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Abstract. Due to the limitations of current spectral imaging equip-
ment in acquiring high-resolution hyperspectral images (HR-HSIs), a
common approach is to fuse low-resolution hyperspectral images (LR-
HSIs) with high-resolution multispectral images (HR-MSIs). However,
most existing methods have not fully taken into account the correla-
tion and discrepancy in modality between hyperspectral images (HSIs)
and multispectral images (MSIs). To address this limitation, we pro-
pose an innovative spectral modality-aware interactive fusion network
(SMIF-NET) for comprehensive extraction of spectral information and
seamless feature fusion. First, we introduce the spectral modality-aware
transformer (SMAT) with a dual-attention mechanism to compute spec-
tral self-similarity and cross-spectral correlation. Second, we apply the
interactive spatial-spectral feature fusion (IS2F2) to fuse the acquired
high-level spectral and spatial features. This fusion technique combines
spatial-wise and channel-wise squeeze and excitation to achieve seam-
less integration of spatial-spectral information. Finally, the extensive ex-
periments on three datasets demonstrate the superior performance of
SMIF-NET in both visual and quantitative assessments compared to
eight state-of-the-art (SOTA) fusion-based methods.

Keywords: hyperspectral image · multispectral image · image fusion ·
super-resolution

1 Introduction

Hyperspectral images (HSIs) provide an extensive range of spectral informa-
tion, spanning tens to hundreds of narrow bands that capture distinctive char-
acteristics of diverse materials. However, the pursuit of high spectral resolu-
tion in hyperspectral imaging often leads to compromised spatial resolution,
resulting in low-resolution hyperspectral images (LR-HSIs). This trade-o! is un-
avoidable in current times. In contrast, a multispectral system can generate im-
ages with heightened spatial resolution and coarse spectral resolution, known as
high-resolution multispectral images (HR-MSIs). To obtain high-resolution hy-
perspectral images (HR-HSIs), fusion-based HSI super-resolution methods have
been proposed by merging LR-HSIs and HR-MSIs. The advantage of featur-
ing both high spatial and spectral resolution makes it more suitable for various
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2 M. Xu et al.

applications, including classification [1–3], object detection [4], spectral unmix-
ing [5, 6], and HSI inversion [7].

In recent years, deep learning has demonstrated remarkable success in the
field of HSI super-resolution by employing deep neural networks to learn intricate
mappings between input and output data. For instance, to prevent the loss of
crucial low-level structural details, generative adversarial network (GAN)-based
edge-enhancement networks were proposed to improve the spatial resolution and
visual quality of the generated images by enhancing the edges between objects [8,
9]. Moreover, many fusion-based methods leverage convolutional neural networks
(CNNs) to extract image features and tackle the fusion challenge between HSIs
and multispectral images (MSIs) [10–14]. The exceptional performance of CNN-
based fusion methods can be attributed to their robust inferential capabilities.
However, the relatively smaller receptive fields of CNNs limit their ability to
e!ectively capture global features, impacting the overall performance of CNN-
based methods. Therefore, benefiting from its excellent capability to capture
long-range dependencies, transformer [15] has also been extensively applied in
hyperspectral super-resolution [16,17].

However, the above-mentioned methods overlooked the substantial modality
di!erences between HSIs and MSIs. For example, di!erent types of sensors result
in variations in noise and lighting conditions within images. Additionally, HSIs
o!er detailed spectral information but exhibit low spatial resolution, thereby
limiting the capture of surface features. Whereas MSIs can provide higher spatial
resolution information for intricate ground feature capture but face constraints
in spectral resolution. On the other hand, the aforementioned models have not
fully exploited the modal correlation features, leading to a certain degree of
spectral and spatial distortion. Since images of the same target scene captured
as both HSI and MSI must be precisely registered to achieve fusion-based HSI
super-resolution tasks, the specific spatial and spectral correlations between the
two multimodal data should be taken fully into consideration. It is imperative
to enhance the utilization of modal correlation characteristics to mitigate the
observed distortions in both spectral and spatial dimensions.

