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Fig. 1: Qualitative results on rigid/non-rigid whole/partial datasets by RoITr and its
variant modified with our method. Samples were randomly selected to avoid cherry-
picking. Green lines indicate exact matches, while red lines denote failures. Our method
consistently improves performance.

Abstract. We present a simple yet effective technique to boost the per-
formance of 3D point cloud registration. Conventional methods input a
distance matrix to a differentiable matching algorithm deterministically,
ignoring any uncertainty in upstream distance calculation. Consequently,
current methods consider the optimalities of the feature extractor and the
matching algorithm independently, leading to sub-optimal performance.
We connect them via a non-deterministic information path. To make the
algorithm uncertainty-aware, we employ a learning-based matching net-
work module. This modification unifies the estimation process as a single
optimization problem, where feature extractors and the matching net-
work are jointly trained, reaching a joint-optimal solution. Experimental
results show that our strategy significantly improves the performance
of various conventional methods under multiple conditions, including
rigid/non-rigid and whole/partial point cloud registration datasets.

1 Introduction

3D point cloud registration lies at the core of many downstream 3D computer
vision applications such as motion transfer [39], shape editing [25], and object
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localization for industrial robots [7]. The difficulty of 3D point cloud registration
arises from the sparseness, sensing challenges, and non-rigid deformation of the
3D point cloud data [4,36,57]. Recent deep learning methods have tackled these
issues, showing continuous improvement.

A deep-learning-based 3D point cloud registration method consists of a fea-
ture extractor and a differentiable matching algorithm. The feature extractor
outputs point-wise features, which are then used to compute a distance ma-
trix. This distance matrix is input into the matching algorithm. The algorithm
identifies correspondences between input point clouds typically by solving a lin-
ear assignment problem that minimizes the sum of distances. The Hungarian
algorithm [19] is known as an optimal solver for the problem; however, it is
incompatible with feature extractor because it is not differentiable. Therefore,
the Sinkhorn algorithm [5], a differentiable relaxation of the Hungarian algo-
rithm, was initially applied to this task. Recent reports indicate that heuristic
operations like DeSmooth [54] and Dual-Softmax [33] outperform the Sinkhorn
algorithm despite its theoretical guarantee of the optimality.

We aim to develop a robust matching strategy that consistently works well
with various feature extractors. Selecting matching algorithms empirically for
each feature extractor is a common practice in recent state-of-the-art (SOTA)
methods [22,23,51,54]. This observation suggests that different feature extractors
prefer different matching algorithms. We attribute this to the different tendencies
of uncertainties on the calculated distance matrix. In this context, relying solely
on a deterministic distance matrix to link two modules is sub-optimal.

We provide a new 3D point cloud registration paradigm that unifies two mod-
ules into a single probabilistic process. Our method generalizes each value in the
distance matrix into a vector that represents the distance with its uncertainty.
This generalization connects the modules non-deterministically. A hand-crafted
algorithm exists to solve a stochastic linear assignment problem [3]. However,
it only functions when the distribution shape is known. Instead of using hand-
crafted algorithms, we adopt a machine-learning-based matching module. For
this purpose, we spotlight a network, WeaveNet [37], originally designed to ap-
proximately solve an NP-hard fair stable matching problem. We refine it as a
solver of 3D point cloud registration tasks, focusing on memory efficiency and
scaling to large-scale data, without requiring additional loss objectives.

The contribution of this paper is threefold.

1. We provide a paradigm that connects a matching module with a feature
extractor in a non-deterministic manner, resulting in a unified probabilistic
model without requiring additional loss objectives.

2. We develop a practical implementation of the above model by improving
memory efficiency of an existing matching-aided neural network.

3. We confirm through exhaustive experiments that the proposed method en-
ables significant performance boosts across various methods and conditions.
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Learning 3D Point Cloud Registration as a Single Optimization Problem 3

2 Related work

2.1 Feature extraction from 3D Point Cloud

There are many tasks on 3D point clouds, such as shape classification, 3D ob-
ject detection, and point cloud segmentation, in addition to registration [12,13].
Early studies on 3D point cloud data focused on hand-crafted point-wise fea-
tures (a.k.a., local descriptors) [18, 40, 47, 48] and key point detection [58]. A
comprehensive survey [11] has revealed their characteristics but also highlighted
limitations in performance due to noise, clutter, fluctuation in resolutions, and
occlusions.

