based on the FOTV-HQS framework. The
network iteratively executes the update rules from Equation 12, with the k-th
step of iteration corresponding to the k-th layer of the proposed deep unfolding
framework. The overall architecture of the deep unfolding LiDAR super-resolution
network with K layers is depicted in Figure 5.

Regarding the loss function, we adopt the L1 loss, as shown in Equation 13, to
optimize the model’s trainable parameters—namely, the neural network Gϱ(·), the
penalty parameter ϱ and the order of the fractional-order gradient ε. The choice of
L1 loss is motivated by its robustness to outliers and its e!ectiveness in preserving
structural details in range images, providing more accurate reconstruction results
in practical applications.

l(φ) =
p∑

i=1

↑Z(K)
i

↓Wi↑2F , (13)

Here, Z(K)
i

represents the output from the deep unfolding LiDAR super-resolution
network when processing a low-resolution input range image Yi, while Wi corre-
sponds to the i-th high-resolution ground truth range image.

This end-to-end training approach optimizes super-resolution processing at
each iteration step and enhances model e"ciency and performance by refining
trainable parameters throughout the process. By combining a meticulously de-
signed network architecture with a carefully selected loss function, the model
e!ectively addresses the complexities of LiDAR data processing.

4 Experimental Results and Analyses

To demonstrate the e!ectiveness of the FOTV-HQS framework, we conducted
extensive experiments on a LiDAR dataset. We performed 4↘ up-sampling from
16 to 64-channel LiDAR, 8↘ up-sampling from 16 to 128-channel LiDAR, and
16↘ up-sampling from 16 to 256-channel LiDAR. The capabilities of the FOTV-
HQS LiDAR super-resolution architecture were rigorously assessed through both
quantitative and qualitative analyses.

4.1 Datasets

We conduct experiments on the Ouster dataset [5], which simulates a 64-channel
LiDAR OS1-64 within the CARLA Town 2 scenario, with a vertical field of view
(FOV) of 33.2° and a horizontal FOV of 360°. Corresponding low-resolution point
clouds were generated using a simulated 16-channel LiDAR OS1-16 in the same
scenario. Projecting these point clouds onto range images yielded 7000 pairs of
high and low-resolution range images with resolutions of 64↘ 1024 and 16↘ 1024,
respectively, to serve as the training set. For the test set, real-world Ouster LiDAR
data from 8825 scans provided high-resolution point clouds projected to range
images of 64↘ 1024 resolution. By extracting 16 rows from these high-resolution
range images, low-resolution range images of 16↘ 1024 were generated, resulting
in 8825 pairs of test high and low-resolution range image.
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4.2 Experimental settings

Neural Network Architecture: The deep convolutional neural network Gϱ(·),
based on a denoiser, incorporates four convolutional layers with spectral normal-
ization. Each layer has 64 filters of size 3↘ 3. The first three layers employ the
ReLU activation function and feature a Dropout operation with a dropout rate
of 0.05. The final layer outputs a denoised image that retains the same spatial
dimensions as the input.

Proposed Model-Parameter Setting: For the FOTV-HQS framework,
we set the number of unfolding iterations, K, to 6, constructing a six-layer deep
unfolding network architecture. In the end-to-end training process, we employed
the Adam optimizer. Specifically, in the experiments with 4↘ up-sampling (from
16 to 64-channels LiDAR), 8↘ up-sampling (from 16 to 128-channel LiDAR) and
16↘ upsampling experiments (from 16 to 256-channel LiDAR), we started with a
learning rate of 1e-03 for 50 epochs, then adjusted it to 1e-04 for an additional
50 epochs.

Compared Methods: To thoroughly evaluate our proposed method, we
selected six distinct super-resolution techniques designed to reconstruct high-
resolution 3D point clouds from sparse LiDAR data. These methods include: (i)
interpolation-based techniques: bilinear [9] and bicubic [10] interpolation; (ii)
deep learning-based approaches: the avant-garde SR-ResNet [15] model renowned
in classical image super-resolution, the USRNet [16] model leveraging deep
unfolding networks, the leading-edge LiDAR-SR [5] model designed for LiDAR
super-resolution, and the FL-SR [6] model, which utilizes federated learning for
LiDAR super-resolution. For these deep learning methods, we used the Adam
optimizer, starting with a learning rate of 1e-03 for 50 epochs, then adjusting it
to 1e-04 for another 50 epochs.

Evaluation Metrics: To quantitatively assess our method’s performance,
we employ five quality metrics: peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) [25], edge preservation index (EPI) [26], mean squared error
(MSE) [27] and mean absolute error (MAE) [28]. Higher values of PSNR, SSIM,
and EPI, and lower values of MSE and MAE, indicate superior super-resolution
performance.

