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Abstract. Learned Image Compression (LIC) models have achieved
superior rate-distortion performance than traditional codecs. Existing
LIC models use CNN, Transformer, or Mixed CNN-Transformer as ba-
sic blocks. However, limited by the shifted window attention, Swin-
Transformer-based LIC exhibits a restricted growth of receptive fields,
affecting the ability to model large objects for image compression. To
address this issue and improve the performance, we incorporate window
partition into channel attention for the first time to obtain large recep-
tive fields and capture more global information. Since channel attention
hinders local information learning, it is important to extend existing
attention mechanisms in Transformer codecs to the space-channel atten-
tion to establish multiple receptive fields, being able to capture global
correlations with large receptive fields while maintaining detailed charac-
terization of local correlations with small receptive fields. We also incor-
porate the discrete wavelet transform into our Spatial-Channel Hybrid
(SCH) framework for efficient frequency-dependent down-sampling and
further enlarging receptive fields. Experiment results demonstrate that
our method achieves state-of-the-art performances, reducing BD-rate by
18.54%, 23.98%, 22.33%, and 24.71% on four standard datasets compared
to VTM-23.1.

Keywords: Learned Image Compression · Window-based Channel At-
tention · Receptive Field · Wavelet Transform

1 Introduction

As the resolution of digital images continues to increase, image compression
techniques play a crucial role in computer storage and transmission. Traditional
image compression codecs such as JPEG2000 [43], BPG [5], and VVC [48] are
now widely utilized. In recent years, Learned image compression (LIC) [2, 3, 10,
17,33,34,36,52] models have shown significant advancements, surpassing existing
traditional codecs in terms of various metrics. This progress suggests that LIC
may emerge as the next-generation technology of image compression.
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Convolutional neural networks (CNN) have demonstrated competence in
LIC. Ballé et al . [2] built a basic framework for CNN-based LIC, which was
further extended by incorporating VAE and hyper-prior modules to enhance the
performance [3]. To improve the entropy coding performance, auto-regressive
models [33] and Gaussian mixture models (GMM) [10] have been proposed.
Transformer-based models, leveraging the advantages of Transformer architec-
tures in computer vision tasks, have emerged as promising alternatives in LIC
[23,26,39,54,55]. These models, such as Swin-Transformer-based model [54] and
parallel bidirectional context Transformer-based model [39], have demonstrated
superior compression performance over classic CNN-based approaches.

Numerous studies have sought to enlarge receptive fields of their CNN-based
models to improve the performance for computer vision tasks [15, 38, 41, 42, 46].
For recent Transformer models, Xie et al . [51] noted that their MLP decoder
benefits from Transformers having a larger effective receptive field than other
CNN models, corresponding to the performance gain of Transformers in LIC.
However, Xia et al . [50] argued that Swin-Transformer model [29] exhibits a
restricted growth of receptive fields due to the shifted window attention mecha-
nism, limiting its capability to model large objects effectively. Meanwhile, LIC
models encode and decode the entire image containing both small objects and
large objects, requiring large receptive fields to improve the performance.

In this paper, we initially integrate the window attention of Swin-Transformer
with CNN to better capture local dependencies for small objects in the image.
To address the issue of limited receptive fields and improve the performance, we
explore the attention across the channel dimension, given that channel tokens
inherently contain global spatial information, as shown in Fig.4. Specifically, we
replace the shifted window attention of Swin-Transformer with the proposed
window-based channel attention, aiming to capture more global dependencies
than other channel attention methods and enlarge receptive fields, as visualized
in Fig.1. However, Ding et al . [13] stressed that global channel tokens impede
local interactions across spatial locations. Hence, we need to incorporate channel
attention with local modules to learn both local and global information, corre-
sponding to the combination of residual blocks [18], space attention modules [29],
and channel attention modules in our Space-Channel Hybrid (SCH) block.

Other works introduced Discrete Wavelet Transform (DWT) to effectively
enlarge receptive fields for computer vision tasks [20,26–28,47,53]. DWT decom-
poses the image into sub-images with different frequency properties, functioning
as a parameter-free down-sampling method to enlarge receptive fields. DWT has
also been explored in [31, 32, 40] to efficiently encode images and optimize bit
allocation for image details in LIC. In this work, we propose to use DWT to
further enlarge receptive fields for our window-based channel attention as shown
in Figs.1c and 1d, thereby improving the performance of our LIC system.

