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Abstract. While the multi-view 3D reconstruction task has made sig-
nificant progress, existing methods simply fuse multi-view image fea-
tures without effectively leveraging available auxiliary information, es-
pecially the viewpoint information for guiding and associating features
of different views. To this end, we propose to enhance multi-view 3D
reconstruction with the power of viewpoint information. Specifically, a
simple-yet-effective viewpoint estimator is designed to learn and pro-
vide comprehensive viewpoint knowledge for locating and associating
learned features from different views. Moreover, to improve the 3D re-
construction quality when 2D images of only very few viewpoints are
available, we propose to learn the shape prior knowledge to provide suf-
ficient shape information for compensating the limited 2D observations.
Overall, we present VIPNet, benefiting from Viewpoint Information
and Shape Prior learning for high-quality multi-view 3D reconstruction.
Extensive experiments validate the effectiveness of the proposed VIPNet,
which achieves state-of-the-art performance on challenging datasets and
shows well generalization ability in real-world scenarios.
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1 Introduction

Multi-view 3D reconstruction task [25,30,34,38,42] aims to recover the geometric
structure of 3D scenes from 2D images of different viewpoints. It has emerged as
a key component in various applications including augmented reality [39], virtual
reality [2], drone navigation [13], and medical image processing [16].

Traditional methods for multi-view 3D reconstruction such as SfM [15] and
SLAM [5] are handcrafted to match image features across views, handling well
on simple scenarios but perform badly at complex scenes like self-occlusions or
irregular shapes. To deal with these limitations, deep learning based approaches
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Fig. 1: Visualization of results compared to baseline [42]. Our model which utilizes
viewpoint information is able to distinguish between the bow and stern of the water-
craft and therefore is able to reconstruct the watercraft more accurately. The more
viewpoints there are, the more effective it is.

are designed to learn intrinsic features to describe geometry structures and re-
cover 3D shapes. These approaches can be categorized based on their used 3D
representations, including meshes [27,30], point clouds [12,19] and voxels [3,34].
In this work, we focus on reconstructing single 3D object with voxel representa-
tion from multiple images.

Existing mainstream deep learning based approaches can be categorized as
convolutional neural network (CNN) based [3, 26, 34, 37, 42] and transformer-
based [18, 25, 36, 38, 41] approaches. Although these methods achieve fine per-
formance, they still suffer from associating features from different views under
complicated scenarios and constructing 3D shapes when only very few viewpoints
are available.

Associating features from multiple views poses challenges, especially when
the appearance of the 3D object is changed across different views. The lack of
explicit feature-to-viewpoint correspondence hinders efficient shape comprehen-
sion from the feature representations and accurate 3D reconstruction. Existing
methods have not utilized readily available information like viewpoint informa-
tion or depth data, leading to an unsatisfied performance for multi-view feature
fusion. To deal with this issue, we propose to learn the feature-to-viewpoint cor-
respondence from the readily accessible viewpoint information, which provides
key guidance to the multi-view feature fusion and helps to distinguish between
similar features from different views, thus reconstructing accurate 3D shapes.
For example, Fig. 1 shows that baseline method [42] could not distinguish the
bow and stern features and reconstruct the similar shape for the two parts, while
our method powered by the viewpoint information could understand feature-to-
viewpoint correspondence correctly and reconstruct high-quality 3D shapes.

Apart from the multi-view feature association problem, another one is how to
deal with performance descending when only 2D images of a few viewpoints are
available. Inspired by a single-view 3D reconstruction method [40], we propose to
utilize 3D shape prior knowledge for achieving good performance with limited
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2D observations. Shape prior is a natural solution as the human reconstructs
3D shapes by retrieving the closely matched 3D model from memory taking
2D images as clues. With the help of the shape prior learning, our method can
effectively reconstruct accurate 3D shapes based on 2D observations from very
few viewpoints.

