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Abstract. The objective of this paper is motion segmentation – discov-
ering and segmenting the moving objects in a video. This is a much stud-
ied area with numerous careful, and sometimes complex, approaches and
training schemes including: self-supervised learning, learning from syn-
thetic datasets, object-centric representations, amodal representations,
and many more. Our interest in this paper is to determine if the Seg-
ment Anything model (SAM) can contribute to this task.
We investigate two models for combining SAM with optical flow that har-
ness the segmentation power of SAM with the ability of flow to discover
and group moving objects. In the first model, we adapt SAM to take op-
tical flow, rather than RGB, as an input. In the second, SAM takes RGB
as an input, and flow is used as a segmentation prompt. These surpris-
ingly simple methods, without any further modifications, outperform all
previous approaches by a considerable margin in both single and multi-
object benchmarks. We also extend these frame-level segmentations to
sequence-level segmentations that maintain object identity. Again, this
simple model achieves outstanding performance across multiple moving
object segmentation benchmarks.

Keywords: Moving Object Discovery · Video Object Segmentation

1 Introduction

Recent research in image segmentation has been transformative, with the Seg-
ment Anything Model (SAM) [13] emerging as a significant breakthrough. Lever-
aging large-scale datasets and scalable self-labelling, SAM enables flexible image-
level segmentation across many scenarios [5,24,36,39,45,58], facilitated by user
prompts such as boxes, texts, and points. In videos, optical flow has played
an important and successful role for moving object segmentation – in that it
can (i) discover moving objects, (ii) provide crisp boundaries for segmentation,
and (iii) group parts of objects together if they move together. It has formed
the basis for numerous methods of moving object discovery by self-supervised
learning [11,16,26,27,37,46,51]. However, it faces segmentation challenges if ob-
jects are momentarily motionless, and in distinguishing foreground objects from
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Fig. 1: Adapting SAM for Video Object Segmentation by incorporating flow.
(a) Flow-as-Input: FlowI-SAM takes in optical flow only and predicts frame-level seg-
mentation masks. (b) Flow-as-Prompt: FlowP-SAM takes in RGB and applies flow
information as a prompt for frame-level segmentation. (c) Sequence-level mask as-
sociation: as a post-processing step, the multi-mask selection module autoregressively
transforms frame-level mask outputs from FlowI-SAM and/or FlowP-SAM and produces
sequence-level masks in which object identities are consistent throughout the sequence.

background ‘noise’. This naturally raises the question: “How can we leverage the
power of SAM with flow for moving object segmentation in videos?”.

To this end, we explore two simple variants to effectively tailor SAM for
motion segmentation. First, we introduce FlowI-SAM (Fig. 1a), an adaption of
the original SAM that directly processes optical flow as a three-channel input
image for segmentation, where points on a uniform grid are used as prompts.
This approach leverages the ability of SAM to accurately segment moving ob-
jects against the static background, by exploiting the distinct textures and clear
boundaries present in optical flow fields. However, it has less success in scenes
where the optical flow arises from multiple interacting objects as the flow only
contains limited information for separating them. Second, building on the strong
ability of SAM on RGB image segmentation, we propose FlowP-SAM (Fig. 1b)
where the input is an RGB frame, and flow guides SAM for moving object seg-
mentation as prompts, produced by a trainable prompt generator. This method
effectively leverages the ability of SAM on RGB image segmentation, with flow
information acting as a selector of moving objects/regions within a frame. Ad-
ditionally, we extend these methods from frame-level to sequence-level video
segmentation (Fig. 1c) so that object identities are consistent throughout the
sequence. We do this by introducing a matching module that auto-regressively
chooses whether to select a new object or propagate the old one based on tem-
poral consistency.

In summary, this paper introduces and explores two models to leverage SAM
for moving object segmentation in videos, enabling the principal moving objects
to be discriminated from background motions. Our contributions are threefold:

• The FlowI-SAM model, which utilises optical flow as a three-channel input
image for precise per-frame segmentation and moving object identification.
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• The FlowP-SAM model, a novel combination of dual-stream (RGB and flow)
data, that employs optical flow to generate prompts, guiding SAM to identify
and localise the moving objects in RGB images.

• New state-of-the-art unsupervised video object segmentation performance
by a large margin on moving object segmentation benchmarks, including
DAVIS16, DAVIS17-m, YTVOS18-m, and MoCA.

