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Abstract. U-Net models with encoder, decoder, and skip-connections
components have demonstrated effectiveness in a variety of vision tasks.
The skip-connections transmit fine-grained information from the encoder
to the decoder. It is necessary to maintain the feature maps used by
the skip-connections in memory before the decoding stage. Therefore,
they are not friendly to devices with limited resource. In this paper,
we propose a universal method and architecture to reduce the mem-
ory consumption and meanwhile generate enhanced feature maps to im-
prove network performance. To this end, we design a simple but effective
Multi-Scale Information Aggregation Module (MSIAM) in the encoder
and an Information Enhancement Module (IEM) in the decoder. The
MSIAM aggregates multi-scale feature maps into single-scale with less
memory. After that, the aggregated feature maps can be expanded and
enhanced to multi-scale feature maps by the IEM. By applying the pro-
posed method on NAFNet, a SOTA model in the field of image restora-
tion, we design a memory-efficient and feature-enhanced network archi-
tecture, UNet−−. The memory demand by the skip-connections in the
UNet−− is reduced by 93.3%, while the performance is improved com-
pared to NAFNet. Furthermore, we show that our proposed method can
be generalized to multiple visual tasks, with consistent improvements
in both memory consumption and network accuracy compared to the
existing efficient architectures.

Keywords: Skip-connection · Memory · U-Net.

1 Introduction

U-Net [23] and its variants [12,22,28,43,44] have become the de facto standard
in the field of pixel-level computer vision research [41]. With the ability to learn
effective features efficiently and robustly, they achieve superior performance in
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Fig. 1: (a) Architecture of a common U-Net model. The dashed lines represent the skip-
connections. Feature maps in the blue shadow are needed to be maintained in memory.
(b) Memory consumption for skip-connections for U-Net and UNet−− throughout the
inference process, the unit is ME1 which denotes the memory consumption of E1.

many tasks e.g ., image restoration [5], image segmentation [4,6,10], image mat-
ting [36], etc. U-Net consists of an encoder, a decoder, and skip-connections
between them as in Fig. 1(a). Feature maps are downsampled stage by stage
in the encoding phase and correspondingly upsampled in the decoding phase.
The skip-connections transmit the details of the encoding information to the
decoder. They can compensate for details loss due to downsampling operations
with a tolerable computation cost. However, they are not friendly in terms of
memory consumption in especially resource-limited device. The feature maps
transmitted by the skip-connections require on-chip memory and the memory
will not be released until the feature maps of the skip-connections are fused
into the decoder. Therefore, despite their great success, deploying U-Net or its
variants on resource-limited devices is still a non-trivial task.

To reduce the heavy memory consumption induced by the skip-connections,
recently many researchers have proposed methods of efficient model design to
attempt to merge them into the parallel convolutional structures. RepVGG [7]
proposes structural re-parameterization to decouple a training-time multi-branch
topology with an inference-time plain architecture. Inspired by the method, the
authors in [8, 29, 30] merge the skip-connections into a parallel convolutional
structure during inference. The final obtained single-branch structure is equiv-
alent to the original multi-branch structure, as there are no non-linear units in
the original structure. Although they reduce the memory consumption and im-
prove inference speed, the methods are not appropriate for the skip-connections
in U-Net yet. The main reason is that in general in the multi-branch structure
represented by the skip-connections, one of the branches on the main trunk con-
tains several non-linear transformations. Consequently, it is not achievable to
merge the skip-connections equally.
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UNet−−:U-Net with Reduced Skip-Connections 3

The authors in [25,32] propose to reconstruct a model without skip-connections
which is obtained by progressively removing skip-connections during finetun-
ing. The model is trained with the distillation method to mitigate performance
drop, where the teacher model is combined with skip-connections. Here the skip-
connections often refer to the shortcuts in residual structure, where the distance
between layers connected by skip connections is approximately two or three lay-
ers. In contrast, the layers which are connected by the skip-connections in U-Net
are very far away. It spans across two stages of the encoder and the decoder,
and it often leads to a large difference in the feature maps at both endpoints of
the skip-connections. Directly removing such skip-connections from U-Net can
result in significant accuracy loss, which is verified in Tabs. 4 to 7. It is important
to reduce the memory consumption of the skip-connections without introducing
harm in accuracy.