To address the aforementioned challenges, we introduce an innovative spec-
tral modality-aware interactive fusion network (SMIF-NET) for HSI super-resolution.
First, we utilize a CNN to extract spatial texture information from HR-MSIs,
capitalizing on the CNN’s proficiency in capturing detailed local information.
Specifically, we combine the multiscale convolution and dilated convolution with
varying rates to expand the receptive field of the convolutional kernel, address-
ing features at di!erent scales. Second, we employ a dual-attention spectral-
dimensional transformer to extract spectral features from LR-HSIs. This design
not only enhances the representation capability of spectral features but also re-
duces computational burden. Finally, we design an interactive spatial-spectral
feature fusion (IS2F2) module to seamlessly integrate distinct features. In par-
ticular, the cross-directional feature propagation is strategically implemented
during the process of feature fusion to enhance the feature interaction, e!ec-
tively addressing challenges stemming from modality di!erences.
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The main contributions of this paper are detailed as follows:
– We present a spectral modality-aware interactive fusion network (SMIF-

NET) that contains the spectral modality-aware transformer (SMAT) layers
and interactive spatial-spectral feature fusion (IS2F2) module to generate
HR-HSIs with high spectral and spatial fidelity.

– The dual-attention mechanism containing spectral modality-aware multi-
head attention (SMMA) is designed to comprehensively capture spectral
features. A multiscale-dilated spatial feature extraction (MSFE) module is
proposed to extract spatial features.

– The spectral and spatial feature maps are integrated into the IS2F2 mod-
ule, employing channel-wise squeeze and excitation (CSE) and spatial-wise
squeeze and excitation (SSE) to enhance the interaction.

2 Related work

2.1 CNN-based HSI Super-resolution Methods

With the development of deep learning, it exhibits a strong ability to capture
the intricate features of HSIs and MSIs. For example, Dian et al. [10] proposed
a deep HSI sharpening method for the fusion of the LR-HSI with the HR-MSI,
which directly learns the image priors through a deep CNN-based residual learn-
ing method. Subsequently, Dian et al. [13] presented an HSI-MSI fusion method,
leveraging subspace representation and incorporating a CNN denoiser. Notably,
this fusion method is applicable to any HSI and MSI without requiring retraining.
To fully leverage the spatial-spectral dependency, the multiscale spatial-spectral
joint feature learning approaches have been developed to enhance spatial resolu-
tion [18, 19]. Considering factors such as blurring, down-sampling, and spectral
response function, Wang et al. [20] introduced a two-stream fusion network,
integrating it with a physical model and deep prior information.

Given that HSIs are represented as 3-dimensional tensors, Palsson et al. [12]
proposed an approach that employs a 3D CNN and incorporates dimensional-
ity reduction for HSIs before fusion. This strategy not only significantly reduces
computation time but also enhances the method’s robustness to noise. To obtain
multiscale contextual features at a fine-grained level, Fu et al. [21] proposed a
grouped multiscale dilated network structure, strategically designed to enlarge
the receptive fields e"ciently. Additionally, Dong et al. [22] suggested utiliz-
ing the U-net architecture as a substitute for the ResNet to obtain a denoising
prior for HSI and MSI fusion. In summary, CNNs present an e!ective way of
tackling HSI super-resolution challenges, capitalizing on their proficiency in ex-
tracting local features and performing non-linear mappings. This implies that
CNNs hold significant potential for enhancing the resolution of the HSI through
fusion techniques.

2.2 Transformer-based HSI Super-resolution Methods

Transformer, a deep learning model featuring the self-attention mechanism ini-
tially introduced by Vaswani et al. [15], possesses a formidable ability to capture
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long-range dependencies. Given the abundant spatial and spectral information
typically present in HSIs and MSIs, the utilization of transformer facilitates the
establishment of global correlations. This capability allows the model to capture
correlations from various regions and bands of the image, surpassing the per-
formance of CNNs in e!ectively fusing the bimodal information. Cai et al. [17]
first employed the transformer for the task of HSI reconstruction. Specifically,
a mask-guided spectral transformer (MST) model was proposed by incorporat-
ing spectral-guided multiple self-attention, treating individual spectral features
as markers, and calculating self-attention along the spectral dimension. Ma et
al. [16] replaced U-net with transformer based on a model-guided deep hyper-
spectral image super-resolution framework (MoG-DCN) [22].