The contributions of our work are summarized as follows:

– We propose a novel Space-Channel Hybrid (SCH) framework for LIC, con-
taining residual blocks and space attention modules for local information
learning, and channel attention modules for global information learning.
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(a) Residual block from [18] (b) Space attention from [29]

(c) Ours (d) Ours without wavelet transform

Fig. 1: Effective Receptive Fields (ERF) on kodim07 from modules of our SCH block.
(a) and (b) are from [18,29], while (c) and (d) are our window-based channel attention
with and without wavelet transform. Results are normalized and clipped by a threshold
of 0.3 for better visualization. The color changes from blue to red as the value increases.

– We are the first to incorporate window partition into channel attention,
aiming to capture more global information and effectively enhance receptive
fields for LIC. To further enlarge receptive fields, we integrate the DWT
module with the residual block for our framework.

– With the above techniques, our method achieves state-of-the-art perfor-
mances across four datasets with various resolutions. Compared to the an-
chor VVC (VTM-23.1) [48], our method provides a reduction in Bjøntegaard-
delta-rate (BD-rate) [6] by 18.54%, 23.98%, 22.33%, and 24.71% on Ko-
dak [22], Tecnick [1], CLIC Pro Val [44], and CLIC 2021 Test [45].

2 Related Work

2.1 Learned Image Compression

CNN-based Models In recent years, there have been notable breakthroughs
in CNN-based LIC [2,3,10,17,33–36,52]. Ballé et al . [2] built a basic CNN-based
framework for end-to-end LIC models. They extended the work by introducing a
VAE architecture and incorporating a hyper-prior module to enhance the capa-
bilities of LIC [3]. Drawing inspiration from the success of auto-regressive priors,
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Minnen et al . [33] introduced an auto-regressive component to improve entropy
modeling. Cheng et al . [10] substituted the Single Gaussian Model (SGM) in
the entropy model with a Gaussian Mixture Model (GMM), which involved the
integration of residual blocks and a simplified attention module. Addressing the
computational overhead of the context model, He et al . [17] introduced a checker-
board context model designed for parallel computing. Minnen et al . [34] reduced
computational costs by employing a channel-wise context. Beyond advancements
in entropy modeling, researchers have explored diverse CNN architectures to el-
evate feature extraction for LIC. Liu et al . [25] introduced non-local residual
blocks to capture local and global correlations, leveraging attention masks to
allocate bits intelligently based on feature importance. Xie et al . [52] exploited
invertible neural networks (INNs) to enhance overall performance. Pan et al . [36]
introduced the content adaptive channel dropping (CACD), aiming to improve
the content adaptability on both latents and the decoder.

Transformer-based Models With the continuous evolution of the Trans-
former architecture, its advantages in computer vision have been progressively
explored and applied in tasks such as image classification [9], object detection [8],
image reconstruction [7], etc. Similarly, Transformer has also found applications
in LIC tasks [23,26,39,54,55]. Zhu et al . [54] proposed Swin-Transformer-based
image compression, demonstrating their superiority with convolutional coun-
terparts. Qian et al . [39] introduced a parallel bidirectional Transformer-based
context model while maintaining time efficiency. Zou et al . [55] proposed a
window-based attention mechanism to enhance Transformer-based LIC mod-
els. Koyuncua et al . [23] proposed a Transformer-based context model that uti-
lizes multi-head attention to model the entropy in the latent space, allowing
for adaptive entropy modeling of spatial and cross-channel dependencies. Liu et
al . [26] proposed an efficient parallel Transformer-CNN Mixture (TCM) block
with a controllable complexity to incorporate the local modeling ability of CNN
and the non-local modeling ability of Transformer to improve the performance.
To combine the advantages of CNN and Transformer, we incorporate residual
blocks and space attention modules into our SCH framework to better capture
local dependencies in image features.