2 Related Work

Video object segmentation (VOS) is an extensively studied task in computer
vision. The objective is to segment the primary object(s) in a video sequence.
Numerous benchmarks are developed for evaluating VOS performance, catering
to both single-object [17,19,30,33] and multi-object [35,50] scenarios. Two major
protocols are widely explored in VOS research, namely unsupervised [9, 20–23,
41,51,54] and semi-supervised VOS [3,7,12,14,15,28,31,32,42,43,55]. Notably,
the term “unsupervised” exclusively indicates that no groundtruth annotation is
used during inference time (i.e., no inference-time supervision). In contrast, the
semi-supervised VOS employs first-frame groundtruth annotations to initiate the
object tracking and mask propagation in subsequent frames. This paper focuses
on unsupervised VOS and utilises motion as a crucial cue for object discovery.
Motion Segmentation focuses on discovering objects through their movement
and generating corresponding segmentation masks. Existing benchmarks for mo-
tion segmentation largely overlap with those used for VOS evaluation, especially
in the single-object case. For multi-object motion segmentation, datasets [46,47]
have been specifically curated from VOS benchmarks to exclusively focus on se-
quences with dominant locomotion. There are two major setups in the motion
segmentation literature: one that relies on motion information only to distinguish
moving elements from the background through spatial clustering [26, 27, 51] or
explicit supervision [16,46]; the other [2,11,25,34,47,53] that enhances motion-
based object discovery by incorporating appearance information. We term these
two approaches “flow-only” and “RGB-based” segmentation, respectively, and
explore both setups in this work.
Segment Anything Model (SAM) [13] has demonstrated impressive abil-
ity on image segmentation across various scenarios. It was trained on the SA-
1B datasets with over one billion self-labelled masks and 11 million images.
Such large-scale training renders it a strong zero-shot generalisability to unseen
domains. Many works adapt the SAM model to perform different tasks, such
as tracking [8], change detection [61], and 3D segmentation [4]. Some other
works extend SAM towards more efficient models [49, 56, 60], and more do-
mains [5, 24, 36, 45]. However, most studies follow the default prompt options
in SAM (i.e., points, boxes, and masks). Recent works [38, 63] have shown that
more versatile prompts, including scribbles and visual references, can lead to
improvements. In this paper, we explore a novel route that prompts SAM with
optical flow and demonstrate its effectiveness for moving object segmentation.
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Fig. 2: Overview of FlowI-SAM. (a) Inference pipeline of FlowI-SAM. (b) Architecture
of FlowI-SAM with trainable parameters labelled. The point prompt token is generated
by a frozen prompt encoder.

3 SAM Preliminaries

The Segment Anything Model (SAM) is engineered for high-precision image seg-
mentation, accommodating both user-specified prompts and a fully autonomous
operation mode. When guided by user input, SAM accepts various forms of
prompts including points, boxes, masks, or textual descriptions to accurately
delineate the segmentation targets. Alternatively, in its automatic mode, SAM
uses points on a uniform grid as prompts, to propose all plausible segmentation
masks that capture objects and their hierarchical subdivisions—objects, parts,
and subparts. In this case, the inference is repeated for each prompt of the grid,
generating masks for each prompt in turn, and the final mask selection is guided
by the predicted mask IoU scores.

Architecturally, SAM is underpinned by three foundational components: (i)
Image encoder extracts strong image features via a heavy Vision Transformer
(ViT) backbone, which is pre-trained by the Masked Auto-Encoder (MAE) ap-
proach; (ii) The prompt encoder converts the input prompts into positional
information which helps with locating the segmentation target; (iii) Mask de-
coder features a light-weight two-way transformer that takes in a combination of
encoded prompt tokens, learnable mask tokens, and an IoU prediction token as
input queries. These queries iteratively interact with the dense spatial features
from image encoder, leading to the final mask predictions and IoU estimations.
In the next sections, we describe two distinct, yet simple variants to effectively
tailor SAM for motion segmentation.