To address the limitations of vision transformer in transferring spatial fea-
tures at di!erent scales, Jia et al. [23] proposed a multiscale spatial-spectral
transformer network (MSST-Net), which integrates the spatial-spectral self-attention
mechanism into two multiscale branches. Li et al. [24] introduced a pyramid
shu#e-and-reshu#e transformer (PSRT) to reduce the quadratic complexity of
transformer by facilitating e"cient information interaction among global patches.
Additionally, the integration of a 3D-CNN along with the transformer layer en-
hances the model’s capability to capture the spatial-spectral correlation in HSIs.
Introducing the swin transformer [25], a hierarchical transformer with represen-
tations computed using shifted windows has demonstrated state-of-the-art per-
formance across a wide range of reconstruction tasks. Building on this progress,
Li et al. [26] designed a cross-spatial scale nonlocal attention network across
spectral scales and shift windows based on transformer to e!ectively fuse HSIs
and MSIs. In conclusion, while CNNs excel in local feature extraction and non-
linear mapping, transformer-based networks o!er unique advantages, such as
global context understanding. This allows the network to learn long-range de-
pendencies in both spatial and spectral dimensions of the hyperspectral data,
which is crucial for HSI super-resolution.

3 Methodology

In this section, we will introduce the proposed method SMIF-NET for fusing
HSIs and MSIs, providing both an overview of the framework and a detailed
description of the structure.

3.1 Network Framework

The primary objective of the proposed method is to tackle the two challenges
mentioned earlier, e.g., the inaccurate modeling of cross-modality correlations
and the neglect of inter-modality discrepancies. To fulfill this objective, we de-
sign an innovative spectral modality-aware interactive fusion network, termed
as SMIF-NET, which is depicted in Figure. 1. The SMIF-Net primarily consists
of two stages. In the spectral feature extraction stage, we employ the spectral
modality-aware transformer to compute cross-spectral channel attention. This
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Fig. 1: The overall framework of the SMIF-NET.

method integrates spectral information from HSI and captures spectral corre-
lations between the HSI and MSI, thereby enhancing the reconstruction of ad-
vanced spectral features. In the spatial feature insertion stage, we propose an
interactive feature fusion approach, employing squeeze and excitation modules
on both the spatial and spectral dimensions to fine-tune the features from distinct
modalities, achieving a more harmonious integration of cross-modal information.

Initially, the paired LR-HSI and HR-MSI are fed into N1 SMAT layers to
extract spectral features. Each layer is comprised of N2 SMAT blocks, where a
dual-branch structure is applied to extract bimodal features independently and
accurately model correlations within the spectral dimension. While introducing
the intermediate connection through the SMMA, the feature map extracted from
the HR-MSI is resized to match the spatial dimension of the extracted features
from the LR-HSI. Following this, the extracted multiscale spatial features by
MSFE are fed into IS2F2 to obtain the advanced spectral features. We employ
cross-directional squeeze and excitation to achieve smooth bimodal information
fusion. Finally, an image reconstruction module is utilized to refine the fused
features, ultimately generating the estimated HR-HSI.

3.2 Spectral Modality-Aware Transformer

HSIs typically record surface reflectance or radiance data over a continuous range
of wavelengths in tens or hundreds of contiguous spectral bands. Hence, the ad-
jacent bands exhibit a certain degree of similarity and high correlation, which
should be maintained during the HR-HSI reconstruction process. Moreover, in
the fusion-based HSI super-resolution task, the input LR-HSIs and HR-MSIs are
precisely co-registered ensuring spatial and spectral correspondence and facilitat-
ing the network to better learn the relationship between low- and high-resolution
images. They are expected to demonstrate specific spectral correlations within
their respective bands. Therefore, the SMAT is proposed to better preserve band-
wise similarity throughout the reconstruction process.
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As depicted in Figure. 1, the primary constituents of the SMAT block include
a spectral modality-aware multi-head attention (SMMA) module, a feed-forward
network, and two layers of normalization. Residual connections are used to pre-
vent information loss within the SMAT block.

To obtain a comprehensive spectral feature representation, the SMMA is
conducted within the spectral domain. First, we denote the two input feature
maps of SMMA, which are extracted from the HSI and MSI, as Hin → Rh→w→C

and Min → Rh→w→c, where h, w represent the height and width, C and c denote
the number of bands of Hin and Min, respectively. Hin and Min are then
reshaped into H → Rhw→C and M → Rhw→c. H is linearly projected to obtain
the query Qh → Rhw→C and key Kh → Rhw→C . M is linearly projected to derive
the key Km → Rhw→c and value Vm → Rhw→c. Notably, the value Vh → Rhw→C

is obtained by linearly projecting the summation of H and M.

Qh = HW
Q
h , Kh = HW

K
h , Vh = (H+M) W

V
h , (1)

Km = MW
K
m, Vm = MW

V
m, (2)

where W
Q
h ,W

K
h ,WV

h → RC→C and W
K
m,WV

m → Rc→c are projection matrices
with learnable weights and biases.