Some other works aim to improve U-Net performance by designing complex
structures [14, 35, 38, 39] to replace the simple skip-connections. The authors
in [14] found that the combination of feature maps from multiple encoder lev-
els generates enriched features compared to the simple skip-connection. This
benefits from the combination of various regions of interest from different levels.
However, these complex structures lead to high computation and memory usage.
We propose an efficient multi-scale information aggregation module (MSIAM)
and an effective information enhancement module (IEM) which can be easily in-
tegrated into any U-Net or its variants. Specifically, the MSIAM first reduces the
number of channels in multi-scale feature maps to save memory, then these com-
pressed feature maps are resized to a single-scale with the same resolution and
concatenated together, and finally information interaction is achieved through
point-wise convolution. The generated single-scale feature map is maintained in
memory instead of the original large feature maps. The IEM moduel is designed
to generate enhanced multi-scale feature maps based on the single-scale feature
map. First, the single-scale feature map is resized to multiple groups of feature
maps with different resolutions, and then an enhancement block is applied to
each group to generate enriched feature maps. To avoid a large computational
cost, we introduce a ConvNeXt V2 block and a separable convolution in the
enhancement block.

By applying MSIAM and IEM to U-Net, we construct a memory-efficient
and feature-enhanced network architecture named UNet−−.

The main contributions are summarized as follows:

1. We significantly reduce the memory consumption induced by the skip-connections
in U-Net and its variants, and further construct a memory-efficient and
feature-enhanced network architecture.

2. We design plug-and-play modules, MSIAM and IEM, which are applicable
to any U-Net and its variants.

3. We demonstrate the proposed method in a great variety of tasks and verify
its generality and effectiveness.
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2 Related work

The skip-connection, also known as shortcut or residual, is a popular trick in
neural network design. It was put forward by ResNet [11] in which the layer
is reformulated as residual learning function with reference to the input of the
layer by introducing an identity mapping. The design of skip-connections makes
training deeper networks easier and gains accuracy from the increased depth.
Inspired by this idea, the skip-connection is widely used in latter networks [27].
Inception-v4 [27] significantly accelerates Inception network training by skip-
connections. ResNeXt [34] combines skip-connections with designed homoge-
neous multi-branch architecture. Res2Net [9] constructs hierarchical residual-like
connections within one single residual block.

Based on FCN [24], U-Net [23] introduces long-path skip-connections between
the contracting path and the expansive path. Such network design obtains great
success in pixel-level prediction task (e.g. semantic segmentation, instance seg-
mentation, image restoration) as the skip-connections can transmit fine-grained
information lost caused by downsampling. In order to obtain higher accuracy,
some designs build more complex connections. [12,43], introduce attention mech-
anism for the feature maps of skip-connections [15, 22, 26]. Some recent work
designs hybrid block to model global and multi-scale context [31], [14].

Although we can benefit from skip-connections, large memory consump-
tion is required. These works [7, 29, 30] demonstrate that through structural
re-parameterization, skip-connections can be merged into their parallel convolu-
tions to reduce extra memory requirements. [7] is a simple architecture with a
stack of 3 × 3 conv and ReLU. During the training process, it stacks a sets of
multi-branch structures composed of 3 × 3 conv, 1 × 1 conv, and identity map-
ping. After training, it converts the trained multi-branch structure into a single 3
× 3 conv for inference. Consequently, the converted model only has a stack of 3 ×
3 conv, which is efficient for test and deployment. [30] is another technique that
converts multi-branch networks with skip-connections to plain networks through
structural re-parameterization and over-parameterization. [29] uses structural re-
parameterization to lower the memory access cost by removing skip-connections
in the network based on transformer architecture. Some other works are pro-
posed to progressively remove skip-connections during training process [32] or
further with distillation [25]. [32] introduces two new methods, SkipRemover and
SkipShortener, that alters networks with skip-connections dynamically during
retraining by remove or shorten the skip connections to fit better on hardware,
achieving resource-efficient inference with minimal to no loss in accuracy. As
analyzed in Sec. 1, these methods are not applicable to skip-connections with
long path in U-Net networks. In this paper, we propose a different method to
significantly decrease memory consumption caused by skip-connections, a set
of multi-scale feature maps are transformed into a lightweight single-scale one,
which will be expanded and enhanced later.
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3 Methodology