4 Frame-Level Segmentation I: Flow as Input

In this section, we focus on discovering moving objects from individual frames by
exploiting motion information only, to yield corresponding segmentation masks.
Formally, given the optical flow input Ft ∈ RH×W×3 at frame t, we aim to
predict a segmentation mask M i

t ∈ RH×W together with a foreground object
IoU (fIoU) score sifIoU,t ∈ R1 for each object i,

{M i
t , s

i
fIoU,t}Ni=0 = ΦFlowI-SAM(Ft) (1)
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To adapt SAM for this new task, we formulate FlowI-SAM (ΦFlowI-SAM) by finetun-
ing it on optical Flow Inputs, and re-purpose the original IoU prediction head to
instead predict the fIoU, as illustrated in Fig. 2b. By definition, fIoU is a scalar
that measures the “objectness”: fIoU is 0 if the mask belongs to the background,
and equal to the IoU between predicted and GT object masks for foreground
moving object masks. A high fIoU indicates the predicted mask corresponds to
the entire object, while a low fIoU might suggest the mask is erroneous or only
captures a small part of the object.
Flow Inputs with Multiple Frame Gaps. To mitigate the effect of noisy
optical flow, i.e. complicated flow fields due to stationary parts, articulated mo-
tion, and object interactions, etc., we consider multiple flow inputs {Ft,g} with
different frame gaps (e.g., g ∈ {(1,-1), (2,-2)}) for both training and evaluation
stages. These multi-gap flow inputs are independently processed by the image
encoder to obtain dense spatial features {dt,g} at a lower resolution h×w, which
are then combined by averaging the spatial feature maps across different flow
gaps, i.e., dt = Averageg({dt,g}) ∈ Rh×w×d. These averaged spatial features are
then treated as keys and values in the mask decoder.
FlowI-SAM Inference. To discover all moving objects from flow input, the
FlowI-SAM model is prompted by points on a uniform grid. Each point prompt
outputs a pair of mask and objectness score predictions. This mechanism is the
same as in the original SAM formulation, and is illustrated in Fig. 2a. The final
segmentation is selected using Non-Maximum Suppression (NMS) based on the
predicted fIoU and overlap ratio.
FlowI-SAM Training. To adapt the pre-trained SAM model for optical flow
inputs, we finetune the lightweight mask decoder, while the image encoder and
the prompt encoder remain frozen. The overall loss is formulated as:

LFlowI-SAM =
1

NT

N,T∑
i,t

(
LBCE(M

i
t , M̂

i
t ) + λf∥sifIoU,t − ŝifIoU,t∥2

)
(2)

where M̂ i
t and ŝifIoU,t denote the groundtruth segmentation masks and fIoU, and

λf is a scale factor.

5 Frame-Level Segmentation II: Flow as Prompt

In this section, we adapt SAM for video object segmentation by processing
RGB frames, with optical flow as a prompt. We term this frame-level segmen-
tation architecture FlowP-SAM for Flow as Prompt SAM. As shown in Fig. 3b,
FlowP-SAM encompasses two major modules, namely the flow prompt generator
and the segmentation module. The flow prompt generator takes optical flow as
inputs, and produces flow prompts that can be used as supplemental queries to
infer frame-level segmentation masks M i

t from RGB inputs It. Formally,

{M i
t , s

i
fIoU,t, s

i
MOS,t}Ni=0 = ΦFlowP-SAM(Ft, It) (3)
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Fig. 3: Overview of FlowP-SAM. (a) Inference pipeline of FlowP-SAM. (b) Architecture
of FlowP-SAM. The flow prompt generator produces flow prompts to be injected into
a SAM-like RGB-based segmentation module. Both modules take in the same point
prompt token, which is obtained from a frozen prompt encoder. (c) Detailed architec-
ture of the flow transformer. The input tokens function as queries within a lightweight
transformer decoder, iteratively attending to dense flow features. The output moving
object score (MOS) token is then processed by an MLP-based head to predict a score
indicating whether the input point prompt corresponds to a moving object.

where siMOS,t indicates the moving object score (MOS) predicted by the flow
prompt generator, while sifIoU,t denotes the foreground object IoU (fIoU) esti-
mated by the segmentation module. Specifically, MOS measures whether each
input point prompt (therefore the resultant mask) is within a moving object
region based on observing flow fields. Groundtruth MOS scores are binary (i.e.,
ŝiMOS,t = 1 if the point prompt is within GT annotation, and ŝiMOS,t = 0 other-
wise). On the other hand, fIoU follows the same formulation as in FlowI-SAM,
i.e., predicting IoUs for foreground objects and yielding 0 for background regions.
Flow Prompt Generator consists of (i) a frozen SAM image encoder, where
the dense spatial features are extracted from optical flow inputs at different
frame gaps, followed by an averaging across frame gaps; (ii) a flow transformer,
with the detailed architecture depicted in Fig. 3c, where we first stack the input
point prompt (i.e., a positional embedding) with learnable flow prompts and
moving object score (MOS) tokens to form queries. These queries then iteratively
attend to dense flow features in a lightweight transformer decoder. There are two
outputs from the flow prompt generator, namely, the refined flow prompts, and
an MOS token, which is subsequently processed by an MLP-based head to yield
a final moving object score.
Segmentation Module has a structure that resembles the original SAM, ex-
cept for two adaptions: (i) The IoU-prediction head is re-purposed to predict
foreground object scores (fIoU) (same as the FlowI-SAM); (ii) The outputs to-
kens from flow prompt generator are injected as additional query inputs.
FlowP-SAM Inference. Similar to FlowI-SAM, we prompt FlowP-SAM with single
point prompts from a uniform grid to iteratively predict possible segmentation
masks, together with MOS and fIoU estimations. These predicted scores are
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averaged, i.e., (siMOS,t + sifIoU,t)/2, and then utilised to guide post-processing
which involves the NMS and overlay of selected masks.
FlowP-SAM Training. We train FlowP-SAM in an end-to-end fashion while keep-
ing the SAM pre-trained prompt encoder and image encoders frozen. The flow
transformer is trained from scratch,