To capture diverse patterns within the data, we adopt the multi-head mech-
anism. Qh,Kh,Vh,Km and Vm are partitioned into N heads along the spatial
dimension, with the dimension of each head as hw

N . Thus, the dual-attention
based on both the inter-spectral self-attention (ISSA) and the cross-spectral
channel attention (CSCA) for the ith head (denoted as headi) is computed as
follows:

ISSAi = V
i
h

(
softmax

(
K

i
h
T
Q

i
h√

Dspe1

))
, (3)

CSCAi = V
i
m

(
softmax

(
K

i
m

T
Q

i
h√

Dspe2

))
, (4)

headi = ISSAi + CSCAi, (5)

SMMA (Hin, Min) = ConcatNi=1 (headi) W, (6)

where ISSAi and CSCAi are the ISSA and CSCA computation of headi. Q
i
h,

K
i
h, V

i
h, K

i
m and V

i
m denote the projection matrices for headi. Additionally,

two scaling factors Dspe1 and Dspe2 are employed to ensure numerical stability.
W denotes a projection matrix with learnable parameters. The dual-attention
mechanism SMMA (·) is formed by concatenating N heads.
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Fig. 2: Qualitative comparison of visual quality with a downsampling ratio of 8 on the
CAVE dataset.

Fig. 3: Qualitative comparison of error maps with a downsampling ratio of 8 on the
CAVE dataset.

3.3 Interactive Spatial-Spectral Feature Fusion

After acquiring high-level spectral features, our approach leverages the MSFE
to extract advanced spatial features and then feeds the obtained features into
the IS2F2 module for seamless feature integration. MSFE primarily includes
multiple kernel convolutions, dilated convolutions, along with two layers of 3↑3
convolutions, and a ReLU activation function. IS2F2 primarily comprises two
sub-modules: the channel-wise squeeze and excitation (CSE) and the spatial-
wise squeeze and excitation (SSE).

IS2F2 aims to address the challenge posed by modality di!erences in fusion
tasks. Before feeding the two types of feature maps separately into CSE and SSE,
they undergo individual convolution operations. Subsequently, spectral features
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are directed into the CSE, while spatial features are routed into the SSE. The
CSE module serves to model inter-channel dependencies within spectral features,
utilizing these relationships to recalibrate the feature response intensity across
the channels of spatial features. Conversely, the SSE module is designed to con-
struct representative texture information based on spatial features, employing
this information to the spatial dimension of spectral features. The formulations
for these modules are as follows:

Excitationspe = Sigmoid ((ReLU (GAP (X) W
1
spe)) W

2
spe), (7)

Excitationspa = Sigmoid (W1
spa (CAP (Y ))), (8)

CSE (X) = WcseX ↓ Excitationspe, (9)
SSE (Y ) = WsseY ↓ Excitationspa, (10)

where X and Y represent high-level spectral and spatial features, respectively.
The function GAP (·) denotes global average pooling, and W

1
spe, W

2
spe, and

W
1
spa correspond to di!erent projection matrices. CAP (·) stands for channel-

wise adaptive pooling and the symbol ↓ signifies element-wise multiplication.
In the end, we employ cross-modality addition (CMA) to achieve the intended

outcome:

CMA1 = Wm1(CSE (X) + WyY ), (11)
CMA2 = Wm2(SSE (Y ) + WxX), (12)

IS2F2(X, Y ) = RSB (Conv3→3 (Concat (CMA1, CMA2))), (13)

where CMA1 and CMA2 represent two forms of cross-modality addition. The
projection matrices Wx and Wy pertain to high-level spectral and spatial fea-
tures, respectively. Wm1 and Wm2 serve as projection matrices for refined fea-
tures. Conv3→3 denotes a convolutional operation with a 3 ↑ 3 kernel. By con-
catenating CMA1 and CMA1 to the residual block (RSB), IS2F2 can e!ectively
integrate both spatial and spectral information into the super-resolution process,
resulting in improved performance and quality of the output HR-HSI.

3.4 Loss Function

To enhance the robustness of the model, we utilize mean absolute error as the
loss function L to optimize the parameters of the network:

L =
1

m

m∑

j=1

↔F(Hj ,Mj)↗ Hj↔1, (14)

where Hj and Mj denote the jth pair of HR-HSI and LR-MSI input data,
respectively. Hj corresponds to the corresponding reference image, F represents
the proposed SMIF-NET. The notation ↔·↔1 represents the ω1 norm. m represents
the total number of samples within the training dataset.
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Fig. 4: Qualitative comparison of visual quality with a downsampling ratio of 8 on the
WDCM dataset.