The recent growth in deep learning methods has led to significant improve-
ments in feature extraction [12, 13], which has also influenced the registration
task. First-generation deep-learning-based feature extractors for 3D matching re-
lied on the network architecture developed for 2D images, where point cloud data
are projected onto an image plane as the RGB-D image format [8] or handled 3D
shape by voxel-based 3D CNNs [27, 53]. Then, PointNet [29] and DeepSets [52]
were proposed, which enabled us to extract point-wise features directly from un-
structured point clouds. Subsequently, second-generation studies enhanced the
techniques for various tasks on 3D point clouds [14, 26, 30, 42, 44–46, 56]. In this
context, feature extractors have been further improved for registration tasks.
Huang et al . [15] introduced a cross-attention mechanism, which enables extrac-
tion of features interactively between two point clouds. This idea is followed by
subsequent studies [22,23,50].

In addition to the feature extractor, the method for executing registration
is also a subject of improvement. There are two main categories of registration
approaches: parametric registration (i.e., rigid transform) [1, 35, 43] and non-
parametric registration [49,54,55]. The parametric approach formulates the prob-
lem as estimating parameters that represent the transform of two point clouds.
This approach cannot manage non-rigid deformations. The non-parametric ap-
proach captures deviations for each point, allowing for any non-rigid deforma-
tions. It is also beneficial for rigid cases; non-parametric registration results
can serve as a good starting point for parametric methods. For instance, Li
and Harada [22] demonstrated that applying RANSAC and ICP to results from
non-parametric registration consistently improves rigid registration performance,
albeit with increased computational time. This study specifically focuses on non-
parametric methods, aiming to improve traditional methods through reconsid-
ering the connection between feature extractors and matching algorithms.

2.2 Differentiable matching algorithm

Combining feature extractors and differentiable matching algorithms is a com-
mon practice not only for 3D point cloud registration, but also for other computer
vision registration tasks. SuperGlue [34] is a notable 2D RGB image registration
method that first utilized the Sinkhorn algorithm in the context of registration.
In the following year’s CVPR, two papers demonstrated that heuristic matching
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Fig. 2: Conventional architecture: a feature extractor E and a differentiable matching
algorithm M are connected via a distance matrix calculation. We can regard D as
an estimate of the true distance matrix, which divides the inference process into two
independent optimization problems.

operations outperformed the Sinkhorn algorithm. The first report by Zeng et
al . [54] proposed the DeSmooth operation, which outperforms Sinkhorn for 3D
point cloud registration. The second one by Sun et al . [38] reported that the
dual softmax operation [33] outperformed Sinkhorn for 2D image registration.
Lepard [22] later introduced dual softmax for 3D point cloud registration. Its
subsequent study, LNDP [23], also applied dual softmax. The current SOTA
method, RoITr [51], incorporates coarse and fine matching modules inspired
by CoFiNet [50]. CoFiNet originally used Sinkhorn for coarse matching, which
RoITr replaced with dual softmax. Motivated by the superior performance of
heuristic matching operations compared to Sinkhorn, we investigate the poten-
tial of learning-based matching algorithms.

Despite the popularity of registration tasks in the vision community, learning-
based matching algorithms remain underexplored. A matching problem is defined
on a bipartite graph, and hence, a network dealing with this problem can be
regarded as a kind of graph neural network (GNN). It is known that general
GNNs suffer from the over-smoothing problem, specifically when the graph is
dense [21,28]. Unfortunately, bipartite graphs are innately dense, making GNNs
ineffective for this type of problem.

In this context, we identified two potential network architectures for our pur-
pose: Deep Bipartite Matching (DBM) [9] and WeaveNet [37], both designed to
approximately solve NP-hard fair stable matching problems. The architectures
prevent the over-smoothing problem by maintaining edge-wise features. Smooth-
ing occurs through vertex-wise feature aggregation. Hence, forwarding features in
an edge-wise manner without aggregation essentially solves the over-smoothing
problem. However, this strategy has a notable shortcoming of memory consump-
tion, making it unsuitable for large-scale matching problems like 3D point cloud
registration. This study proposes to connect feature extractors with WeaveNet
in a memory-efficient way and scale it for 3D point cloud registration.
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Learning 3D Point Cloud Registration as a Single Optimization Problem 5

3 Method

3.1 Preliminaries

Given two point clouds P ∈ RN×3 and Q ∈ RM×3, where N and M denote
the number of points, respectively. Our goal is to identify a permutation ma-
trix M ∈ {0, 1}N×M , which projects P onto Q and represents the point-wise
correspondence between P and Q.