2.2 Channel Attention

Channel attention primarily concentrates on the correlations among feature
channels, modeling the significance of each channel globally across the space
dimension. This mechanism is mainly utilized in various computer vision tasks.
Hu et al . [19] introduced Squeeze-and-Excitation Networks (SENet), aiming to
dynamically learn the importance of individual channels through channel atten-
tion mechanisms, which are based on global average pooling and CNN. Woo et
al . [49] extended the capabilities of SENet by adding the max-pooling opera-
tion, enhancing the overall representation of features. Ding et al . [13] proposed
a Transformer-based channel group attention mechanism that complements its
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space window attention by offering a global receptive field on the whole-image
size. Existing works squeezed the spatial dimension of the entire feature map
to obtain the channel attention map, but we argue that it leads to excessive
information loss and limits the variety of channel information expression. In this
work, we introduce window partition to channel attention module to learn more
diverse global information. By computing different channel attention maps for
different windows, this module is superior to existing channel attention modules.

2.3 Wavelet Transform for Deep Neural Networks

For LIC, Ma et al . [31] introduced a model that employed a trained CNN as
a filter to emulate a wavelet-like transform. Ma et al . [32] further refined their
approach, using the wavelet-like transform to convert images into coefficients
without information loss, which can be optionally quantized and encoded into
bits for image compression. For computer vision tasks, many works utilized Haar
wavelet to enlarge receptive fields because of its simplicity and efficiency [20,24,
27,28,47,53]. Liu et al . [28] adopted Haar DWT as default to effectively enlarge
receptive fields without information loss for image restoration. Jeevan et al . [20]
concluded that Haar DWT assists the model in enlarging receptive fields faster
than convolutional down-sampling. Li et al . [24] utilized Haar DWT and IDWT
for effective downsampling and upsampling, which benefits image restoration
because of enlarged receptive fields and frequency-related information learning.
In this work, we propose to explore Haar DWT to effectively enlarge receptive
fields for more efficient image compression.

3 Method

3.1 Problem Formulation

Our model is built upon the channel-wise auto-regressive entropy model [34] as
shown in Fig.2. We first introduce the workflow of the basic LIC.

Given an input image x, the analysis transform ga maps it to a latent repre-
sentation y, which is then quantized into ⌈y⌋ by Q, and we employ a range coder
to encode it losslessly. According to [33], we encode ⌈y−µ⌋ instead of ⌈y⌋, where
µ is the mean estimated by the entropy model. Suppose yq = ⌈y − µ⌋, we then
reconstruct the coded ŷ as yq + µ, and it is mapped back to the reconstructed
image x̂ using the synthesis transform gs. The main pipeline is formulated as:

y = ga(x;ϕ), yq = Q(y − µ), ŷ = yq + µ, x̂ = gs(ŷ; θ), (1)

where ga and gs are parameterized by ϕ and θ, respectively. The latent residual
prediction r [34] is added to compensate for quantization errors.

Ballé et al . [3] proposed the hyper-prior path to compute the hyper-prior
z as side information. The probability of each element in ŷ is modeled as an
independent Gaussian distribution, with means and variances derived from the
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Fig. 2: The overall architecture of our model. SCH is Space-Channel Hybrid block.
DWT is the discrete wavelet transform and IDWT is the inverse transform. ↓ means
down-sampling and ↑ means up-sampling. RB is Residual Block. RBS is Residual Block
with Stride. RBU is Residual Block Up-sampling. RE is Range Encoder and RD is
Range Decoder.

coded ẑ. Therefore, the probability of the ith element is p(ŷi|ẑi) = N (µi, σ
2
i )

so that spatial redundancy is reduced for estimation. In the later channel-wise
auto-regressive entropy model [34], y is split along the channel dimension into s
slices {y0, y1, . . . , ys−1}. The model utilizes both side information ẑ and encoded
channel slices ŷ<i = {ŷ0, ŷ1, . . . , ŷi−1} to encode the current channel slice yi with
improved estimating performance. We formulate the entropy path as follows:

z = ha(y;ϕh), ẑ = Q(z), (µside, σside) = hs(ẑ; θh), (2)
(µi, σi) = ei(µside, σside, y<i; θei), 0 ≤ i < s, (3)

where ha, hs and ei are parameterized by ϕh, θh and θei , respectively.
LIC considers both rate and distortion, so the loss function is defined as:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂)

= E[− log2(pŷ|ẑ(ŷ|ẑ))] + E[− log2(pẑ(ẑ))] + λ · D(x, x̂),
(4)

where E[− log2(pŷ|ẑ(ŷ|ẑ))] is the estimated rate of ŷ given ẑ, and E[− log2(pẑ(ẑ))]
is the estimated rate of ẑ. The trade-off between rate and distortion is controlled
by a Lagrangian multiplier λ, where the rate is estimated by the entropy model
and the distortion is measured by mean square error (MSE) during training. In
this work, we focus on modifications in ga and gs.