Based on the above considerations, we propose VIPNet, enhanced with
Viewpoint Information and Shape Prior learning for accurate multi-view 3D
reconstruction to handle complex scenarios and limited viewpoints. Specifically,
we propose a simple-yet-effective viewpoint estimator to learn the intrinsic fea-
ture of the viewpoint information, which is compact and can guide the model
to distinguish confusing 2D features for accurate feature-to-viewpoint associ-
ations and high-quality multi-view 3D reconstruction. Moreover, we design a
shape-prior-based approach that learns and stores the shape prior knowledge in
a dictionary, and retrieves the shape prior from it with 3D rough volume gen-
erated by the baseline model as query clues. This approach can deal with the
limited consistency between 2D and 3D, thus reconstructing fine 3D shapes with
the help of pre-stored shape prior knowledge. Besides, it can also compensate
for the viewpoint information which is less significant when the number of view-
points is limited. Additionally, both the viewpoint feature and the shape prior
knowledge feature are combined to enhance the robustness and generalization
ability of our basic encoder-decoder structure to achieve better multi-view 3D
reconstruction performance under complicated scenarios and when only limited
viewpoints are available.

To verify the effectiveness of the above considerations, we implement our
method on a CNN-based baseline. The experiments are conducted on the popular
synthetic dataset ShapeNet [3, 32] as well as the more challenging real-world
dataset Pix3D [21]. Our method not only achieves state-of-the-art results but
also demonstrates the generalization ability in real-world scenarios, showing its
practical applicability.

Our contributions can be summarized in three major aspects. First, we
present the VIPNet, which can effectively associate features of different views
under complicated scenarios by learning the intrinsic viewpoint knowledge. To
the best of our knowledge, this is the first work to enhance the multi-view 3D
reconstruction for the voxel representation by using the viewpoint information.
Second, for the multi-view voxel reconstruction task, we propose an elaborate
shape prior learning and retrieving approach to deal with the limited 2D observa-
tions when only a few viewpoints are available. Third, extensive experiments on
ShapeNet and Pix3D demonstrate that VIPNet outperforms the state-of-the-art
methods consistently and can generalize well in real-world scenarios.

2 Related Works

2.1 Single-View 3D Reconstruction

Single-view 3D reconstruction is a difficult task due to its limited input views.
There are many different representations for 3D models, such as point clouds,
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meshes, and voxels. PSGN [4] and 3D-LMNet [14] generate point clouds from
single-view images. Pix2Mesh [27] represents the 3D object by a triangular mesh.
For voxel representation, there are more methods. 3D-VAE-GAN [31] uses both
GAN [6] and VAE [11] to generate 3D models, but it needs class labels to recon-
struction. OGN [22] and O-CNN [28] adopt octree to represent higher resolution
voxels. To supplement the missing information in the image, Mem3D [40] con-
structs shape priors which are helpful in recovering the 3D shape of an object,
especially when the object is heavily occluded or in a complex environment.

2.2 Multi-View 3D Reconstruction

Traditional methods for multi-view 3D reconstruction such as SfM [15] and
SLAM [5] have relied on feature matching between images to derive 3D mod-
els. However, they struggle when handling substantial variations in viewpoint,
which can result in suboptimal matching quality. Furthermore, the need for man-
ual feature engineering in traditional methods introduces vulnerability to noise
and mismatch errors.

In contrast, recent advances have harnessed deep learning to address these
challenges. Pixel2Mesh++ [30] predicts a 3D mesh from a coarse mesh by a GCN
network. [12,19,29] predict point clouds from multi-view images representing the
surface of 3D objects. In this work, we focus on the voxel representation. There
are two types of methods based on the voxel representation, CNN-Based and
Transformer-Based.