LFlowP-SAM =
1

NT

N,T∑
i,t

(
LBCE(M

i
t , M̂

i
t )

+λmLBCE(s
i
MOS,t, ŝ

i
MOS,t) + λf∥sifIoU,t − ŝifIoU,t∥2

)
(4)

where M̂ i
t corresponds to the groundtruth mask. ŝiMOS,t and ŝifIoU,t indicate the

groundtruth of two predicted scores, with λm and λf being the scale factors.

6 Sequence-level Mask Association

In this section, we outline our method for linking the frame-wise predictions for
each moving object into a continuous track throughout the sequence. Specifically,
we compute two types of masks: frame-wise masks M at the current frame using
the model (FlowI-SAM and/or FlowP-SAM); and sequence-level masks M , that
are obtained by propagating the initial frame prediction with optical flow, we
then update the mask of the current frame by making a comparison between the
two. The following section details our update mechanism.
Update Mechanism. This process aims to associate object masks across frames,
as well as to determine whether the sequence-level results at a particular frame
should be obtained directly from frame-level predictions at that frame or by
propagating from previous frame results.

Specifically, given a sequence-level mask for object i at frame t − 1 (i.e.,
M i

t−1), we first warp it to frame t using optical flow,

M i
t←t−1 = warp(M i

t−1, Ft−1) (5)

We then consider three sets of masks: (i) the warped masks {M i
t←t−1}; (ii)

the frame-level predictions {M i
t} at frame t; and (iii) the frame-level predictions

from neighboring frames (with ∆t gap) after aligning them to the current frame
using optical flow (i.e., {M i

t←t+∆t}). For each pair of mask sets, we perform a
pairwise Hungarian matching based on the IoU score, resulting in three pairings
in total. The Hungarian matched pairs can then reflect the temporal consistency
across these predictions based on the transitivity principle, i.e. if object i in (i)
matches with object j in (ii) and object k in (iii), then the latter two objects
must also match with each other. If such transitivity holds, we set the consistency
score ci = 1, and ci = 0 otherwise.
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This matching process is repeated for ∆t ∈ {1, 2,−1,−2}, resulting in an
averaged consistency score c̄i, which guides the following mask update:

M i
t =

{
M i

t if c̄i ≥ 0.5

M i
t←t−1 if c̄i < 0.5

(6)

where M i
t denotes the sequence-level mask prediction for object i at frame t.

The rationale behind this is that the two methods have their own strengths
and drawbacks: propagation is safe in preserving the object identity, but the
mask quality degrades over time, whereas updating ensures high-quality masks
but comes with the risk of mis-associating object identities. Thus, if the current
frame-wise mask is temporally consistent, then we can be reasonably confident
to update the mask, if not, then we choose the safer option and propagate the
previous mask.

Note, we do this separately for each object i ∈ N , which gets updated or
propagated independently. We lastly layer all objects back together (to its origi-
nal order) and remove any overlaps to obtain the final sequence-level predictions.