4.3 Sensitivity tests for ω and ε

Given that our proposed model incorporates two principal parameters—ε, the
order of the fractional-order gradient, and ϱ, the penalty parameter, which act
as coupling parameters in the regularized inverse problem— it is crucial to
examine their sensitivity to super-resolution performance. During the training
process, our model dynamically adjusts and learns these parameters to optimize
performance. To further understand their impact, we conducted sensitivity tests
focusing on their initial value in a 4↘ up-sampling experiment which increases
LiDAR channels from 16 to 64.

We varied ϱ0 (the initial value of ϱ) within the range of 0.0001 to 1, while
keeping ε0 (the initial value of ε) fixed at 1.6. The experiment showed that the
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Fig. 6: Sensitivity tests of our proposed model to parameters ϱ0 (with the fixed
ε0 = 1.6) and ε0 (with the fixed ϱ0 = 0.009).

MAE reached its minimum when ϱ0 was set to 0.1, as depicted in Figure 6(a).
This suggests that the model’s super-resolution performance is highly sensitive
to this particular setting of ϱ0. The dynamic adjustment during training further
fine-tunes this parameter to achieve optimal results.

We then held ϱ0 constant at 0.009 and varied ε0 within the interval (0, 2) to
assess its impact on the up-sampling performance of point clouds. Figure 6(b)
illustrates that the MAE reached its lowest value when ε0 was set to 1.6. This
observation underscores the critical role of ε0 in enhancing the resolution quality
of the control point cloud. The model’s learning process fine-tunes ε during
training, but selecting an optimal ε0 is essential for maximizing the e"cacy of
the super-resolution process.

Overall, these sensitivity analyses highlight that while the model dynamically
learns the optimal ε and ϱ through training, the initial values (ε0 and ϱ0) play
a significant role in the performance of the model. Therefore, careful selection of
these initial values is crucial for achieving superior super-resolution performance.

4.4 LiDAR super-resolution performance

In this segment, we compare our proposed model with several other methods,
including bilinear [9] and bicubic [10] interpolation, the SR-ResNet [15] model,
the USRNet [16] model, the LiDAR-SR [5] model, and the FL-SR [6] model.
Figures 7 show the super-resolution results achieved by our approach and these
methods on the Ouster dataset, with upscaling factors of 4, 8, and 16. Visually,
our method appears closest to the ground truth in the 64-channel 3D point
clouds. Our results demonstrate excellent detail preservation and sharpness, with
evenly distributed LiDAR scan lines. This indicates that our method can more
accurately reconstruct the fine structure and edges of point clouds without the
common problems of regularization methods, such as block artifacts, step edges,
and false edges, which is important for high-quality super-resolution of point
clouds.
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(a) Ground truth
(b) 16-channel
input (c) Bilinear(→4) (d) Bicubic(→4)

(e) SR-
ResNet(→4) (f) USRNet(→4)

(g) LiDAR-
SR(→4) (h) FL-SR(→4) (i) Ours(→4)

(j) SR-
ResNet(→8) (k) USRNet(→8)

(l) LiDAR-
SR(→8) (m) FL-SR(→8) (n) Ours(→8)

(o) SR-
ResNet(→16)

(p)
USRNet(→16)

(q) LiDAR-
SR(→16) (r) FL-SR(→16) (s) Ours(→16)

Fig. 7: The LiDAR super-resolution results obtained by our method and the
comparison methods on the Ouster dataset, with upscaling factors of 4↘ (from
16 to 64-channel LiDAR), 8↘ (from 16 to 128-channel LiDAR), and 16↘ (from
16 to 256-channel LiDAR), respectively.

Table 2 summarizes the reconstruction results of di!erent methods. At 64-
channel resolution, the qualitative evaluation index is calculated by comparing
each method’s super-resolution results with the 64-channel ground truth. For
128-channel and 256-channel resolutions, due to the lack of corresponding ground
truth, we use the bicubic interpolation results of the original 64-channel data
as a baseline. Our proposed FOTV-HQS method outperforms other methods
in various quantitative evaluation indicators. Additionally, our method requires
fewer parameters compared to deep learning methods, particularly USRNet
[16] and LiDAR-SR [5]. Our model has a 99.68% reduction in the number of
parameters, making it suitable for practical applications with limited computing
and storage resources.

4.5 Analysis and discussion

As shown in Figure 8, our proposed model demonstrates significant convergence
behavior in super-resolution tasks. In the 64-channel task, the model quickly
reached a low L1 loss value and remained stable, indicating its superior learning
ability and stability. Compared to USRNet [16], LiDAR-SR [5] and FL-SR [6],
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Table 2: Quantitative comparison of LiDAR super-resolution on Ouster dataset.
The bold texts represent the best performance for each metric.
Scale Method ↑PSNR ↑SSIM ↑EPI ↓MSE ↓MAE ↓Parameters (millions)