CNN-Based. Methods such as 3D-R2N2 [3] and LSM [9] employ RNN mod-
els to fuse image features from multiple viewpoints. However, RNNs are time-
consuming and permutation-variant. 3DensiNet [26] utilizes max-pooling to ag-
gregate multi-view image features. This approach often oversimplifies the rep-
resentation. In contrast, models such as AttSet [37] and Pix2Vox [34] employ
attention mechanisms to combine multi-view features, offering a more nuanced
understanding of the scene. GARNet [42] further refines Pix2Vox [34] by inte-
grating global image features to aid in 3D voxel generation.

Transformer-Based. EvolT [25] and LegoFormer [36] incorporate Transformer
structures within their encoders to amalgamate features from diverse viewpoints,
enhancing 3D scene understanding. 3D-RETR [18] utilizes Vision Transformer
(ViT) for feature extraction from each view. UMIFormer [41] and LRGT [38]
advance this approach, enhancing both intra-view and inter-view feature repre-
sentations through the power of Transformers.

3 Methodology

The input of our multi-view 3D reconstruction task consists of n images from
different viewpoints, denoted as I1, I2, ..., In ∈ RH×W×3. The output is the final
volume Vf ∈ [0, 1]D×D×D.
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Fig. 2: The architecture of our VIPNet. The main pipeline contains an encoder, a de-
coder, a merger, and a refiner. The viewpoint feature F view

i is generated by the view-
point estimator which directly takes F img

i as input. Furthermore, we predict the view-
point parameters, specifically azimuth, elevation, and distance, denoted as (ai, ei, di).
The rough volume Ṽf is the final output of the vanilla 3D reconstructor. We use Ṽf to
retrieve k shape priors from the Dictionary. Then the shape prior module takes Ṽf and
shape priors as input and output the shape prior feature F sp. Finally, for each view,
we concatenate F img

i , F view
i , F sp together to generate coarse volume V c

i by Decoder
and get final volume Vf after Merger and Refiner.

For each object, the Encoder is utilized to learn and extract essential features
F img
i from the input image. Next, the viewpoint estimator learns the intrinsic

viewpoint knowledge which is embedded as F view
i to provide viewpoint informa-

tion for distinguishing the learned image feature F img
i from similar counterparts.

Besides, the Vanilla 3D Reconstructor with frozen parameters is utilized for ob-
taining the rough volume Ṽf of each object, which is further used to retrieve
shape priors from the Dictionary and create the shape prior feature F sp. Then
the Decoder reconstructs the 3D shape based on the comprehensive learning
from F img

i , F view
i , and F sp to achieve accurate 3D reconstruction V c

i of this
viewpoint. Finally, a Merger and Refiner are proposed to integrate the comple-
mentary reconstructed 3D shapes of all viewpoints to obtain high-quality 3D
reconstruction Vf .

3.1 Main Architecture

The main architecture of our proposed method consists of an Encoder, Decoder,
Merger, and Refiner. Their details are introduced in the following.
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Encoder. The encoder is designed to extract the essential features of the input
image, which includes rich information for deducting the shape and gesture of
the 3D object. The encoder is composed of the first three convolutional blocks
from ResNet [7], along with three additional convolutional layers, resulting in
feature maps F img

i of size 256× 7× 7 for each input image Ii.

Decoder. The decoder is proposed to reconstruct the 3D shape comprehensively
based on the learned knowledge from the image feature F img

i , viewpoint feature
F view
i , and the shape prior feature F sp. The decoder comprises two parts, D1 and

D2, including one and four transposed convolutional layers, respectively. Initially,
image features are passed through D1 to produce (F

′

1, F
′

2, ..., F
′

n). These features
are then fused into a global feature F

′

G using spatial attention and channel
attention. Subsequently, all these n+1 features are processed through D2 to
yield the voxel predictions for each viewpoint (Ṽ c

1 , Ṽ
c
2 , ..., Ṽ

c
n ) as well as the final

features (F
′′

1 , F
′′

2 , ..., F
′′

n , F
′′

G).