3.2 Method Overview

The architecture of our SCH framework is illustrated in Fig.2. We use the DWT
module to decompose input image x into four sub-images with different fre-
quencies and realign them along the channel dimension. Inverse DWT projects
four sub-images back to the 3-channel image. Residual Block with Stride (RBS)
and Residual Block Up-sampling (RBU) are proposed by [10] for down-sampling
and up-sampling. We place SCH blocks between the two successive residual
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(a) (b) (c)

Fig. 3: The proposed SCH block (left), window-based space attention module (middle),
and window-based channel attention module (right). In (b) and (c), SC Transpose is
Space-Channel Dimension Transposition. Modules with similar functions are marked
in the same colors. We indicate tensor shapes before and after shape-transforming
modules, where n, h, and w are the number of windows, window height and width.

blocks to learn spatial local information and channel-wise global information.
The right part of Fig.2 contains the quantization, range encoder, channel-wise
auto-regressive entropy model, and range decoder, following the design of [26].
Our framework features in SCH blocks with the proposed window-based channel
attention module and DWT module. In the following sections, we explain the
designs and properties of these modules in detail.

3.3 Space-Channel Hybrid Block

Taking inspiration from the TCM block [26], we design our Space-Channel Hy-
brid block to efficiently capture both local and global dependencies in image
features. We replace the learned relative positional encoding with Convolutional
Positional Encoding (CPE) according to [11] and replace the shifted-window
attention from Swin-Transformer [29] with our window-based channel attention.

As shown in Fig.3a, in stage I, a 1 × 1 convolutional layer pre-processes
the input tensor x, which is then evenly split into xattn and xconv along the
channel dimension. This parallel processing design reduces the channel size in
each branch, saving the computational cost of each processing module. Besides,
each branch extracts features of diverse properties in parallel. Specifically, the
window-based space attention module transforms xattn into x′

attn to learn the
transformer-based local spatial information, and the residual block transforms
xconv into x′

conv to learn the CNN-based local spatial information. Then, two
tensors are concatenated in the channel dimension, and we fuse their information
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by the 1× 1 convolutional layer. The skip connection between the input and the
output facilitates gradient descent. In stage II, the window-based space attention
module is replaced by the window-based channel attention module to capture
global channel-wise dependencies in the tensor. All 1× 1 convolutional layers in
our design aggregate the information across different channels, and the number of
feature channels remains unchanged. The above stages are formulated as follows:

xattn, xconv = Split(Conv1 × 1(x)) (5)
x′
attn, x

′
conv = Space(xattn) or Channel(xattn),Res(xconv) (6)
xout = x+ Conv1 × 1(Concat(x′

attn, x
′
conv)). (7)

In summary, our SCH blocks capture local spatial dependencies via residual
blocks and space attention modules, as well as global channel-wise dependencies
via channel attention modules.

3.4 Window-based Channel Attention Module

The attention module in Vision Transformer (ViT) [14] defines the input shape
as L × C, where L is the sequence length and C is the channel size. To re-
alize the Transformer-based channel attention, a straightforward attempt is to
transpose two dimensions, which results in the tensor shape of C × L, where C
becomes the sequence length and L becomes the channel size. However, since
image compression is a downstream task with various input sizes, L is not a con-
stant as the new channel size. As a result, we cannot design the linear projection
and MLP (Multilayer Perceptron) layers if the channel size changes. Inspired by
Swin-Transformer [29], we partition the tensor into small windows so that the
tensor shape becomes n × (window size)2 × C, where n is the number of win-
dows and the sequence length L equals to the fixed (window size)2. With the
dimension transpose and Convolutional Positional Encoding (CPE) from [11],
we can formulate our window-based channel attention module as follows:

x′ = CPE0(x) + ChannelAttn(LayerNorm(CPE0(x))) (8)
xout = CPE1(x

′) + MLP(LayerNorm(CPE1(x
′))). (9)