Fig. 5: Qualitative comparison of error maps with a downsampling ratio of 8 on the
WDCM dataset.

4 Experiments

4.1 Experimental Settings

Datasets. We comprehensively assessed the performance of our model across
three distinct datasets, including the Columbia imaging and vision laboratory
(CAVE) dataset [27], Harvard dataset [28], and Washington DC Mall (WDCM)
dataset [29].

The CAVE dataset includes 32 indoor HSIs, each featuring a high resolution
of 512 ↑ 512 pixels and 31 spectral bands. We selectively utilized the first 22 HSIs
for model training, allocating the next 5 HSIs for validation and reserving the
remaining for testing. The Harvard dataset contains 50 HSIs, with each image
having dimensions of 1040 ↑ 1392 pixels and 31 spectral bands. We employed
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the first 34 HSIs for training, set aside 8 HSIs for validation, and allocated the
remaining 8 HSIs for testing. The HSI image in the WDCM dataset comprises
191 spectral bands and 1280 ↑ 307 pixels with a 2.5-meter spatial resolution.
We utilized two 128 ↑ 128 sub-images from the lower-left corner for validation
and testing, with the remainder dedicated to e!ective model training.

Evaluation Metrics. In this paper, we utilized seven extensively acknowl-
edged metrics to thoroughly evaluate the quality of the fused HR-HSI. These
metrics encompass PSNR [30], SSIM [31], SAM [32], RASE [33], RMSE, as well
as ERGAS [34].

Benchmarks. We systematically compared our model with a range of classical
and deep learning-based SOTA methods, including CNMF [35], SSR-NET [18],
TSFN [20], MoG-DCN [22], MSSJFL [19], DHIF-NET [14], PSRT [24], MSST-
NET [23]. Configuration parameters for the compared methods were determined
based on either the original authors’ implementations or recommendations pro-
vided in the respective reference articles.

Implementation Details. Before implementing the proposed method on the
CAVE, Harvard, and WDCM datasets, we aimed to simulate LR-HSIs and HR-
MSIs from the HR-HSIs following Wald’s protocol [36]. First, Gaussian filtering
was applied to the HR-HSIs in all datasets, creating blurred images. Second, we
simulated di!erent spatial resolutions by downsampling the blurred HSIs with
reduction ratios of 4 and 8, which led to the generation of LR-HSIs. For the
CAVE and Harvard datasets, HR-MSIs with three bands were generated using
the spectral response matrix of the Nikon D700 camera. In the WDCM dataset,
the HR-MSIs with ten bands were generated using the spectral response matrix
of the Sentinel-2 A instrument.

In the training stage, we utilized the adaptive moment estimation optimizer
with a learning rate set at 4.0e-4 and a batch size of 64 for a total of 2000 epochs.
For each dataset, we partitioned the HSIs and MSIs into smaller patches to min-
imize network memory consumption. The compared method CNMF was eval-
uated using MATLAB (R2013a) on a Windows Server 2012 platform equipped
with two Intel Xeon E5-2650 processors and 128 GB of RAM. The other deep
learning-based methods were assessed using PyTorch 2.0.0 in a Python 3.9 en-
vironment, leveraging an NVIDIA A40 GPU.

4.2 Experimental Results

Quantitative Evaluations. Tables. 1, 2 and 3 show the evaluation metrics and
floating point operations (FLOPs) of SMIF-NET and other comparison methods.
The best result for each metric is highlighted in bold. The results demonstrate
that, when compared to deep learning methods, the traditional approach CNMF
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Table 1: Experimental results involving various methods on the CAVE dataset under
downsampling ratios of 4 and 8.