In this chapter, we introduce the runtime memory analysis of common U-Net
models in Sec. 3.1. We present the proposed UNet−− architecture and its details
in Sec. 3.2 and Sec. 3.3.

3.1 Memory analysis

The common U-Net model and its runtime memory analysis is shown in Fig. 1.
There are five stages in the encoder and decoder, respectively. The feature maps
output at each stage in the encoding process are marked as {E1, E2, E3, E4, E5}
. Between adjacent stages, by downsampling operations the feature map size
is halved and the number of channels is doubled. Similarly, the feature maps
output at each stage in the decoding process are marked as {D1, D2, D3, D4, D5}.
Between adjacent stages, through upsampling operations, the feature map size is
doubled and the number of channels is halved. There are four skip-connections
that transmit the feature maps from E1 to D1, E2 to D2, E3 to D3, and E4 to D4,
respectively. We note the total memory size for feature maps to be transmitted
via skip-connection as Msc. To simplify the analysis, we ignore the memory
required for loading model parameters as its value is constant. We consider the
value of Msc at the end of each stage of the encoder and decoder processes. At
the end of E1, the output feature maps need to be maintained in memory for
later connection to D1. The size of the feature maps is calculated as Eq. (1).

ME1 = C ×H ×W (1)

then Msc = ME1
at the end of E1. Similarly at the end of E2, the output feature

maps also need to be maintained for later connection to D2 whose memory size
is:

ME2
= 2× C × H

2
× W

2
=

ME1

2
(2)

then Msc = ME1 +ME2 =
3×ME1

2 . Analogously, Msc = ME1 +ME2 +ME3 =
7×ME1

4 at the end of E3, and Msc = ME1
+ ME2

+ ME3
+ ME4

=
15×ME1

8 at
the end of E4. The memory of maintaining feature maps keeps increasing in the
encoder process. It reaches a peak value of 15

8 ×ME1 at the end of E4. At the
end of D4, the maintained feature maps from E4 is released. Thus, at that time
Msc starts to be decreased to ME1

+ME2
+ME3

. Along with the entire decoding
process, Msc continues to be decreased to zero until the end the D1. We illustrate
the temporal distributive characteristics of Msc in Fig. 1(b). It is worth to note
that the ME4 is only ME1× 1

8 . That means the skip-connections represented by
Msc consume extra 14 times memory of ME4 when it reaches peak value. Most
of the memory will not be released until the decoding process is finished. In
conclusion, the skip-connections present a great challenge for model deployment
in resource-limited devices.
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Models PSNR SSIM

Model-0 (w/o skip-connection) 39.4737 0.9561
Model-1 (E1 → D1) 39.7906 0.9587
Model-2 (E2 → D2) 39.8738 0.9593
Model-3 (E3 → D3) 39.8703 0.9593
Model-4 (E4 → D4) 39.8111 0.9587

Table 1: Performance comparison with only one skip-connection, where (Ei → Di)
represents the skip-connection connects Ei and Di. The results are evaluated on the
SIDD validation dataset.

3.2 Overview of the method

We propose a universal method to reduce memory consumption caused by the
skip-connections and meanwhile generate enhanced feature maps which boost
network performance. Applied with our method, we design a memory-efficient
and feature-enhanced network architecture based on U-Net, UNet−−, which is
named for consuming less memory by skip-connections than U-Net. The model
architecture is shown in Fig. 2.