Conventional methods solve this problem by training a feature extractor E .
Let P = E(P) ∈ RN×C be a list of point features extracted from P by E , where
C is the number of channels per feature. We define Q = E(Q) ∈ RM×C in the
same manner. In conventional methods, P and Q are summarized into a distance
matrix D ∈ RN×M . Let D : (P ,Q) 7→ D be a distance function, and M be a
matching algorithm. The entire process of the conventional method is visualized
in Fig. 2 and denoted by M = (M◦D ◦ E)(P,Q).

3.2 Constructing a Network as a Single Optimization Problem

P and Q have potential uncertainties caused by noise in the input, unseen
shapes and deformations, occlusions, etc. Consider a function F : x 7→ y where
the input x is a noisy observation of the true value x∗ (i.e., x = x∗+εx). Then,
we can view F ’s process as ŷ = arg maxyPF (y|x∗+εx), where ŷ is an estimate
and PF is a probabilistic model behind F . From this perspective, we can rewrite
the process M = (M◦D ◦ E)(P,Q) as

M̂ = argmax
M

PM(M |D̂), D̂ = argmax
D

PD◦E(D|P,Q). (1)

This equation reveals the two-stage optimization of the conventional methods.
To integrate the two-stage processes into a single optimization step, we extend

D to a tensor Z ∈ RN×M×D. The D-channel vectors in Z characterize the
distribution shape of D, denoted as ϕZ (e.g., D = (D∗+εD) ∼ ϕZ). Considering
this distribution, we combine the two stages via marginalization as

M̂ = argmax
M

∫
D∼ϕZ

PM(M |D)PC◦E(D|P,Q) = argmax
M

PM◦C◦E(M |P,Q), (2)

where C is a function to convert (P ,Q) to Z, which we call a connector (a
concrete example will be provided later). Now, E and M are combined into a
single probabilistic model PM◦C◦E via the connector function C, enabling a joint
optimal solution.

The above unification theoretically improves the optimization process, how-
ever, it requires an algorithm to identify M from a tensor input Z. As discussed
in Sec. 2.2, we employ WeaveNet [37] (see ?? for the network details), a model
that is capable of learning how to interpret Z together with the estimation of
M . However, its edge-wise feature forwarding poses scalability issues.

Consider implementing Eq. (2) with a trivial C implementation, where all
information from E is passed to WeaveNet directly, as shown in figure Fig. 3. A
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Fig. 3: A trivial implementation of C, which passes through all the information from E
as is. Z has the full size of N ×M edges, which consumes massive memory. This model
is intractable on standard benchmark datasets (e.g., 1, 024× 1, 024 in 4DLoMatch) or
larger practical applications.
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Fig. 4: The proposed implementation of C separates point-wise features into distance
and uncertainty components. The distance component is compressed to D. After prun-
ing the edges, D and the uncertainty component are concatenated to form Z on a sparse
bipartite graph.

formal description of this trivial implementation is given as follows. Let pn ∈ RC

and qm ∈ RC be the features of the n-th point in P and the m-th point in Q.
Similarly, let z(n,m) be the (n,m)-th vector in Z. The trivial implementation of
C directly pass the distance information as

ztrivial
(n,m) = cat(pn, qm), (3)

where cat is the concatenation operation.
Since WeaveNet (or similar models [9]) forwards edge-wise features, it per-

forms O(N ×M) linear transformations at every layer. Due to this limitation,
the original study of WeaveNet [37] could solve the problems up to the size
of N × M = 100 × 100 = 10k, just 1/100 of the 4D(Lo)Match dataset [22]
(N×M = 1024×1024 ≃ 1M). 1M operations is equivalent to applying a (1×1)-
kernel convolution to every pixel on a 1, 000×1, 000 pixel image. Thus, processing
a standard-size 3D point cloud registration task with this implementation is im-
practical.
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Learning 3D Point Cloud Registration as a Single Optimization Problem 7