Ratio Method CAVE

PSNR → SSIM → SAM ↑ RASE↑ RMSE ↑ ERGAS ↑ FLOPs (1012)

4

CNMF [Yokoya et al., 2011] 36.62 0.9850 6.313 11.05 0.0139 5.8879 —
SSR-NET [Zhang et al., 2020] 44.82 0.9976 1.607 5.020 0.0053 1.2550 0.006
TSFN [Wang et al., 2021] 44.37 0.9967 1.699 5.309 0.0058 1.3274 1.964
MoG-DCN [Dong et al., 2021] 45.27 0.9974 1.582 5.118 0.0054 1.2588 0.516
MSSJFL [Min et al., 2021] 45.99 0.9975 1.415 4.520 0.0046 1.1300 0.304
DHIF-Net [Huang et al., 2022] 48.92 0.9988 1.039 3.287 0.0034 0.8219 3.507
PSRT [Deng et al., 2023] 48.49 0.9987 1.070 3.423 0.0035 0.8558 0.067
MSST-NET [Jia et al., 2023] 48.66 0.9985 1.049 3.311 0.0034 0.8279 2.972
SMIF-NET (Ours) 50.63 0.9989 0.836 2.635 0.0028 0.6612 1.200

8

CNMF [Yokoya et al., 2011] 35.97 0.9842 6.786 11.69 0.0149 6.3013 —
SSR-NET [Zhang et al., 2020] 43.62 0.9969 1.866 5.894 0.0062 1.4736 0.006
TSFN [Wang et al., 2021] 43.67 0.9961 1.815 5.871 0.0061 1.4678 1.964
MoG-DCN [Dong et al., 2021] 44.28 0.9968 1.763 5.035 0.0058 1.4012 0.516
MSSJFL [Min et al., 2021] 44.45 0.9964 1.719 5.445 0.0055 1.3612 0.304
DHIF-Net [Huang et al., 2022] 47.65 0.9983 1.229 3.927 0.0041 0.9819 3.507
PSRT [Deng et al., 2023] 46.79 0.9981 1.338 4.272 0.0043 1.0682 0.067
MSST-NET [Jia et al., 2023] 47.08 0.9980 1.277 4.070 0.0042 1.0176 2.972
SMIF-NET (Ours) 49.01 0.9985 1.032 3.273 0.0034 0.8180 1.200

Table 2: Experimental results involving various methods on the Harvard dataset under
downsampling ratios of 4 and 8.

Ratio Method Harvard

PSNR → SSIM → SAM ↑ RASE↑ RMSE ↑ ERGAS ↑ FLOPs (1012)

4

CNMF [Yokoya et al., 2011] 45.48 0.9967 2.094 5.471 0.0044 1.5739 —
SSR-NET [Zhang et al., 2020] 47.74 0.9979 1.653 3.916 0.0032 0.9790 0.027
TSFN [Wang et al., 2021] 47.64 0.9979 1.666 3.951 0.0032 0.9878 2.064
MoG-DCN [Dong et al., 2021] 48.30 0.9980 1.527 3.619 0.0030 0.9048 17.58
MSSJFL [Min et al., 2021] 47.12 0.9976 1.769 4.202 0.0034 1.0505 1.218
DHIF-Net [Huang et al., 2022] 47.85 0.9979 1.623 3.843 0.0034 0.9609 14.02
PSRT [Deng et al., 2023] 47.85 0.9979 1.623 3.842 0.0031 0.9606 0.268
MSST-NET [Jia et al., 2023] 48.32 0.9981 1.527 3.616 0.0030 0.9042 11.89
SMIF-NET (Ours) 48.55 0.9981 1.480 3.504 0.0029 0.8757 4.801

8

CNMF [Yokoya et al., 2011] 44.55 0.9958 2.588 6.258 0.0051 1.8546 —
SSR-NET [Zhang et al., 2020] 47.49 0.9978 1.672 4.093 0.0034 0.9901 0.027
TSFN [Wang et al., 2021] 46.48 0.9974 1.874 4.650 0.0038 1.1249 2.064
MoG-DCN [Dong et al., 2021] 47.79 0.9978 1.598 3.912 0.0032 0.9472 17.58
MSSJFL [Min et al., 2021] 46.69 0.9974 1.856 4.502 0.0037 1.1057 1.218
DHIF-Net [Huang et al., 2022] 47.71 0.9978 1.628 3.934 0.0033 0.9646 14.02
PSRT [Deng et al., 2023] 47.35 0.9977 1.700 4.123 0.0034 1.0077 0.268
MSST-NET [Jia et al., 2023] 47.30 0.9979 1.612 3.883 0.0032 0.9572 11.89
SMIF-NET (Ours) 47.92 0.9979 1.572 3.738 0.0032 0.9296 4.801