Merger. Since different viewpoints contribute to the final 3D reconstructed
shape unequally, the merger is designed to predict a score map for each viewpoint
to indicate the importance of this viewpoint, which is further utilized as guidance
to fuse the reconstructed 3D shapes V c

i as a completed yet coarse volume Ṽ c
M .

Specifically, the input of the merger is the concatenation of two feature maps
(F

′′

i , F
′′

G−F
′′

i ). Then the coarse volume Ṽ c
M is obtained after predicting the score

maps with a softmax layer and fusing the Ṽ c
i by the score maps.

Refiner. The refiner is proposed to improve the quality of the fused coarse 3D
volume Ṽ c

M to obtain a fine and accurate final prediction. Specifically, the refiner
is a UNet [17] network structure combining with ResNet [7] structure, further
refining Ṽ c

M to generate the final prediction Ṽf .

3.2 Viewpoint Information

To enhance the semantic information related to the viewpoint within the image
feature, we directly use the image feature as input to extract viewpoint features
as shown in Fig. 3. Then, a single fully connected network is employed to predict
viewpoint parameters, including azimuth, elevation, and distance.

Viewpoint Feature. In order to extract viewpoint features from the image
feature F img

i , we start by applying 2D Average Pooling to each channel of the
image feature, resulting in a 256-dimensional vector. Subsequently, a two-layer
fully connected network, with an output dimension of 1024 for each layer, is
utilized to obtain a final 1024-dimensional viewpoint feature F view

i , as shown in
Fig. 3. This feature is extracted from the image feature and contains semantic
information related to the viewpoint. When concatenated with the image feature,
it effectively aids the Decoder and Merger in better reconstruction and fusion
based on the viewpoint information.
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Fig. 3: Architecture of the Viewpoint Estimator

Viewpoint Prediction. To ensure that the viewpoint feature genuinely con-
tains the necessary viewpoint information, we further process the obtained view-
point feature through a single fully connected network to predict viewpoint pa-
rameters, specifically azimuth, elevation, and distance, denoted as (ai, ei, di),
respectively. Azimuth ranges from 0 to 360, elevation from 0 to 30, and distance
from 0 to 1. To address the discontinuity issue in azimuth prediction within
the domain [0, 360], we convert it into Cartesian coordinates (axi , a

y
i ), where

ai = atan2(axi , a
y
i ). This transformation results in a final network prediction of

four values: (axi , a
y
i , ei, di). The viewpoints predicted are directly supervised by

the ground truth viewpoints which are already provided by [3].
Note that we only use ground truth viewpoints annotations to supervise our

viewpoint prediction module for training. For testing, no viewpoints are given.

3.3 Shape Prior Module

To further enhance the model’s performance when dealing with a limited number
of viewpoints, we propose to utilize shape prior with a designed dictionary for
storing and providing sufficient shape knowledge.

For multi-view input images, we first use the pre-trained vanilla 3D recon-
structor with frozen parameters to produce a rough 3D model Ṽf . This 3D
volume is decoded directly from the features of the images without shape priors.
Within the Dictionary, we retrieve several similar volumes to serve as shape pri-
ors. Finally, we use Multi-Head Attention and one fully connected (FC) layer to
merge these volumes into the ultimate shape prior feature. With this proposed
shape prior approach, our method can effectively leverage pre-stored shape prior
knowledge to deal with complicated scenarios especially when only very few
viewpoints are provided and lack sufficient 2D observations.