There are two main modules in UNet−−: Multi-Scale Information Aggre-
gation Module (MSIAM) and Information Enhancement Module (IEM). Unlike
U-Net models, in UNet−− the multi-scale feature maps output from the encoder
are not directly transmitted to the decoder. They are fed into the proposed
MSIAM and become lighter sequentially. MSIAM aggregates the light-weight
multi-scale feature maps and generates the corresponding single-scale feature
maps but with information from multiple receptive fields. The single-scale feature
maps require less memory than common skip-connections. During the decoding
process, according to the input single-scale feature maps, IEM can generate a
group of multi-scale feature maps. The generated multi-scale feature maps carry
enhanced information with stronger representative ability. Through this way, the
memory demand for skip-connections is significantly reduced to single-scale fea-
ture maps and the enhanced information generated by IEM helps to improve the
model performance. The macro architecture of the proposed modules is described
in the following section.

3.3 Macro architecture design

Multi-Scale Information Aggregation Module (MSIAM) The target of
this module is to generate a group of single-scale, compact, and representative
feature maps. The memory footprint of the feature maps should be much smaller
than that of common skip-connections.

To reduce the memory consumption caused by skip-connections, we are con-
sidering whether each skip-connections is crucial and whether it is possible to
remove certain skip-connections directly. We first study the contribution of each
skip-connections. We construct four U-Net models; each model has only one
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Fig. 2: Illustration of the proposed UNet−− network. The original skip-connections
are replaced with MSIAM and IEM. MSIAM aggregates multi-scale feature maps to
single-scale with less memory demand. IEM generates enhanced multi-scale feature
maps according to the output of MSIAM. Feature maps in the blue shadow are needed
to be maintained in memory.

skip-connection between encoder and decoder. The four U-Net models share the
same architecture except the position of the single skip-connection. Specifically,
the single skip-connection in Model-1 connects E1 and D1, the skip-connection
in Model-2 connects E2 and D2, the skip-connection in Model-3 connects E3 and
D3, and the skip-connection in Model-4 connects E4 and D4. Besides, we also
construct Model-0 without any skip-connections for comparison. We verify the
performance of these five models in the image denoising task. The results of the
experiment are shown in Tab. 1. We find that the contribution ratio is different
and irregular. This is similar to the findings in [31] where they found that the
optimal combination of skip-connections is different for different datasets. To ob-
tain a universal structure which is appropriate with multiple tasks and datasets,
it is useless to find an optimal combination of skip-connections. In contrast, we
should keep all skip-connections to avoid the performance dropping dramatically.

In addition, the skip-connections in U-Net are independent of each other,
which leads to the information with different receptive fields lacking interactivity.
Referring to the ideas in [12,14,17,31,43], we think that it is potential to generate
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powerful and robust information by combining all these multi-scale feature maps
and directing the information to cooperate with each other automatically.

Taking these considerations into account, we design MSIAM in Fig. 2. There
are four units in MSIAM that can be represented as Eq. (3).

E′ = PWConv(RS(RC(E1))||RS(RC(E2))||...RS(RC(En))...||RS(RC(EN )))
(3)

where, E′ is single-scale output feature maps of MSIAM, N and n represents
how many stages in encoder and the current stage index, respectively, En rep-
resents the feature maps outputted by the nth stage, PWConv is a point-wise
convolution, RS means the resizing operation which adjusts the resolution of
feature maps, RC means reducing channels of feature maps, || represents the
concatenation operation.

Firstly, the multi-scale feature maps is pruned to be slim. It can be realized
by point-wise convolution to avoid a large computational cost. Then these multi-
scale feature maps need to be resized to have the same resolution. The target
resolution can be any of the multi-scale feature maps generated by the end of
the encoding process. We illustrate three classical types of architecture that
correspond to different target resolutions in Fig. 3. For model in Fig. 3(a), the
resizing is performed by Pixel Unshuffle, for model in Fig. 3(c), the resizing
is realized by Pixel Shuffle, and for model in Fig. 3(b), the resizing is realized
by both. The resized feature maps are further concatenated along the channel
dimension. Finally, the information interaction is performed by a point-wise
convolution PWconv.