7 Experiments

7.1 Datasets

Single-Object Benchmarks. For single-object motion segmentation, we adopt
standard datasets, including DAVIS2016 [33], SegTrackv2 [19], FBMS-59 [29],
and MoCA [17]. Although SegTrackv2 and FBMS-59 include a few multi-object
sequences, following the common practice [16,51], we treat them as single-object
benchmarks by grouping all moving objects into a single foreground mask. MoCA
stands for Moving Camouflaged Animals, designed as a camouflaged object de-
tection benchmark. Following [16, 46, 51], we adopt a filtered MoCA dataset by
excluding videos with predominantly no locomotion.
Multi-Object Benchmarks. In terms of multi-object segmentation, we report
the performance on DAVIS2017 [35], DAVIS2017-motion [35,46], and YouTube-
VOS2018-motion [47, 50], where DAVIS2017 is characterised by predominantly
moving objects, each annotated as distinct entities. For example, a man riding a
horse would be separately labelled. In contrast, DAVIS2017-motion re-annotates
the objects based on their joint movements such that objects with shared motion
are annotated as a single entity. For example, a man riding a horse is annotated
as a single entity due to their shared motion.

The YouTubeVOS2018-motion [47] dataset is a curated subset of the original
YouTubeVOS2018 [50]. It specifically excludes video sequences involving com-
mon motion, severe partial motion, and stationary objects, making it ideally
suited for motion segmentation evaluation. Whereas, the original dataset also
annotates many stationary objects and only provides partial annotations for a
subset of moving objects.
Summary of Evaluation Datasets. To investigate the role of motion in ob-
ject discovery and segmentation, we adopt all aforementioned benchmarks, which
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Moving Object Segmentation: All You Need Is SAM (and Flow) 9

consist of only predominantly moving object sequences. Notably, for the evalua-
tion of FlowI-SAM, we exclude the class-labelled DAVIS17 dataset, as commonly
moving objects cannot be separated solely based on motion cues.
Training Datasets. To adapt the RGB pre-trained SAM for moving object dis-
covery and motion segmentation, we train both FlowI-SAM and FlowP-SAM first
on the synthetic dataset introduced by [46], as described below, and then on
real-world video datasets, including DAVIS16, DAVIS17, and DAVIS17-m.

7.2 Evaluation Metrics

To assess the accuracy of predicted masks, we report intersection-over-union
(J ), except for MoCA where only the ground-truth bounding boxes are given,
we instead follow the literature [51] and report the detection success rate (SR).
Regarding multi-object benchmarks, we additionally report the contour accuracy
(F) in the arxiv version [48].

In this work, we differentiate between the frame-level and sequence-level
methods, and adopt two distinct evaluation protocols: (i) Since frame-level meth-
ods generate the segmentation independently for each frame, we apply per-frame
Hungarian matching to match the object masks between predictions with the
groundtruth, before the evaluation; (ii) Conversely, sequence-level methods em-
ploy an extra step to link object masks across frames. As a result, the Hungar-
ian matching is conducted globally for each sequence, i.e., the object IDs be-
tween predicted and groundtruth masks are matched once per sequence. Given
the added complexity and potential errors during frame-wise object association,
sequence-level predictions are often considered a greater challenge.

7.3 Implementation Details

In this section, we summarise the experimental setting in our frame-level seg-
mentation models. For more information regarding detailed architectures, hy-
perparameter settings, and sequence-level mask associations, please refer to the
arxiv version [48].
Flow Computation. We adopt an off-the-shelf method (RAFT [40]) to es-
timate optical flow with multiple frame gaps at (1,-1) and (2,-2), except for
YTVOS18-m and FBMS-59, where higher frame gaps at (3,-3) and (6,-6) are
used to compensate for slow motion. Following common practice [46, 51], we
convert optical flow into 3-channel RGB format using a standard color wheel [1].
Model Settings. For both FlowI-SAM and FlowP-SAM, we follow the default
SAM setting and adopt the first output mask token (out of four) for mask
predictions. For FlowI-SAM, we deploy two versions of the pre-trained SAM
image encoder, specifically ViT-B and ViT-H, to extract optical flow features.

Regarding FlowP-SAM, for efficiency reasons, we utilise ViT-B to encode opti-
cal flows and employ ViT-H as the image encoder for RGB frames. We initialise
the flow prompt generator with 4 learnable flow prompt tokens, which are sub-
sequently processed by a light-weight two-layer transformer decoder in the flow
transformer module.
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Stage Predicted scores Flow FT mask DAVIS17 DAVIS16
for post-processing prompt decoder J ↑ J ↑

IoU ✗ ✗ 25.2 30.3

+
Train flow prompt

generator
IoU ✓ ✗ 61.9 80.6

(MOS+IoU)/2 ✓ ✗ 63.7 81.4

+
Finetune segment

-ation module
(MOS+IoU)/2 ✓ ✓ 65.5 81.5
(MOS+fIoU)/2 ✓ ✓ 69.9 86.1

Table 1: Ablation analysis of FlowP-SAM. The study starts from the vanilla SAM
checkpoint and progressively introduces new components (labelled in blue). “MOS” is
short for the moving object score, and “fIoU” indicates the foreground object IoU. The
results are shown for frame-level predictions.