Dictionary. We construct the Dictionary based on the Ground Truth (GT)
volumes of the training dataset. Specifically, the Dictionary consists of a total of
m volumes, initially empty. For each sample in the training set, if its Intersection
over Union (IoU) with all the volumes currently in the Dictionary is less than
a threshold δ, then we add it to the Dictionary. If the Dictionary is not full,
we add the volume directly. Otherwise, we remove the volume that entered the
Dictionary earliest and then add the current volume. This process ensures that
the Dictionary contains a representative set of volumes within its capacity limit.
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Fig. 4: Visualization of retrieved shape priors

The steps described above are performed before training, and we will save
the Dictionary locally for future use. During subsequent training and testing,
we directly load the saved Dictionary and retrieve shape priors. Specifically, we
first calculate the Intersection over Union (IoU) between the rough volume Ṽf

and all the volumes in the Dictionary, and then we select the top k entries with
the highest IoU as the final set of shape priors. Fig. 4 shows two examples, we
exhibit partial shape priors retrieved from the Dictionary.

Multi-Head Attention. With the Dictionary in place, we use the rough esti-
mation Ṽf to find the k shape priors in the Dictionary, denoted as SP1, SP2, ..., SPk.
Next, we need to merge them into a single shape prior feature. To accomplish
this, we apply the Multi-Head Attention mechanism.

As shown in Fig. 5, we treat Ṽf as the Query and (SP1, SP2, ..., SPk) as
the Key and Value. Initially, we employ a volume encoder which consists of
four layers of three-dimensional convolutional networks to separately extract
voxel features for Ṽf , SP1, SP2, ..., SPk, resulting in q, ki, and vi, i = 1, 2, ..., k.
Then we use three separate linear layers parameterized by Wq,Wk,Wv to get
query, key, and value embedding Q,K, V . Subsequently, the Q,K, V are fed into
the Multi-Head Attention (MHA) [24] module and the Layer Normalization [1]
module to perform cross-attention. We apply residual connection to fuse the
input query embedding with the output to get enhanced feature FQ. The final
shape prior feature F sp is obtained after a fully connected (FC) layer and Layer
Normalization with residual connection. The whole pipeline is formulated as:

q = VolEnc(Ṽf ), ki, vi = VolEnc(SPi) (1)
Q = qWq,K = kiWk, V = viWv (2)

FQ = Q+ LN(MHA(Q,K, V )) (3)
F sp = FQ + LN(FC(FQ)) (4)

3.4 Loss Function

For the viewpoint prediction (ai, ei, di) and their corresponding Ground Truth
values (âi, êi, d̂i), we first convert azimuth ai and elevation ei into coordinates
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Fig. 5: Architecture of the Shape Prior Module

on the unit circle while leaving distance unchanged. Then, we calculate the final
viewpoint loss function using the L2 loss for all these parameters and take the
average of all views.

D(u, v) = ∥ cosu− cos v∥2 + ∥sinu− sin v∥2 (5)

Lview =
1

n

n∑
i=1

[
D(ai, âi) +D(ei, êi) + ∥di − d̂i∥2

]
(6)

Following the previous work, we also apply binary cross-entropy(BCE) loss to
supervise the coarse volume V c

M and the final volume Vf . The BCE loss between
predicted volume V and ground truth volume V g is formulated as:

Lvox(V ) =
1

N

N∑
i=1

[V g
i log Vi + (1− V g

i ) log(1− Vi)] (7)

where N denotes the number of voxels in volume. Vi and V g
i represent the

predicted occupancy and the corresponding ground truth.
Therefore, the complete loss function of our model is defined as:

L = Lvox(V
c
M ) + Lvox(Vf ) + 0.1 · Lview. (8)

4 Experiments

4.1 Datasets and Metrics

We assess the performance of all the models using the ShapeNet [32] dataset.
Following [3], our evaluation focuses on a specific subset of ShapeNet, which
comprises 13 major categories and encompasses a total of 43,783 3D models.
Besides, following [34, 35], we evaluate our model on challenging real-world
dataset Pix3D [21], which contains 2894 untruncated and unoccluded single-
view chair images. Following the current advanced works, we take the mean
Intersection-over-Union (IoU) and the F-Score@1% [23,35] as our metrics.