The parameters in the MSIAM are optimized during the training process,
which are used to weight different feature maps. In this way, the information
ratio between different feature maps will automatically be adjusted. Therefore,
multi-scale fine-grained details are interactive and complementary to each other,
leading to compact but enriched feature maps.

Information Enhancement Module (IEM) IEM is designed to generate
enhanced multi-scale feature maps according to the compact single-scale feature
maps produced by MSIAM.

As shown in Fig. 2, IEM consists of a resize operation and an enhancement
header. Firstly, the input single-scale feature map is resized to a specific reso-
lution according to the current decoder stage. The resize operation can be an
unsampling or a downsampling operator, which depends on the relative sizes of
the resolutions between source and target feature maps. Accordingly, there are
three classical types of IEM in Fig. 3. For the network architecture in Fig. 2, the
resize operation is applied with the pixel shuffle operation. The enhancement
header consists of a ConvNeXt V2 [33] block and a separable convolution. We
apply the ConvNeXt V2 block due to its powerful representative ability. The
separable convolution adjusts the number of output channels, which should be
consistent with the channels output in the corresponding encoding stage.

To verify that the generated feature maps by IEM are not imitations of the
feature maps output by the encoding process but with enhanced information,
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Fig. 3: Model structure variants corresponding to different target resolution. Feature
maps in the blue shadow are needed to be maintained in memory. (a) The resolution
of the aggregated feature maps equals to the minimum resolution in the encoder. (b)
The resolution of the aggregated feature maps equals to the intermediate resolution in
the encoder. (c) The resolution of the aggregated feature map equals to the maximum
resolution in the encoder.

Table 2: The similarity relationship
between the output feature maps of en-
coder and IEM. A larger SSIM repre-
sents greater similarity.

Stage SSIM

{E1, IEM1} 0.1813
{E2, IEM2} 0.0179
{E3, IEM3} 0.0131
{E4, IEM4} 0.0157

Table 3: Comparison of representa-
tive ability between the output feature
maps of encoder and IEM, where RA
stands for the representative ability.

Stage RA of Encoder RA of IEM

1 0.3315 0.4185
2 0.2768 0.6529
3 0.2203 0.3662
4 0.2209 0.2460

we first compute the similarity between these two groups of feature maps. We
apply SSIM [42] as the similarity metric, within the range of [0,1]. The result is
shown in Tab. 2. It shows that the feature maps generated by IEM are different
from the encoder outputs.

To compare the representative ability of feature maps, the method used in [33]
is modified. For the feature maps generated by the encoder and IEM, we calculate
the cosine distance between any two channels and then calculate the mean and
variance values of these distances, respectively. Based on similar mean values,
the larger the variance, the greater the difference between channels, indicating a
richer diversity in feature maps. The result is shown in Tab. 3. We can observe
that the feature maps generated by IEM is embedded with enhanced information
which will boost the model’s performance.
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4 Experiments and Analysis

Details of NAFNet with UNet−− We apply the proposed UNet−− into
NAFNet [5], which is one of the SOTA models in the field of image restoration.
NAFNet adopts a typical U-Net structure, with the encoder consisting of 5
stages {E1, E2, E3, E4, E5}. Among them, the feature maps outputted by the
first 4 stages need to be connected to the decoder via skip connections. They
respectively output feature maps with channel numbers of {32, 64, 128, 256} and
resolutions of {H ∗ W, H

2 ∗ W
2 , H

4 ∗ W
4 , H

8 ∗ W
8 }. Here, H and W represent the

height and width of the input images.
In MSIAM, using the reduction ratio of { 1

16 ,
1
16 ,

1
16 ,

1
8}, we first decrease the

number of channels output by the first 4 stages to {2, 4, 8, 32}, respectively. Then
we apply pixel unshuffle operators with stride = {8, 4, 2} to decrease resolutions
of {E1, E2, E3} to H

8 ∗ W
8 . Finally, to obtain single-scale feature maps we con-

catenate them with E4 along the channel dimension, and further aggregate all
data through point-wise convolution.