Evaluation Settings. At inference time, for FlowI-SAM with flow-only in-
puts, we input independent point prompts over a 10 × 10 uniform grid, while
for FlowP-SAM, to take account for more complicated RGB textures, we consider
a large grid size of 20× 20.
Mask Selection over Multiple Point Prompts. During post-processing, we
utilise the predicted scores (fIoU for FlowI-SAM, and an average of MOS and
fIoU for FlowP-SAM) as guidance throughout the mask selection process: (i) Non-
Maximum Suppression (NMS) is applied to filter out repeating masks and keep
the ones with higher scores; (ii) The remaining masks are then ranked according
to their scores and top-n masks are retained (n = 5 for FlowI-SAM, and n = 10
for FlowP-SAM); (iii) These n masks are overlaid by allocating masks with higher
scores at the front.
Training Settings. The training is performed in two stages, which involves
synthetic pre-training on the dataset proposed by [46], followed by finetuning on
the real DAVIS sequences, as detailed in the arxiv version [48]. YTVOS is not
used for fine-tuning as there is only a low proportion of moving object sequences.
We train both models in an end-to-end manner using the Adam Optimiser at
a learning rate of 3e−5. The training was conducted on a single NVIDIA A40
GPU, with each mode taking roughly 3 days to reach full convergence.

7.4 Ablation Study

In this section, we present a series of ablation studies on key designs in the per-
frame FlowP-SAM model. We refer the reader to the arxiv version [48] for a more
detailed ablation analysis on the designs in FlowI-SAM and FlowP-SAM models,
as well as in our sequence-level method.
Ablation Studies for FlowP-SAM. As illustrated in Table 1, we start from
the vanilla SAM and progressively add our proposed components. Note that,
we adopt the same inference pipeline (i.e., the same point prompts and post-
processing steps) for all predictions shown. Since the foreground object IoU
(fIoU) is not predicted by the vanilla SAM, we instead apply default IoU pre-
dictions to guide the mask selection.
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Moving Object Segmentation: All You Need Is SAM (and Flow) 11

We train the flow prompt generator to simultaneously predict flow prompt
tokens and moving object scores (MOS). The injection of flow prompts into the
standard RGB-based SAM architecture results in notable enhancements, verify-
ing the value of motion information for accurately determining object positions
and shapes. Additionally, employing MOS as additional post-processing guidance
yields further improvements.

Upon finetuning the segmentation module, we observe a slight enhancement
in performance. Finally, substituting the default IoU predictions with fIoU scores
achieves more precise mask selection, as evidenced by the improved results.
Discussion on the effectiveness of MOS and fIoU. As outlined in Sect. 3,
the original SAM framework over-segments images into objects, parts, and sub-
parts, which cannot be further distinguished using the default SAM IoU estima-
tions. To adapt this setup for object-only discovery, we propose two new scores,
i.e., MOS and fIoU, as new criteria to filter out non-object masks. These scores
effectively assess the “objectness” of masks: MOS determines if the predicted
masks represent moving objects, while fIoU evaluates whether the masks depict
complete objects and are not background segments. The effectiveness of this
adaptation is validated in Table 1, where replacing IoU estimations with MOS
+ fIoU scores leads to noticeable performance boosts.

7.5 Quantitative Results

Given the distinct evaluation protocols outlined in Sec. 7.2, we report our method
separately, with a frame-level analysis for FlowI-SAM (introduced in Sec. 4)
and FlowP-SAM (introduced in Sec. 5), followed by a sequence-level evaluation.
Frame-Level Performance. Table 2 distinguishes between flow-only and RGB-
based methods, where the former adopts optical flow as the only input modality,
and the latter takes in RGB frames with optional flow inputs. Note that, the
performance for some recent self-supervised methods is also reported, owing to
the lack of the supervised baselines.