4.2 Implementation Details

The input image resolution and output voxel resolution are set as H = W =
224, D = 32. We adopt an Adam [10] optimizer with β1 = 0.9 and β2 = 0.999 to
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Table 1: Comparison of multi-view 3D reconstruction on ShapeNet using IoU / F-
Score@1%. Following GARNet [42], our VIPNet and VIPNet+ take 3 and 8 as the
maximum number of input views during training, respectively. Best in bold, second
underlined.

Method 1 view 2 views 3 views 5 views 8 views 12 views 20 views

3D-R2N2 [3] 0.560 / 0.351 0.603 / 0.368 0.617 / 0.372 0.634 / 0.382 0.635 / 0.383 0.636 / 0.382 0.636 / 0.383
AttSets [37] 0.642 / 0.395 0.662 / 0.418 0.670 / 0.426 0.677 / 0.432 0.685 / 0.444 0.688 / 0.445 0.693 / 0.448

Pix2Vox++ [35] 0.670 / 0.4360.4360.436 0.695 / 0.452 0.704 / 0.455 0.711 / 0.458 0.715 / 0.459 0.717 / 0.460 0.719 / 0.462
GARNet [42] 0.673 / 0.418 0.705 / 0.455 0.716 / 0.468 0.726 / 0.479 0.731 / 0.486 0.734 / 0.489 0.737 / 0.492
GARNet+ 0.655 / 0.399 0.696 / 0.446 0.712 / 0.465 0.725 / 0.481 0.733 / 0.491 0.737 / 0.498 0.742 / 0.504

VIPNetVIPNetVIPNet 0.6760.6760.676 / 0.421 0.7140.7140.714 / 0.4640.4640.464 0.727 / 0.479 0.737 / 0.491 0.742 / 0.498 0.745 / 0.502 0.747 / 0.505
VIPNet+VIPNet+VIPNet+ 0.669 / 0.409 0.713 / 0.460 0.7290.7290.729 / 0.4800.4800.480 0.7420.7420.742 / 0.4960.4960.496 0.7500.7500.750 / 0.5060.5060.506 0.7540.7540.754 / 0.5120.5120.512 0.7570.7570.757 / 0.5160.5160.516

Table 2: Effect of Viewpoint Information and Shape Priors. VP, VF, and SP represent
predicting viewpoints from image features, concatenating viewpoint features F view

i and
image features, and concatenating shape prior features and image features, respectively.
The results are IoU performance testing on the ShapeNet dataset. All the models take
8 as the maximum number of input views during training.

VP VF SP 1 view 2 views 5 views 8 views 12 views 20 views

0.655 0.696 0.725 0.733 0.737 0.742
✓ 0.659 0.703 0.734 0.743 0.748 0.753
✓ ✓ 0.661 0.705 0.735 0.744 0.749 0.753

✓ 0.665 0.707 0.735 0.743 0.747 0.751
✓ ✓ 0.666 0.709 0.738 0.747 0.751 0.755
✓ ✓ ✓ 0.669 0.713 0.742 0.750 0.754 0.757

train the multi-view 3D reconstruction with a batch size of 32 for 200 epochs.
The learning rate is 2e-4 initially and reduces to half after [40, 60, 80, 100,
140, 180] epochs sequentially. For all the experiments, we take the pre-trained
GARNet+ [42] as the Vanilla 3D Reconstructor. The capacity of the Dictionary
is 4000 and the number of retrieved shape priors k is set to 8. We use the same
training strategy as [42], named dynamic two-stage training strategy. Eventually,
following [38, 41, 42], we provide two models respectively setting the maximum
number of input views to 3 and 8 during training, named VIPNet and VIPNet+,
which are all trained on 2 Tesla V100 for about 2 days and 5 days respectively.
The fixed threshold for binarizing the probabilities is set as 0.3.