→4

Bilinear [9] 21.7155 0.7138 0.2868 0.0078 0.0306 -
Bicubic [10] 21.4153 0.7124 0.2617 0.0083 0.0318 -
SR-ResNet [15] 22.3703 0.7682 0.3385 0.0066 0.0250 1.264M
USRNet [16] 22.1984 0.7085 0.3311 0.0069 0.0379 17.023M
LiDAR-SR [5] 22.2991 0.7703 0.3329 0.0068 0.0223 31.042M
FL-SR [6] 22.4562 0.9382 0.3445 0.0066 0.0223 0.149M
Ours 22.7895 0.9346 0.3691 0.0061 0.0212 0.111M

→8

SR-ResNet [15] 12.3333 0.5095 0.1054 0.0589 0.1685 1.264M
USRNet [16] 14.2922 0.6582 0.1520 0.0414 0.1248 17.023M
LiDAR-SR [5] 21.4592 0.8840 0.2302 0.0078 0.0528 31.042M
FL-SR [6] 24.1320 0.9300 0.4331 0.0044 0.0275 0.149M
Ours 24.7658 0.9364 0.4730 0.0038 0.0219 0.111M

→16

SR-ResNet [15] 14.5289 0.5656 0.1809 0.0357 0.1311 1.264M
USRNet [16] 4.3081 0.3227 0.0839 0.3710 0.5504 17.023M
LiDAR-SR [5] 16.5945 0.7319 0.2011 0.0233 0.0987 31.042M
FL-SR [6] 22.8832 0.9098 0.3462 0.0057 0.0369 0.149M
Ours 24.2554 0.9205 0.4482 0.0042 0.0298 0.111M

L
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 Ours
 LiDAR-SR
 USRNet
 FL-SR

(a) L1Loss - 64

L
1L
os
s

Epochs

 Ours
 LiDAR-SR
 USRNet
 FL-SR

(b) L1Loss - 128

Fig. 8: L1Loss during training. We report loss results every 3 epochs. Compared
with other methods, the proposed method has fast convergence speed and stable
performance.

FOTV-HQS shows a faster initial convergence rate and a lower final loss value,
further validating its e!ectiveness in processing high-dimensional data.

Compared to existing LiDAR super-resolution technologies, FOTV-HQS not
only outperforms other methods in qualitative evaluation but also provides clearer
and more detailed reconstructed point cloud images. This advantage is crucial
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(a) Ground truth (b) Bilinear (c) Bicubic (d) SR-ResNet

(e) USRNet (f) LiDAR-SR (g) FL-SR (h) Ours

Fig. 9: Object detection results after 4↘ super-resolution (from 16 to 64-channel
LiDAR) on Ouster dataset.

Table 3: Quantitative comparison of Object detection performance after 4↘
super-resolution (from 16 to 64-channel LiDAR) on the Ouster dataset. Bold
text indicates the best performance.

Method ↓MAE ↑Precision ↑Recall ↑F1-score

Bilinear [9] 13.1917 0.9106 0.8962 0.9033
Bicubic [10] 14.3596 0.9842 0.7933 0.8785
SR-ResNet [15] 16.0655 0.8325 0.7709 0.8005
USRNet [16] 14.9459 0.9565 0.7316 0.8291
LiDAR-SR [5] 11.5380 0.9223 0.7650 0.8363
FL-SR [6] 13.5474 0.9167 0.8348 0.8738
Ours 12.1844 0.9600 0.9478 0.9539

for downstream applications requiring high-precision visual information. We
used the PV-RCNN [29] model for 3D object detection on the super-resolution
reconstructed point cloud. The results, shown in Figure 9 and Table 3, demonstrate
that our method achieves good performance in 3D object detection. Notably, while
our method does not achieve the lowest MAE or the highest Precision, it excels
in Recall and F1-score, indicating a significant reduction in missed detections and
a more balanced overall performance. This performance is particularly critical
for applications where high Recall is essential to ensure the detection of as many
true targets as possible.

Additionally, the FOTV-HQS model excels in parametric e"ciency. Compared
to conventional deep learning methods like USRNet [16] and LiDAR-SR [5],
FOTV-HQS reduces the number of parameters by 99.68%. This significant
reduction not only lowers the computational burden but also optimizes storage
requirements. This makes FOTV-HQS particularly suitable for applications with
limited computing power and storage space, such as mobile devices and real-time
online processing systems.
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5 Conclusions

LiDAR super-resolution enhances point cloud data quality, crucial for tasks like
object detection, identification, and tracking. Traditional LiDAR super-resolution
models often struggle with block artifacts, staircase edges, and misleading edges.
To address these challenges, we propose the FOTV-HQS model for LiDAR
super-resolution. Our approach formulates an FOTV regularization optimization
problem and utilizes an end-to-end trainable iterative network to capture data
attributes, enabling precise reconstruction of fine details and complex structures.
Specifically, the HQS algorithm divides the problem into data fidelity and prior
regularization subproblems. We then introduce a deep unfolding network that
iteratively addresses these subproblems within the FOTV-HQS framework. Ex-
periments show our approach significantly reduces parameters by up to 99.68%
while maintaining good performance, making it ideal for applications with limited
computing and storage resources.
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