falls short in achieving the desired results across three datasets. The deep learn-
ing methods SSR-NET and TSFN outperform CNMF, exhibiting an approxi-
mate increase of 8 dB, 2 dB, and 1 dB in PSNR on CAVE, Harvard, and WDCM
datasets, respectively. PSRT and MSST-NET, benefiting from the Transformer’s
exceptional ability to capture long-range dependencies, surpass MoG-DCN and
MSSJFL methods on the CAVE dataset. Notably, DHIF-Net demonstrated the
second-best performance across the CAVE and WDCM datasets, following our
proposed SMIF-NET. On the Harvard dataset, MoG-DCN secured the second
position in performance. Overall, our proposed SMIF-NET demonstrates the
best performance across all metrics, excelling in SAM and RASE, which mea-
sure spectral similarity and relative average spectral error, respectively. This in-
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Table 3: Experimental results involving various methods on the WDCM dataset under
downsampling ratios of 4 and 8.

Ratio Method WDCM

PSNR → SSIM → SAM ↑ RASE↑ RMSE ↑ ERGAS ↑ FLOPs (1012)

4

CNMF [Yokoya et al., 2011] 36.83 0.9902 4.843 9.784 0.0089 3.3375 —
SSR-NET [Zhang et al., 2020] 37.47 0.9884 2.595 3.991 0.0132 1.4984 0.016
TSFN [Wang et al., 2021] 37.83 0.9912 2.481 4.742 0.0127 1.4371 0.035
MoG-DCN [Dong et al., 2021] 39.47 0.9922 2.054 3.844 0.0105 1.1902 0.628
MSSJFL [Min et al., 2021] 40.14 0.9938 1.901 4.275 0.0097 1.1015 0.036
DHIF-Net [Huang et al., 2022] 43.61 0.9973 1.274 2.755 0.0065 0.7390 3.992
PSRT [Deng et al., 2023] 39.56 0.9934 2.038 4.386 0.0104 1.1774 0.005
MSST-NET [Jia et al., 2023] 41.00 0.9943 1.725 3.803 0.0088 0.9971 1.115
SMIF-NET (Ours) 46.79 0.9985 0.928 2.143 0.0045 0.5358 0.079

8

CNMF [Yokoya et al., 2011] 34.19 0.9834 6.651 10.67 0.0121 4.5247 —
SSR-NET [Zhang et al., 2020] 36.73 0.9878 2.827 4.466 0.0144 1.6317 0.016
TSFN [Wang et al., 2021] 36.91 0.9890 2.766 5.293 0.0141 1.5977 0.035
MoG-DCN [Dong et al., 2021] 36.99 0.9880 2.731 4.082 0.0140 1.5821 0.628
MSSJFL [Min et al., 2021] 37.72 0.9911 2.519 5.557 0.0128 1.4547 0.036
DHIF-Net [Huang et al., 2022] 42.58 0.9970 1.438 3.056 0.0073 0.8313 3.992
PSRT [Deng et al., 2023] 37.87 0.9908 2.474 4.947 0.0126 1.4310 0.005
MSST-NET [Jia et al., 2023] 39.69 0.9930 2.007 4.292 0.0102 1.1601 1.115
SMIF-NET (Ours) 45.23 0.9980 1.104 2.506 0.0054 0.6407 0.079

Fig. 6: Spectral curves based on three random selected locations

dicates the superior capability of our method in preserving spectral information
compared to alternative approaches. In addition, our model has fewer FLOPs
than MoG-DCN, DHIF-NET and MSST-NET, yet it outperforms all the com-
parison methods in terms of the 6 metrics, indicating that our model achieves
the best balance between computational e"ciency and performance.

Qualitative Evaluations. The qualitative results with a downsampling ratio
of 8 on the CAVE dataset are given to illustrate the perceptual quality of each
method. With the objective of representing the captured scenes in a more in-
tuitive manner, we present pseudo-color visualizations and error maps of the
output results, as shown in Figure. 2 and Figure. 3. Our approach stands out
with the error map exhibiting the lowest brightness in the boxed region, indicat-
ing superior performance. We also provide grayscale images of the experimental
results with a downsampling ratio of 8 on the WDCM dataset, along with the
corresponding error maps in Figure. 4 and Figure. 5. The red-boxed regions in
the images highlight buildings. It can be seen from the images that only the
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results obtained by MSST-NET, DHIF-NET, and our proposed SMIF-NET are
satisfactory, while other methods introduce severe distortions. Among the three
methods, our approach stands out with the lowest error value in the highlighted
region, indicating superior performance. Furthermore, we illustrate three ran-
domly selected spectral curves in Figure. 6. spectral curves provide a complete
representation of each pixel’s spectral data within a hyperspectral image, captur-
ing the detailed spectral characteristics. The accuracy of these curves is essential
for achieving high-quality hyperspectral image reconstruction. For a more intu-
itive comparison, we have added a zoomed-in view of a particular region in the
upper right corner of the figure. This magnified section makes it clear that our
method most accurately mirrors the ground truth, highlighting its e!ectiveness
in preserving spectral integrity.