In IEM, according to the single-scale input feature maps generated by MSIAM,
we first use pixel shuffle operators with stride = {8, 4, 2} to restore the resolution
of the first 3 stages {E1, E2, E3}, respectively. Then, we use four enhancement
header blocks to generate multi-scale feature maps separately on the input single-
scale feature maps and the newly generated feature maps with higher resolution.
The final generated multi-scale feature maps share the same channel number and
resolution as {E1, E2, E3, E4}.

4.1 Image denoising

Noise can be introduced into an image during acquisition or processing. Image
denoising aims to restore an image to its original quality by reducing or removing
the noise, while preserving the important features of the image.

We use SIDD dataset [1] as our training and test dataset, which has 30,000
noisy images from 10 scenes under different lighting conditions using five repre-
sentative smartphone cameras. These images are cropped non-overlapping and
generated 31888 patches whose size is 256×256. These patches are divided into
30608 training patches and 1280 validation patches.

During the training process, the model is optimized with PSNR loss and
Adam optimizer (β1 = 0.9, β2 = 0.9, weight decay= 0) for total 200K itera-
tions. The initial learning rate is 1e−3 which is reduced to 1e−7 with the cosine
annealing schedule [18]. The training batch size is set to 32. We use the Peak-
Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) [42]
as metrics to evaluate our models.

In Tab. 4, we first compare the proposed UNet−− against the baseline model
NAFNet and KBNet, respectively. Our model reduces the memory consumption
caused by skip-connections by 93.3%, however the performance is improved by
0.04 in PSNR in both experiments. It is worth noting that the MACs and the
number of parameters increase only by 7. 9% and 2. 8%, 8.4% and 3.0%, re-
spectively. This indicates that the proposed UNet−− can reduce the memory
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UNet−−:U-Net with Reduced Skip-Connections 11

Fig. 4: Visualization results. The first row includes noisy images, the second row in-
cludes clean images outputted by NAFNet [5] with UNet−−, the third row shows the
comparison of local details.

cost of skip-connections without causing harm to the model performance in an
efficient way. We also compare the proposed NAFNet with UNet−− against the
NAFNet without skip-connections. From Tab. 4, we can observe that our model
outperforms the model without any skip-connection by 0.4 in PSNR and 0.003
in SSIM.

4.2 Image deblurring

Image deblurring is one of the image processing tasks that involves removing the
blurring artifacts from images or videos to restore the original sharp content.

For image deblurring, we validate the performance of NAFNet with UNet−−
on GoPro [21] dataset. It provides pairs of realistic blurry images and the corre-
sponding sharp ground-truth images that are obtained by a high-speed camera.
The blurry image is produced by averaging successive latent frames, while the
sharp image is defined as the mid-frame among the sharp frames that are used to
make the blurry image. There are 3,214 blurred images with the size of 1280×720
that are divided into 2,103 training images and 1,111 test images.

Table 4: Models and their performance in image denoising. SC is the abbreviation for
skip connection. Output feature map of E1: 256 × 256, 32 channels, 8bit.

Model PSNR SSIM Msc(MB) MACs(G) Params(MB)
NAFNet [5] 39.97 0.960 3.75 16.23 29.16
NAFNet w/o SC 39.61 0.957 0.00 16.23 29.16
NAFNet with
UNet−− 40.01 (↑ 0.04) 0.960 (↑ 0.0) 0.25(↓ 93.3%) 17.52( ↑ 7.9%) 29.98( ↑ 2.8%)

KBNet [40] 40.35 0.962 7.5 58.19 104.93
KBNet with
UNet−− 40.39 (↑ 0.04) 0.962 (↑ 0.0) 0.5(↓ 93.3%) 63.11( ↑ 8.4%) 108.12( ↑ 3.0%)
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12 Yin, L., et al.

Table 5: Models and their performance in image deblurring. SC is the abbreviation
for skip connection. Output feature map of E1: 256 × 256, 32 channels, 8bit.