The arrangement of the above modules follows [13]. As shown in Fig.3c, it should
be noted that Window Partition and Window Reverse are rearranged so that
CPE and MLP have the fixed channel size of (window size)2. In addition, CPE
encodes positional information in the channel dimension, and MLP fuses infor-
mation along the space dimension after the channel attention, corresponding to
the function of similar modules in Fig.3b.

Advantages Firstly, the proposed window-based channel attention captures
global information with a large receptive field. Fig.4 indicates that each channel
token is global inside the window, providing the global view of the feature.
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(a) Window-based space attention (b) Window-based channel attention

Fig. 4: Demonstration of window-based space attention and channel attention with
window size 2×2 and channel size 5. In each window, (a) performs attention across space
tokens and (b) performs attention across channel tokens. Different tokens are marked
in different colors. The depth of the token is the actual channel size for computation.

(a) (b) (c) (d) (e) (f)

Fig. 5: Channel attention maps on kodim07 from our module and DaViT [13]. Our
window-based channel attention offers n windows H heads C × C maps, and we ran-
domly select three maps 5a, 5b and 5c from different windows of the first head. DaViT
offers H heads Cg ×Cg maps, where C = H ×Cg, and we visualize three maps 5d, 5e
and 5f from three heads. n, H, and C are 96, 8, and 128, respectively

Therefore, when we use channel tokens to calculate the channel attention map,
formulated as (C × hw) · (hw × C) = C × C, it generates a global map shared
throughout the window. With this map, attention computation can fuse multiple
intact window slices globally, that is, (C×C) ·(C×hw) = C×hw, and it outputs
new global tokens with long-range information. To visualize the global effect of
our window-based channel attention, we introduce the Effective Receptive Field
(ERF) [30]. It is derived by choosing a point in the feature map and doing
the back-propagation since ERF can be obtained as gradients of one feature
point to all pixels at the input. We select the feature from modules of the last
block in ga to generate ERF. In Fig.1, our window-based channel attention
module has the largest ERF, and gradients focus on the texture and edges of
petals and branches, indicating that the module can successfully capture global
information. On the other hand, both residual block and space attention module
have a smaller receptive field because of the local spatial information learning. In
addition, our window-based channel attention is influenced by wavelet transform,
which assists the expansion of ERF as compared in Fig.1c and Fig.1d.

Secondly, our window-based channel attention captures more global informa-
tion than existing channel attention methods. SENet [19] squeezes global spatial
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(a) ILL (b) IHL (c) ILH (d) IHH

Fig. 6: Visualization of Haar discrete wavelet transform on kodim24.

information through global average pooling to obtain C × 1 channel dependen-
cies. CBAM [49] includes max-pooling into squeezing operation to obtain two
different C × 1 channel dependencies. DaViT [13] introduces channel group at-
tention and provides Ng groups Cg × Cg attention maps, where C = Ng × Cg.
Supposing our window-based channel attention divides the feature map into n
windows, it can generate n different C × C channel attention maps, which con-
tain more information than aforementioned methods. As shown in Fig.5, our
window-based channel attention provides larger and more maps than modules
from DaViT. Moreover, we can see the variety among these maps, further prov-
ing the effectiveness of our channel attention design. Although channel attention
maps from DaViT or other methods have similar diversities, they contain signif-
icantly less channel information than ours. We suggest preserving more diverse
channel information assists global information learning, and we will compare the
compression performance of channel attention designs in Section 4.3.

3.5 Wavelet Transform Module

To further enhance receptive fields, we introduce a wavelet transform module to
process the input image. We choose the Haar wavelet because of its simplicity
and efficiency [20,24,27,28,47,53], whose four filters are defined as,

fLL =

[
1 1
1 1

]
, fHL =

[
−1 1
−1 1

]
, fLH =

[
−1 −1
1 1

]
, fHH =

[
1 −1
−1 1

]
. (10)

We can see that fLL ⊗ x performs a sum-pooling operation that outputs the
down-sampled low-frequency approximation of the original image x, while the
other filters aim to obtain high-frequency information. As shown in Fig.6, ILL is
the down-sampled feature of the original image. IHL and ILH are the horizontal
details and vertical details of the image, describing the edge features of two
directions. IHH is the diagonal details of the image. Since wavelet transform
decomposes the image into components of different frequencies, it guides the
neural network in learning frequency correlations and assists in learning more
complicated textures.