4.3 Evaluation on the ShapeNet Dataset

We compare our proposed multi-view 3D reconstruction methods VIPNet and
VIPNet+ with the current SOTA methods on the ShapeNet dataset. As shown
in Tab. 1, compared to other CNN-based methods, our VIPNet and VIPNet+
dominate in almost all metrics. We also compare the visual results shown in
Fig. 6. For chair reconstruction, our VIPNet+ has better reconstruction for both
left and right arms due to our shape prior module and viewpoint information.
For the display reconstruction, our VIPNet+ can reconstruct a more accurate
and complete screen.
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Fig. 6: Visualization of Multi-View 3D reconstruction with other methods on ShapeNet
when facing 5, 10, 15, 20 as input views number.

Table 3: The quality of retrieved shape prior when testing on ShapeNet.

IoU(SP,GT) ≥ 0.2 ≥ 0.3 ≥ 0.4 ≥ 0.5

1-view 98.1% 94.1% 86.6% 74.7%
3-view 98.7% 95.4% 88.6% 77.0%
20-view 98.8% 95.7% 89.1% 77.6%

To evaluate the quality of the retrieved shape prior, we calculate the IoU
between the shape prior SP1 and the ground truth volume for each test sample
in ShapeNet. We count the proportion of test samples with IoU greater than
0.2, 0.3, 0.4, and 0.5, respectively. Tab. 3 shows the results. Only with single-
view input, about 75% of the test samples can retrieve the shape prior from the
Dictionary with IoU greater than 0.5. With 20 views input, about 99% of the
test samples can retrieve the shape prior with IoU greater than 0.2.

To verify the accuracy of the viewpoint prediction, we calculated the view-
point accuracy on the test set of ShapeNet. Specifically, we first convert the ‘az-
imuth’ and ‘elevation’ into Cartesian coordinates. When the distance between
the predicted point and the ground truth point is less than 0.1, and the difference
in ‘distance’ is also less than 0.1, we consider the viewpoint prediction to be cor-
rect. Ultimately, we achieved a 98% accuracy rate on the test set of ShapeNet.
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Table 4: IoU and F-score@1% results of single-view reconstruction on Pix3D.

Pix2Vox++ GARNet VIPNet

IoU / F-score@1% 0.279 / 0.113 0.291 / 0.116 0.300 / 0.140

Table 5: IoU results of different capacities of the Dictionary testing on ShapeNet. All
the models take 3 as the maximum number of input views during training. m represents
the capacity of the dictionary.

1 view 2 views 5 views 20 views

m = 1000 0.668 0.707 0.732 0.746
m = 2000 0.676 0.713 0.734 0.745
m = 4000 0.676 0.714 0.737 0.747

This demonstrates that our viewpoint prediction is effective and indicates that
our image features indeed contain viewpoint information.

4.4 Evaluation on the Pix3D Dataset

To evaluate our proposed methods on real-world images, we conduct single-
view reconstruction on the Pix3D dataset. Following the previous methods [34,
35], we generate a new training dataset of ShapeNet. Specifically, we use the
pipeline of RenderForCNN [20] to render 60 images for each 3D model of the chair
in the ShapeNet dataset and then synthesize images with random background
from the SUN dataset [33]. Tab. 4 shows the performance compared to other
methods. With the help of viewpoint information and shape priors, VIPNet
still achieves satisfactory results in challenging real-world scenarios. The IoU
result of our method is better than all the other methods. For F-score@1%,
our method also achieves SOTA performance, demonstrating robustness in real-
world scenarios. Moreover, Fig. 7 shows the visualization results on Pix3D. Our
model can generate more accurate 3D shapes compared to other methods.

4.5 Ablation Study

Ablation studies are conducted regarding our method only retaining the Encoder,
Decoder, Merger, and Refiner as the baseline model. We evaluate the effect of
the viewpoint information and shape priors on the performance of multi-view
3D reconstruction. All the experiments are conducted on the ShapeNet dataset.