For flow-only segmentation, our FlowI-SAM (with both SAM image encoders)
outperforms the previous methods by a large margin (>10%). For RGB-based
segmentation, our FlowP-SAM also achieves state-of-the-art performance, particu-
larly excelling at multi-object benchmarks. By combining these two frame-level
predictions (FlowI-SAM+FlowP-SAM), we observe further performance boosts.
This suggests the complementary roles of the flow and RGB modalities in frame-
level segmentation, particularly when there are multiple moving objects involved.
In particular, we show that using both models in tandem by layering FlowI-SAM’s
predictions behind that of FlowP-SAM allows the model to fill in on missed pre-
dictions (such as motion blur, poor lighting, or small objects).
Sequence-Level Performance. For flow-based segmentation, we apply the
mask association technique introduced in Sec. 6 to obtain sequence-level pre-
dictions from per-frame FlowI-SAM results. To ensure a fair comparison, we
additionally finetune the synthetic-trained OCLR [46] model on the real-world
dataset (DAVIS) with groundtruth annotations provided, resulting in “OCLR-
real” results. As shown by the top part of Table 3, FlowI-SAM (seq) demonstrates
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Multi-object benchmarks Single-object benchmarks

YTVOS18-m
J ↑

DAVIS17-m
J ↑

DAVIS17
J ↑

DAVIS16
J ↑

STv2
J ↑

FBMS
J ↑

MoCA
SR ↑Model Flow RGB

Flow-only methods

COD [17] ✓ ✗ − − − 65.3 − − 0.236
†MG [51] ✓ ✗ 37.0 38.4 − 68.3 58.6 53.1 0.484
†EM [26] ✓ ✗ − − − 69.3 55.5 57.8 −
FlowI-SAM (ViT-B) ✓ ✗ 56.7 63.2 − 79.4 69.0 72.9 0.628
FlowI-SAM (ViT-H) ✓ ✗ 58.6 65.7 − 79.1 70.1 75.1 0.625

RGB-based methods
†VideoCutLER [44] ✗ ✓ 59.0 57.4 41.7 − − − −
†Safadoust et al. [37] ✗ ✓ − 59.3 − − − − −
MATNet [62] ✓ ✓ − − 56.7 82.4 50.4 76.1 0.544
DystaB [53] ✗ ✓ − − − 82.8 74.2 75.8 −
AMC-Net [52] ✓ ✓ − − − 84.5 − 76.5 −
TransportNet [57] ✓ ✓ − − − 84.5 − 78.7 −
TMO [10] ✓ ✓ − − − 85.6 − 79.9 −
FlowP-SAM ✓ ✓ 76.9 78.5 69.9 86.1 83.9 87.9 0.645
FlowP-SAM+FlowI-SAM ✓ ✓ 77.4 80.0 71.6 86.2 84.2 88.7 0.645

Table 2: Frame-level comparison on video object segmentation benchmarks.
“†” indicates models that are trained without human annotations. For the results in the
last row, we combine frame-level predictions from FlowP-SAM and FlowI-SAM (ViT-H).

Multi-object benchmarks Single-object benchmarks

YTVOS18-m
J ↑

DAVIS17-m
J ↑

DAVIS17
J ↑

DAVIS16
J ↑

STv2
J ↑

FBMS
J ↑

MoCA
SR ↑Model Flow RGB

Flow-only methods
†SIMO [16] ✓ ✗ − − − 67.8 62.0 − 0.566
†Meunier et al. [27] ✓ ✗ − − − 73.2 55.0 59.4 −
†OCLR [46] ✓ ✗ 46.5 54.5 − 72.1 67.6 70.0 0.599
OCLR-real [46] ✓ ✗ 49.5 55.7 − 73.3 65.9 70.5 0.605
FlowI-SAM (seq, ViT-B) ✓ ✗ 51.9 60.0 − 78.4 66.9 69.0 0.615
FlowI-SAM (seq, ViT-H) ✓ ✗ 53.8 61.5 − 78.0 67.7 71.5 0.604

RGB-based methods

UnOVOST [23] ✗ ✓ − − 66.4 − − − −
Propose-Reduce [21] ✗ ✓ − − 67.0 − − − −
OCLR-flow [46] + SAM [13] ✓ ✓ 57.0 62.0 − 80.6 71.5 79.2 −
PMN [18] ✓ ✓ − − − 85.6 − 77.8 −
Xie et al. [47] + SAM [13] ✓ ✓ 71.1 70.9 − 86.6 81.3 85.7 −
DEVA [6] ✗ ✓ − − 70.4 87.6 − − −
UVOSAM [59] ✗ ✓ − − 77.5 − − −
FlowP-SAM+FlowI-SAM (seq) ✓ ✓ 74.7 74.3 71.0 87.7 80.1 82.8 0.647

Table 3: Sequence-level comparison on video object segmentation bench-
marks. “†” indicates models that are trained without human annotations. “seq” indi-
cates that our sequence-level predictions with object masks matched across frames. We
adopt FlowP-SAM and FlowI-SAM (ViT-H) to obtain the results in the last row.

superior performance against OCLR-real, benefiting from the robust prior knowl-
edge in pre-trained SAM.