3.3 Details of the WeaveNet architecture

Let (ZP
ℓ ,Z

Q
ℓ ) be the input to ℓ-th layer. We describe the ℓ-th feature weaving

layer as a function fℓ : (ZP
ℓ ,Z

Q
ℓ ) 7→ (ZP

ℓ+1,Z
Q
ℓ+1). Hereafter, we only explain

the calculation for the P → Q direction for simplicity. Let N (pn) be a set of
neighbors of node pn. On a bipartite graph, N (pn) = Q and N (qm) = P. A
feature weaving layer describes the characteristic of qm among Q as

hℓ,n = max_pooling{ϕ1
ℓ(zℓ,(n,m))|qm ∈ N (pn)}, (4)

gℓ,(n,m) = pReLU(BN(ϕ2
ℓ(cat(zℓ,(n,m),hℓ,n)))), (5)

where max_pooling is the max pooling operation, ϕ1
ℓ and ϕ2

ℓ are linear layers
inside of fℓ, z(n,m,ℓ) is (n,m)-th element in ZP

ℓ , pReLU is the pReLU function,
and BN is the batch normalization operation.

Second, the layer mixes features obtained for each side to pass messages each
other. Let gP

ℓ,(n,m) and gQ
ℓ,(m,n) be vectors obtained by Eq. (5) for each direction.

fℓ concatenate them at the end of calculation, which yields

zP
ℓ+1,(n,m) = cat(gP

ℓ,(n,m), g
Q
ℓ,(m,n)). (6)

Finally, the L-th output zL+1,(n,m) is fed to the output layer, which first
applies Eq. (4) with zL+1 as its input, then, calculate

gn,m = softmax(BN(ϕoutput(cat(zL+1,(n,m),hL+1,(n,m)))), (7)

where softmax is the softmax function, and gn,m is (n,m)-the element in M .

3.4 Edge pruning and Feature Summarization

We address the memory consumption problem through edge pruning and edge-
wise feature summarization (Fig. 4). Note that we extended the original Weav-
eNet so as to handle edge-pruned sparse bipartite graphs (see ??).

Edge pruning is a promising approach to reduce the memory consumption
in M. This is achieved by finding nearest neighbors for each point p in Q (and
for each q in P ). There are several options for edge selection, such as preserving
k-nearest neighbors, k-reciprocal neighbors, and r-radius neighbors. Our prelim-
inary experiments showed that we can train a model with r-radius neighbors
more stably than k-nearest neighbors. Thus, we adopted r-radius neighbors,
which gives a set of selected edges E = {(n,m) | d(pn, qm) < r} and now
Z ∈ R|E|×D.

To prevent memory overflows, we limit the total number of edges |E| with
a constant upper-bound parameter K; we discard distant edges when a point
pn (or qm) has more than K nearest neighbors. Assuming N > M without loss
of generality, this operation reduces M’s worst-case memory consumption from
O(N × M) to O(K × N) = O(N). Note that K × N typically matches the
available GPU memory size since utilizing all available memory for the model is
generally the best strategy. Hence, K can be set automatically without requiring
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any tuning. In addition, this discarding operation occurs only when an unusually
high number of points are within the r-radius, which is rare, and thus hardly
affects matching results.

In addition to edge pruning, we further improve memory efficiency by reduc-
ing channels D of Z. The trivial connector in Eq. (3) produces D = 2C channels,
where C = 256 in recent SOTA feature extractors [22, 23, 51, 54]. On the other
hand, WeaveNet requires only 32 channels for solving NP-hard problems [37],
indicating a large room for memory efficiency improvement.

We aim to reduce this gap with minimal information loss by updating C,
referred to as feature summarization. The standardized moment describes arbi-
trary distribution shapes with one expected value and multiple moment values.
Inspired by this system, we update Eq. (3) as

zfs
(n,m) = cat(p2

n, d(p
1
n, q

1
m), q2

m), (8)

where (p1
n,p

2
n) is a split of pn (i.e., pn = cat(p1

n,p
2
n)), where p1

n ∈ RC(1)

and
p2
n ∈ RC(2)

. Similarly, qm = cat(q1
m, q2

m). Finally, d denotes a distance function.
We use the cosine distance in line with SOTA methods. Now, d(p1

n, q
1
m) repre-

sents the expected value, while p2
n and q2

n indicate other distribution parameters.
WeaveNet learns how to interpret these parameter automatically through train-
ing. Eq. (8) produces Z with the channel size of D = 2C(2) + 1. Here, C(1) and
C(2) are hyperparameters, and we restrict them to be C(1) +C(2) = C for a fair
comparison with conventional methods. In this condition, C(2) = 0 (C(1) = C)
is equivalent to conventional methods, while C(2) = C (C(1) = 0) is equivalent
to the trivial implementation.