After that, we stack four sub-images in the channel dimension and use a
residual block to project images from RGB space to latent space. Therefore, the
wavelet transform acts as a role of frequency-dependent down-sampling to en-
large receptive fields of the model. It affects feature capturing of residual blocks,
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space attention modules, and channel attention modules, but it mainly assists
channel attention for global information learning because of large receptive fields.
Meanwhile, the wavelet transform is effective because it contains no parameters
for learning.

4 Experiments

4.1 Experimental Setup

We implement the proposed model on CompressAI [4] platform. For training,
we choose the largest 300k images from the ImageNet training set [12] and
randomly crop them into the size of 256 × 256. We use the Adam optimizer
[21] with a batch size of 8. The learning rate is initialized as 1 × 10−4 and
scheduled by the PyTorch [37] learning rate scheduler ReduceLROnPlateau with
the patience of 5 epochs and the factor of 0.3. The model is optimized by the
loss in Eq.4, where the distortion is measured in mean square error (MSE). We
set the Lagrangian multiplier λ as {0.0025, 0.0035, 0.0067, 0.013, 0.025, 0.05}.
The models are trained for 3.5M iterations on average.

For our architecture in Fig.2, N is 256, M is 320, and the channel size of z
is 192. We stack {2,4,2} blocks in ga and gs, respectively, and the window size is
8×8 in each block to make it comparable to other methods about the parameter
quantity. We use NVIDIA A100 to train and evaluate our model.

4.2 Performance

Rate-Distortion Performance We evaluate our model on four commonly
used datasets, including Kodak image set [22], Tecnick test set [1], CLIC profes-
sional validation set [44], and CLIC 2021 test set [45]. PSNR is used to measure
the distortion, while bits per pixel (bpp) are used to evaluate bit rates.

The Rate-Distortion (RD) performance on the Kodak dataset [22] is illus-
trated in Fig. 7a. We compare our SCH with recent models [16, 26, 55], classic
models [3, 34], BPG [5] and VTM-23.1 of Versatile Video Coding (VVC) [48].
Our approach outperforms the state-of-the-art (SOTA) method [26] by 0.125dB
on average. Additionally, results on the Tecnick [1], CLIC professional validation
set [44], and CLIC 2021 test set [45] are depicted in Fig. 7b, 7c, and 7d, respec-
tively. We achieve up to 0.31dB improvements across three datasets, suggesting
the robustness of our method and its ability to achieve SOTA performances for
diverse resolutions. The proposed channel attention module excels at capturing
global dependencies in images. Therefore, our SCH achieves more performance
gain on later datasets with larger images.

To quantify the performance of our method, we present the BD-rate [6] com-
puted from the RD data as the metric. We set the results of the latest VTM-23.1
as anchor rates (BD-rate = 0%) in four datasets. Our method reduces BD-rate
by 18.54%, 23.98%, 22.33%, and 24.71% on the Kodak [22], Tecnick [1], CLIC
professional validation [44], and CLIC 2021 test [45] datasets, as presented in
Table 1. Compared with TCM [26], our method achieves a solid performance
gain on BD-rate, ranging from 1.91% to 3.46% across four datasets.
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Fig. 7: RD performance evaluation on four standard datasets with various resolutions.

Qualitative Results Fig.8 visualizes the reconstructed images (kodim07 ) from
our SCH, an available learned model STF [55] and the latest traditional codec
VTM-23.1 [48]. We choose the same image as Fig.1 and enlarge the same area to
compare the texture and edges reconstructed by different methods. Firstly, our
method offers the clearest texture details of the petal with a low bit rate, which
benefits from the global information learning provided by our window-based
channel attention. Secondly, our method reconstructs the sharpest and most
accurate edges of the petal. It indicates that our SCH has a strong capability
of distinguishing complicated foregrounds and backgrounds, which benefits from
the combination of local space modules and global channel modules. We provide
more qualitative results in the supplementary materials.