Table 4: Ablation study for the number of SMAT blocks N2 and fusion stages S

Metrics
N2 S

4 5 6 3 4 5
PSNR → 48.99 49.01 48.93 48.93 49.01 48.95
SAM ↑ 1.033 1.032 1.039 1.039 1.032 1.036

ERGAS ↑ 0.8184 0.8180 0.8236 0.8236 0.8180 0.8200

Table 5: Ablation study for the CSCA, MSFE and IS2F2

CSCA MSFE IS2F2 PSNR → SSIM → SAM ↑ RMSE ↑ ERGAS ↑
✁ ✁ ✁ 46.82 0.9978 1.344 0.0044 1.068
✁ ✂ ✂ 48.52 0.9983 1.095 0.0036 0.8659
✂ ✁ ✂ 48.80 0.9985 1.058 0.0035 0.8387
✂ ✂ ✁ 48.20 0.9982 1.136 0.0038 0.8988
✂ ✂ ✂ 49.01 0.9985 1.032 0.0034 0.8180

4.3 Ablation Studies

To assess the significance of the key modules integrated into our proposed net-
work, a series of ablation studies was conducted on the CAVE dataset. First,
we investigate how the performance of the proposed SMIF-NET is impacted by
varying the number of SMAT blocks N2 and fusion stages S. Each stage con-
sists of an IS2F2 and an MSFE. Second, we systematically removed the CSCA,
MSFE, and IS2F2 modules and utilized the complete version of the model for
comparison.

Table. 4 presents the mean quantitative results obtained from variations of
the SMIF-NET with di!erent N2 and S on the CAVE datasets. First, we keep
S = 4 while adjusting N2 to observe variations in performance. From columns
2, 3, and 4 of Table. 4, it is evident that the peak performance is achieved when
N2 is set to 5. Then, N2 = 5 is set as constant, we observe the performance of
the model when S is set as 3, 4, 5. It should be noted that the configuration
with S = 5 involved the incorporation of an additional sub-module (consisting
of two convolutions with kernel sizes of 7 and dilation factors of 4, respectively)
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into MSFE. The results indicate that the performance is optimal when S is set
to 4.

Table. 5 shows the ablation study of three key modules in SMIF-NET. Obvi-
ously, the model with all modules exhibits the best performance in all metrics.
In contrast, the version without all proposed modules exhibits a significant de-
cline in performance. The evaluation results of CSCA demonstrate significant
improvements across all metrics with the incorporation of CSCA, highlighting
the model’s retention of band correlation and better maintenance of spectral con-
sistency. To assess the e!ectiveness of the MSFE, we compare the performance
of the model with and without it. It is evident that the enhanced capability in
spatial information extraction provided by MSFE contributes to improved model
performance. To assess the impact of the IS2F2, we conducted an ablation study
by simplifying the fusion process. Instead of employing the CSE and SSE mod-
ules, we chose a straightforward concatenation of the two types of feature maps.
As indicated by the metrics in Table. 5, the exclusion of the IS2F2 led to a
decline in performance.

5 Conclusions

In this study, we introduce a novel spectral modality-aware interactive fusion net-
work aimed at achieving HSI super-resolution. By leveraging the multi-layered
processing of SMAT blocks and MSFE modules, advanced spectral and spatial
information is acquired. The IS2F2 module is employed to facilitate the collab-
orative procession, which e!ectively mitigates modal disparities among diverse
features. Therefore, SMIF-NET exhibits superior fusion performance compared
with eight SOTA models, as demonstrated through the experiments conducted
on the simulated natural and satellite datasets. Despite SMIF-NET having pre-
sented a remarkable performance in HSI super-resolution, its training process
was implemented on the simulated degraded hyperspectral and multispectral
data. Since the proposed method has not been tested on the real LR-HSI and
HR-MSI data, it imposes certain limitations on its overall performance. Hence,
conducting further experiments with real data sets and accordingly improving
the method are the potential directions for future research.
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