4 Experiments

We confirmed the effectiveness of our concept by integrating our method with
four SOTA methods and testing it on six datasets in total. The differences among
datasets are summarized in Tab. 1.

Our main experiment in 4.1 tests our method on the 4DMatch, 4DLo-
Match, 3DMatch, and 3DLoMatch datasets. Here, the SOTA methods in-
clude Lepard [22], LNDP [23], and RoITr [51]. These methods were originally
implemented using dual softmax (DS) or Sinkhorn (OT)4.

Subsequently, we will evaluate the effect of memory reduction in 4.2. 4.3
demonstrates the robustness of our method against uncertainty through a sys-
tematic analysis. In 4.4, we explain our hyperparameter tuning. This setting was
consistent across all experiments.

Finally, 4.5 presents further evaluation with the Surreal and SHREC datasets,
where the SOTA method is CorrNet3D [54]. This experiment includes both su-
pervised and unsupervised settings as described in the CorrNet3D paper. Note
that our model was trained using the loss function of each baseline method as is
throughout all experiments.
4 Sinkhorn is also known as optimal transport, and we follow the notation in [51].
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Learning 3D Point Cloud Registration as a Single Optimization Problem 9

Table 1: Diversity in experimental setting.

Dataset Base model Shape partial? non-rigid?

4DMatch [22] Lepard [22]
LNDP [23]
RoITr [51]

Animal ✓
4DLoMatch [22] Animal ✓ ✓
3DMatch [53] Indoor
3DLoMatch [15] Indoor ✓

Surreal [10] CorrNet3D [54] Human
Surreal (train) / SHREC [6] (test) Human ✓

Table 2: Quantitative results on 4DMatch, 4DLoMatch, 3DMatch, and 3DLoMatch.
Our method consistently boosted the performance of all SOTA base models across all
datasets. (*: reported in [22], **: reported in [51], repro.: reproduced by us).

Method 4DMatch 4DLoMatch 3DMatch 3DLoMatch
NFMR↑ IR↑ NFMR IR FMR↑ IR RR↑ FMR IR RR

D3Feat [2]* 55.5 54.7 27.4 21.5 95.8 39.0 85.8 69.3 13.2 40.2
Predator [16]* 56.4 60.4 32.1 27.5 96.5 57.1 90.6 76.3 28.3 62.4
GeoTrans [31]** 83.2 82.2 65.4 63.6 97.9 76.0 91.8 88.8 46.2 74.2
Lepard-DS [22]* 83.6 82.7 66.9 55.7 98.3 55.5 93.5 84.5 26.0 69.0
RoITr-OT [51]** 83.0 84.4 69.4 67.6 97.9 83.0 91.8 89.5 55.1 74.8

Lepard-DS (repro.) 83.7 82.7 66.9 55.7 98.3 55.5 93.5 84.5 26.0 69.0
Lepard-WN (ours) 86.7 86.1 72.4 62.5 98.4 64.5 95.7 89.6 30.4 74.9
∆ +3.0 +3.4 +5.5 +6.8 +0.1 +9.0 +2.2 +5.1 +4.4 +5.9
LNDP-DS (repro.) 85.4 84.5 67.6 57.6 98.1 56.5 92.4 83.1 27.4 71.1
LNDP-WN (ours) 88.7 87.9 73.4 62.8 98.6 65.6 94.1 91.3 33.3 76.2
∆ +3.3 +3.4 +5.8 +5.2 +0.5 +9.1 +1.7 +8.2 +5.9 +5.1
RoITr-OT (repro.) 81.3 81.2 67.2 64.8 98.5 80.3 91.0 89.6 54.3 74.2
RoITr-WN (ours) 87.2 87.3 75.3 73.3 98.9 86.8 96.2 90.0 64.4 82.4
∆ +5.9 +6.1 +8.1 +8.5 +0.4 +6.5 +5.2 +0.4 +10.1 +8.2

4.1 Rigid/Non-rigid and Whole/Partial conditions

Dataset. We conducted experiments on the registration tasks of non-rigid ani-
mal point clouds and rigid indoor point clouds following [22,51]. We began with
the non-rigid animal point clouds in the 4DMatch and 4DLoMatch datasets [22].
These datasets were obtained from 1,761 animation sequences. They are split
into 1,232/176/353 for train/valid/test sets. The test sets are further divided
into 4DMatch and 4DLoMatch datasets based on overlap ratios greater than or
less than 45%, respectively.