Viewpoint Information. To evaluate the effect of viewpoint information, we
design three models: not using any viewpoint information, only using viewpoint
prediction(VP), and using viewpoint prediction (VP) as well as concatenating
the viewpoint features(VF) F view

i with image features F img
i . We can see from
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Table 6: IoU results on ShapeNet when building Dictionary on three random orders.
All the models take 3 as the maximum number of input views during training. The
results are shown in “mean ± std" format.

1 view 2 views 5 views 20 views

0.6771 ± 0.0009 0.7147 ± 0.0009 0.7371 ± 0.0004 0.7479 ± 0.0005

Table 7: IoU results of different numbers of retrieved shape priors testing on ShapeNet.
All the models take 8 as the maximum number of input views during training. k
represents the number of retrieved shape priors.

1 view 2 views 5 views 20 views

k = 1 0.666 0.710 0.738 0.754
k = 8 0.669 0.713 0.742 0.757
k = 16 0.668 0.711 0.740 0.755

Tab. 2 that only applying viewpoint prediction without concatenating viewpoint
features also improves the performance, indicating that viewpoint prediction in-
deed enhances the semantic representation of image features. Besides, concate-
nating the viewpoint feature (VF) further improves the performance. Fig. 1 also
indicates the effectiveness of viewpoint information.

Shape Prior Module. We evaluate the importance of the Shape Prior mod-
ule. Tab. 2 shows the shape prior module indeed improves the multi-view 3D
reconstruction performance whether with viewpoint information or not.

We also evaluate whether the capacity and building order of the Dictionary
affect the performance of reconstruction. Tab. 5 indicates that the IoU results are
higher with the larger capacity of the Dictionary, and the performance is almost
converged when m = 4000. To evaluate the impact of the order of traversing
the dataset to build a Dictionary, we tried to generate three dictionaries by
different random traversing orders and train the network with these Dictionaries
separately. Tab. 6 shows the test results. We can see that it does not affect the
final performance. Tab. 7 shows the number of retrieved shape priors does not
affect the performance much and the results indicate that 8 is the best.

Furthermore, we explore different ways to fuse the shape priors retrieved
from the Dictionary. For instance, we can directly use the Top-1 retrieved shape
as the shape prior. We can also use average fusion or the LSTM [8] network to
encoder retrieve shapes into shape prior features. Besides, we also try directly
taking the rough volume Ṽf as the shape prior. Tab. 8 shows the results. The
model with MHA performs best on each number of input views.

Effect on Different Numbers of Input Views. We evaluate the effect of
viewpoint information and shape prior when testing on different numbers of
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Fig. 7: Visualization of reconstruction
on Pix3D datasets. The input is a single
image with complex background.

Fig. 8: The improvement of viewpoint in-
formation and shape priors when testing on
each number of input views.

Table 8: IoU results of different shape prior fusion modules testing on ShapeNet. All
the models take 3 as the maximum number of input views during training.

1 view 2 views 5 views 20 views

Ṽf 0.670 0.710 0.734 0.746
1 SP 0.673 0.709 0.729 0.739

Average 0.674 0.709 0.730 0.741
LSTM 0.675 0.710 0.732 0.744
MHA 0.676 0.714 0.737 0.747

input views. Fig. 8 shows the results. Notably, the improvement in viewpoint
information is more pronounced when dealing with a higher number of input
viewpoints, whereas the enhancement from shape priors is more prominent when
dealing with fewer input viewpoints.

5 Conclusion

In conclusion, we propose a novel multi-view 3D reconstruction network, VIPNet.
It combines viewpoint information and shape priors to improve the performance
on whether few or high numbers of views. Our experiments have shown that
viewpoint information plays a critical role in 3D reconstruction, especially in a
surplus of input viewpoints. While, the shape prior module further enhances the
network’s ability to reconstruct accurate shapes, which is particularly valuable
with limited input viewpoints. Assisted by viewpoint information and shape
priors, our method exhibits robust generalization ability in real-world scenarios.
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