For RGB-based segmentation, we obtain our sequence-level predictions by
FlowI-SAM+FlowP-SAM. As shown in the lower part of Table 3, our method

173



Moving Object Segmentation: All You Need Is SAM (and Flow) 13

Flow

OCLR-
real

FlowI-
SAM
(seq)

GT

DAVIS YTVOS MoCA

Fig. 4: Qualitative comparison of flow-only segmentation methods on DAVIS
(left), YTVOS (middle), and MoCA (right) sequences. Our FlowI-SAM (seq) success-
fully identifies moving objects from noisy optical flow background (e.g., the ducks in
the fourth column).

Flow

Xie et al. 
+ SAM

FlowP-SAM 
+ Flow-I SAM 

(seq)

GT

RGB

DAVIS YTVOS STv2

Fig. 5: Qualitative comparison of RGB-based segmentation methods on
DAVIS (left), YTVOS (middle), and SegTrackv2 (right). While the previous method
(the third row) struggles to disentangle multiple moving objects (e.g., mixed gold fishes
in the second column), our FlowP-SAM+FlowI-SAM (seq) accurately separates and seg-
ments all moving objects.

achieves outstanding performance across single- and multi-object benchmarks.
Note, DAVIS17 annotations are class-based, which could be unclear and incon-
sistent with the class-agnostic unsupervised VOS methods. More discussion and
results are provided in the arxiv version [48].
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7.6 Qualitative Visualisations

In this section, example visualisations are provided across multiple datasets. We
refer more visualisations to the arxiv version [48].

Fig. 4 illustrates the segmentation predictions based on only optical flow
inputs. Compared to OCLR-real, our FlowI-SAM accurately identifies and dis-
entangles the moving objects from the noisy backgrounds (e.g., the person in
the first column and the ducks in the fourth column), as well as extracts fine
structures (e.g., the camouflaged insect in the fifth column) from optical flow.

Fig. 5 further provides the visualisations of the RGB-based method, where
the prior work (Xie et al. [47] + SAM [13]) sometimes fails to (i) identify the mov-
ing objects (e.g., missing leopard in the fifth column); (ii) distinguish between
multiple objects (e.g., entangled object segmentation in the second and fourth
columns), while our FlowI-SAM+FlowP-SAM (seq) incorporates RGB-based pre-
diction with flow prompts, resulting in the accurate localisation and segmenta-
tion of moving objects.

8 Discussion

In this paper, we focus on moving object segmentation in real-world videos, by in-
corporating per-frame SAM with motion information (optical flow) in two ways:
(i) for flow-only segmentation, we introduce FlowI-SAM that directly takes in op-
tical flow as inputs; (ii) for RGB-based segmentation (FlowP-SAM), we utilise mo-
tion information to generate flow prompts as guidance. The former (FlowI-SAM)
is particularly effective in scenarios with predominant motion and/or where RGB
information might introduce confusion, such as in moving object detection and
camouflaged object discovery. Additionally, owing to simple texture and a low
cross-domain gap in optical flow, it generalises to diverse domains beyond ev-
eryday videos. On the other hand, FlowP-SAM focuses on common videos where
both RGB and motion are informative and can be utilised to resolve ambiguities
for independent objects in common motion.

Both approaches deliver state-of-the-art performance in frame-level segmen-
tation across single- and multi-object benchmarks. Additionally, we develop a
frame-wise association method that amalgamates predictions from FlowI-SAM and
FlowP-SAM, achieving sequence-level segmentation predictions that outperform
existing methods on DAVIS16, DAVIS17-m, YTVOS18-m, and MoCA.

The major limitation of this work is its extended running time, attributed
to the computationally heavy image encoder in the vanilla SAM. However, our
approach is generally applicable to other prompt-based segmentation models.
With the emergence of more efficient versions of SAM, we anticipate a significant
reduction in inference time.

Acknowledgments. This research is supported by the UK EPSRC CDT in
AIMS (EP/S024050/1), a Clarendon Scholarship, a Royal Society Research Pro-
fessorship RP\R1\191132, and the UK EPSRC Programme Grant Visual AI
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