Codec Efficiency Analysis We compare our SCH with available recent models
[26,55] and VTM-23.1 [48] on the efficiency. For the encoding time and decoding
time, our method is comparable with TCM [26]. When considering parameters
and BD-rate, our method achieves the SOTA BD-rate while maintaining the
second lowest quantity of parameters. Detailed parameter analysis is reported
in the supplementary materials.
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Table 1: BD-Rate (%) comparison in four datasets. "-" means the author did not
provide models or results. The best rate is shown in bold. The anchor is VTM-23.1 [48].

Method Kodak Tecnick CLIC Pro Val CLIC’21 Test

VTM-23.1 [48] 0 0 0 0
Hyper-prior (ICLR18) [3] 30.32 25.19 29.76 30.59
ChARM (ICIP20) [34] -4.06 -10.05 - -
STF (CVPR22) [55] -9.05 -10.98 -10.74 -11.74
WACNN (CVPR22) [55] -9.51 -11.97 -11.09 -14.07
ELIC (CVPR22) [16] -12.13 - - -18.35
TCM (CVPR23) [26] -16.63 -20.52 -18.89 -
SCH (ours) -18.54 -23.98 -22.33 -24.71

(a) Ground Truth (b) SCH (ours) (c) STF (d) VTM-23.1

bpp/PSNR 0.146/33.159dB 0.144/32.617dB 0.157/31.963dB

Fig. 8: Visualization of the reconstructed kodim07 images from Kodak. Our SCH is
compared with an available learned method STF [55] and the latest traditional codec
VTM-23.1 [48]. The metrics are [bpp↓/PSNR↑]. The second row contains the enlarged
portions from the cyan rectangles of the first row, respectively.

4.3 Ablation Studies

Channel Attention Module We conducted an ablation study as depicted in
Fig.9a to validate the advantage of our window-based channel attention module.
Each model is trained for 1.5M iterations on ImageNet [12]. We compared our
approach against existing channel attention modules from SENet [19], CBAM
[49], and DaViT [13]. The result indicates that our approach is better than CNN-
based channel attention modules, and the Transformer-based channel attention
module from DaViT is unsuitable for image compression, proving the superiority
of our window-based channel attention module.

Wavelet Transform Module In Fig.9b, we compare the cases about using
the wavelet transform module or not. It can be observed that our wavelet trans-
form module brings a solid gain in RD performance. The results indicate that
enlarging receptive fields is beneficial to the performance enhancement of LIC.
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Table 2: Efficiency comparison on Kodak dataset, including average encoding time,
average decoding time, model parameter,rs and BD-rate (%).

Method Enc (s) Dec (s) Parameters (M) BD-rate↓

VTM-23.1 [48] 108.70 0.173 - 0
STF (CVPR22) [55] 0.123 0.151 99.86 -9.05
WACNN (CVPR22) [55] 0.102 0.133 75.24 -9.51
TCM (CVPR23) [26] 0.193 0.172 76.57 -16.63
SCH (ours) 0.184 0.181 75.79 -17.77
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(b) Wavelet Transform Module

Fig. 9: Ablation studies on Tecnick dataset. (a) Channel attention modules (Ours,
SENet [19], CBAM [49], and DaViT [13]). (b) Wavelet transform module.

5 Conclusion

In this paper, we propose a novel Space-Channel Hybrid (SCH) framework, which
contains residual blocks and space attention modules for local information learn-
ing, as well as channel attention modules for global information learning. Our
window-based channel attention module is the first to include a window partition,
which captures more global information than other solutions and significantly
enlarges receptive fields for RD performance gain in LIC. To further enhance re-
ceptive fields, we integrate a Haar DWT module into our framework to process
raw images. Extensive experimental results demonstrate SOTA performances of
our approach across four datasets with various resolutions.

Although our method is comparable with existing LIC works in terms of com-
putational cost, it is still too high for applications on mobile devices. We expect
that this problem can be addressed by model compression techniques, such as
pruning, quantization, knowledge distillation, and structural re-parameterization.
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