Second, we conducted experiments on indoor point clouds using the 3DMatch
and 3DLoMatch datasets [15,53]. 3DMatch contains scan pairs with overlap ra-
tios greater than 30%, while 3DLoMatch contains scan pairs with ratios between
10% and 30%. The 62 indoor scenes are divided into 46/8/8 as train/valid/test
sets.

3300



10 R. Yanagi et al.

Table 3: Average memory consumption per sample with RoITr on 4DMatch: ES and
FS stand for Edge Selection and Feature Summarization, respectively.

Method EP FS train eval. NFMR(↑) IR(↑)

RoITr-WN

135.2 GiB 64.3 GiB 89.9 83.3
✓ 124.5 GiB 57.6 GiB 88.6 84.1

✓ 12.3 GiB 6.4 GiB 87.4 85.2
✓ ✓ 8.1 GiB 4.5 GiB 87.2 87.3

RoITr-OT - - 4.6 GiB 2.1 GiB 81.3 81.2

Evaluation metrics. We used the inlier ratio (IR) (also known as accu-
racy [23]), and non-rigid feature matching recall (NFMR) as the evaluation met-
rics for the 4DMatch and 4DLoMatch datasets following [22, 23, 51]. The IR,
feature matching recall (FMR), and rigid registration recall (RR) are used as
the evaluation metrics for the 3DMatch and 3DLoMatch datasets following [22].
The details are described in Appendix. ??

Implementation details. We used the SGD optimizer with a learning rate
of 0.015, a batch size of 8, and 15 epochs. These settings are consistent among
the baseline models [22,23,51] and our methods. The loss converged in all models
under these settings. Our method adhered to the baselines’ original paper for
all other settings. Our extension incorporates three additional hyperparameters:
r = 0.5, C(2) = 16, and L = 10, where L is the number of layers in WeaveNet.
The models were trained with four Tesla V100 GPUs.

Results The experimental results on 4DMatch, 4DLoMatch, 3DMatch, and
3DLoMatch are shown in Tab. 2. In the table, DS, OT, and WN suffixes indicate
the matching module used with the baseline model name (e.g., Lepard-DS is
Lepard’s original implementation, while Lepard-WN uses our proposed match-
ing module with the connector function). RoITr-WN outperformed other meth-
ods on the three datasets, whereas LNDP-WN showed superior performance on
the 4DMatch dataset compared to RoITr-WN. Our method did not negatively
impact the convergence speed as these results were obtained with an identical
schedule across all methods.

The ∆ in the table indicates performance improvements from our reproduced
results. Our method improved the performance of all baseline models under all
tested conditions. This positive effect remained consistent, even when compared
with scores reported in the original papers. These results experimentally support
our theoretical improvement by Eq. (2).

Fig. 1 shows qualitative results from our experiment. Samples were chosen
randomly to prevent cherry-picking. Exact matches are colored in green, while
others are red. Our method consistently increased exact matches across these
four samples.
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Learning 3D Point Cloud Registration as a Single Optimization Problem 11

4.2 Analysis on Memory Consumption

We improved the memory efficiency to scale WeaveNet [37] for 3D point cloud
registration. Tab. 3 shows average memory consumption measured during train-
ing and inference on 4DMatch with RoITr and their performance. WeaveNet
with and without feature summarization are implemented with ztrivial

(n,m) in ??
and zfs

(n,m) in Eq. (8), respectively. Due to memory constraint, models without
edge pruning were trained with a batch size of 1 on eight Tesla A100 GPUs,
while the others were trained with a batch size of 8 on four Tesla V100 GPUs
(as in the previous experiment).

From the result, we can see that the edge pruning significantly decreases
the memory consumption (par sample) from 135.2 GiB to 12.3 GiB (-90.9%) at
training and from 64.3GiB to 6.4 GiB (-90.0%) at inference. Feature summariza-
tion further reduces memory from 12.3 GiB to 8.1 GiB (-34.1%) at training and
from 6.4 GiB to 4.5 GiB (-29.7%) at inference, maintaining NFMR and improv-
ing IR, which we deem comparable. Overall, the memory consumption became
about 1/30 while preserving the performance.

We observed similar tendencies with other baseline models and datasets (see
Appendix ??). This experiment also revealed that our method consumes twice
as much memory as the original baseline models, which is a limitation.

4.3 Systematic Analysis on Robustness towards Feature
Uncertainty

Aiming to confirm the robustness of our method against uncertainty in the up-
stream process of distance estimation, we conducted a systematic study using
the 4DLoMatch and 3DLoMatch datasets. Identical point clouds were used for
both the source side input P and target side input Q in this experiment. Gaus-
sian noise N (0, σ) was added to the source side input P to simulate upstream
process uncertainties. The parameter σ was varied from 0.0 to 1.0 in steps of
0.2. The models were retrained for each setting.

The results of our experiments are illustrated in Figs. 5 and 6. We observed
a clear performance drop for larger σ in both figures, as intended. Among them,
methods using our matching module (WN) consistently outperformed their orig-
inal implementations (DS or OT). The difference was particularly noticeable at
σ = 0.6 with Lepard on 4DLoMatch (Fig. 5). The original Lepard model had a
sudden performance drop. However, our method diminished such negative effects
caused by this artificial ambiguity. We also confirmed that the positive effect is
more pronounced under the non-rigid partial condition of 4DLoMatch. These
results support our hypothesis that uncertainty-robust matching was achieved
by our method.

4.4 Hyperparameter Validation

Hyperparameter insensitivity is an essential factor for method’s utility. A parameter-
sensitive method may fail on unseen datasets. We conducted extensive ablation
studies to validate the method’s hyperparameter insensitivity.
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Fig. 5: Noise robustness test on 4DLo-
Match. Our method consistently outper-
forms its base model.

Fig. 6: Noise robustness test on 3DLo-
Match. We can see the same tendency with
the study on 4DLoMatch in Fig. 5.

Table 4: Study on the impact of hyperparameters. We used the best hyperparameters
listed in this table for all other experiments mentioned in this paper, irrespective of
the feature extractor and dataset used.

Method 4DLoMatch 3DLoMatch
NFMR(↑) IR(↑) FMR(↑) IR(↑) RR(↑)

RoITr-OT 67.2 64.8 89.6 54.3 74.2
RoITr-WN

(L = 10, C(2) =
16)

r = 0.1 69.6 67.1 89.6 60.2 76.0
r = 0.5 75.3 73.3 90.0 64.4 82.4
r = 1.0 70.1 70.3 89.9 61.3 77.7

RoITr-WN
(r = 0.5, C(2) =

16)

L = 6 68.9 67.9 89.9 58.9 77.8
L = 8 73.4 72.1 90.0 62.1 81.3
L = 10 75.3 73.3 90.0 64.4 82.4
L = 12 75.4 75.4 89.2 63.4 84.3

RoITr-WN
(r = 0.5, L = 10)

C(2) = 4 69.1 70.5 89.5 55.4 79.5
C(2) = 16 75.3 73.3 90.0 64.4 82.4
C(2) = 64 70.4 69.5 89.9 60.3 81.3

Our method has three hyperparameters: r, L, and C(2). The values described
in Sec. 4.1 were used for them as defaults, adjusting each parameter individually.
The results obtained with RoITr on the 4DLoMatch and 3DLoMatch datasets
are presented in Tab. 4. In this setup, the default values always outperformed
alternatives across all datasets. The same tendency was observed for other meth-
ods and datasets (See Appendix ??).

We discuss the results in detail. First, r is the radius of the nearest neighbor,
used as the threshold of edge pruning. A small r might overly prune edges, while
a large r might preserve noisy edges. This is observed in the lower performance
at r = 0.1 and 1.0 compared to r = 0.5. Second, L is the number of layers. Gen-
erally, deeper networks provide more accurate estimations. Our results confirm
this expectation with our method. We did not explore L over 12 as it makes
experiments without edge pruning in Sec. 4.2 impossible. Nevertheless, the per-
formance improvements from L = 6 to L = 10 follow a log-scale trend, and we
observe a negative effect when increasing layers from L = 10 to 12. Therefore, we
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(a) Test on the rigid dataset (surreal) (b) Test on the non-rigid dataset (SHREC)

Fig. 7: Accuracy transition of CorrNet3D w/ and w/o the proposed modification on
the base model, along with the error tolerances defined in ??.

CorrNet3D-WN (Ours)CorrNet3D-DeS
Correct Incorrect

CorrNet3D-WN (Ours)CorrNet3D-DeS
Correct Incorrect

CorrNet3D-WN (Ours)CorrNet3D-DeS
Correct Incorrect

CorrNet3D-WN (Ours)CorrNet3D-DeS
Correct Incorrect

Fig. 8: Qualitative results on SHREC. Samples were chosen randomly to ensure unbi-
ased selection. Green lines indicate exact matches with zero error tolerance, while red
lines indicate non-zero errors.

have decided L = 10 as the most efficient parameter, balancing performance and
memory consumption. Third, C(2) controls the split ratio of point-wise features
into components for the distance matrix calculation and uncertainty representa-
tion. A C(2) that is too small fails to represent uncertainty, while a C(2) that is
too large results in a shortage of dimensions for distance calculation. The result
explains this well, as C(2) = 16 performs better than C(2) = 4 and 64 among
the 256 channels.

4.5 Evaluation with CorrNet3D on Human Shape data

Dataset. We conducted additional experiments using human shape data as
in [54]. We applied our method to CorrNet3D [54], which has supervised and
unsupervised training setups. We tested our method under both conditions.

The Surreal dataset [41] is used for the rigid setting, which contains 230K
point cloud samples for training and 100 samples for testing. The 230K point
clouds were randomly paired into 115K training samples, and 100 test pairs were
created by rotating and translating the test samples. For the non-rigid setting,
the Surreal dataset and the SHREC dataset [20] are used, containing 230K for
training and 860 samples for testing. The training samples are the same as in
the rigid setting, while the 860 test samples are randomly combined into 430
test pairs. Each point cloud contains 1,024 points across the datasets.
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Evaluation metrics. Following [54], we used the corresponding percentage
(Corr) under controlled error tolerances as the evaluation metric. The details
are described in Appendix. ??.

Implementation details. In this experiment, we replaced the DeSmooth
module (DeS) proposed for the CorrNet3D model with WeaveNet (WN). The
model was optimized according to the loss function in [54]. Following [54], we
used the Adam optimizer with a learning rate of 1e-4, a batch size of 10, and
trained for 100 epochs.

Results on the rigid condition. The experimental results on the rigid
dataset are shown in Fig. 7 (a). The rigid lines illustrate the Corr metric scores
(↑) of CorrNet3D-WN in supervised (orange) and unsupervised (blue) setups.
The dotted lines illustrate the reproduced scores of the original CorrNet3D. The
results show that CorrNet3D-WN consistently outperforms CorrNet3D-DeS in
both setups, further supporting our method’s versatility.

A closer look at the figure indicates that the performance gain is substantial
for small tolerance error regions. It reveals that our method effectively distin-
guishes and identifies the corresponding point from similar points.

Results on the non-rigid condition. Fig. 7 (b) shows the experimental
results on the non-rigid dataset, and Fig. 8 shows the samples of the experimental
results. The CorrNet3D-WN consistently outperforms the CorrNet3D-DeS in
both setups again. The absolute Corr scores are lower than those in Fig. 7 (a)
due to the gap between training and test data. The original CorrNet3D paper
suggests training a model with rigid Surreal and testing it on non-rigid SHREC.
Even in this challenging scenario, our method shows improved performances.

5 Limitation

One limitation of our approach is sensitivity to the hyperparameters. Although
our method works well across datasets with an appropriate hyperparameter
setup, specific hyperparameter settings can lead to negative effects, similar to
conventional methods [17, 24, 32]. Another limitation is memory usage. Our ex-
periments revealed that our modification, including edge pruning and feature
summarization, scaled the method to a consumer GPU level. However, it still
doubles memory consumption. We must further improve the efficiency to apply
our method for mobile edges.

6 Conclusion

This paper proposed unifying a feature extractor and a matching module into a
single probabilistic model through a non-deterministic connection and a learning-
based matching module. Our method demonstrated consistent and significant
improvement across four SOTA architectures on six datasets. Our systematic
analysis with controlled noise also supported that our implementation performed
as intended. These results, achieved using a single hyper-parameter setting,
demonstrate the method’s reliability.
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