Model PSNR SSIM Msc(MB) MACs(G) Params(MB)
NAFNet [5] 32.87 0.960 3.75 16.23 29.16
Tailor [32] 32.87 0.960 0.00 16.23 29.16
NAFNet w/o SC 32.52 0.958 0.00 16.23 29.16
NAFNet with
UNet−− 33.06 (↑ 0.19) 0.962 (↑ 0.002) 0.25(↓ 93.3%) 17.52( ↑ 7.9%) 29.98( ↑ 2.8%)

Fig. 5: Visualization results. The first row includes blurry image, the second row in-
cludes clean images outputted by NAFNet [5] with UNet−−, the third row shows the
comparison of local details.

The evaluation result is shown in Tab. 5. With the same 93.3% memory
savings, the proposed NAFNet with UNet−− outperforms the baseline model
with 0.19 in PSNR and 0.002 in SSIM.

4.3 Image super-resolution

Image super-resolution aims to increase the resolution of an image, while main-
taining its content and details as much as possible. It can be used for various ap-
plications, such as improving image quality, enhancing visual detail, and increas-
ing the accuracy of computer vision algorithms. We train the model using the
exact same network as image denoising and image deblurring. We use DIV2K [2]
and Flickr2K as the training dataset. We use five commonly used datasets in-
cluding Set5 [3], Set14 [37], B100 [19], Urban100 [13] and Manga109 [20] as the
test dataset. PSNR and SSIM are used to evaluate the quality of the restored
images. We use the AdamW optimizer with β1= 0.9 and β2 = 0.99 to solve the
proposed model. The number of iterations is set to 500,000. We also set the
initial learning rate to 1e− 3 and the minimum to 1e− 5, which is updated by
the Cosine Annealing scheme.

For each model, we calculate the average values of PSNR and SSIM on five
datasets. With the same 93.3% memory savings, the proposed NAFNet with
UNet−− outperforms the baseline model with 0.398 in PSNR and 0.002 in SSIM.
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Table 6: Models and their performance in image super resolution.SC is the abbrevia-
tion for skip connection.

Model Set5 [3] Set14 [37] B100 [19] Urban100 [13] Manga109 [20]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NAFNet [5] 37.74 0.9603 33.47 0.9179 32.16 0.8997 31.98 0.9272 37.96 0.9770
NAFNet w/o
SC 36.89 0.9588 32.33 0.9002 31.11 0.8798 31.01 0.9132 36.81 0.9663

NAFNet with
UNet−− 38.23 0.9611 33.96 0.9207 32.73 0.9017 32.45 0.9321 37.93 0.9768
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d
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f
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d e f

a
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e

f
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Fig. 6: Visualization results of the proposed NAFNet [5] with UNet−− on image super
resolution.

4.4 Image matting

Image matting is a fundamental computer vision task which aims to predict an
alpha matte to precisely cut out an image region. It estimates the foreground,
background, and alpha matte from a single image, but has many applications in
image and video editing, virtual reality, augmented reality, entertainment.

Unlike above image restoration tasks, for image matting task we use MSCANtiny

[10] as a new backbone of the encoder.
We apply our proposed method to obtain MSCANtiny with UNet−−. We use

P3M-10K [16] as the training dataset. It consists of about 10,000 high resolution
face-blurred portrait images which are carefully collected and filtered from a
huge number of images with diverse foregrounds, backgrounds and postures. In
addition, face obfuscation is used as a privacy protection technique to remove
identifiable face information while retaining fine details such as hairs. We use
three commonly used datasets including P3M-500-P [16], P3M-500-NP [16] and
RealWorldPortrait-636 [36] as the test dataset.

We use SAD and MSE metrics to evaluate models on the whole image and
the unknown region defined by trimap images. SAD and MSE refer to the sum
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Table 7: Models and their performance in image matting. SC is the abbreviation for
skip connection. The unit represented by ∗ is 1e− 3.

Model Msc

(MB)
MACs
(G)

Params
(MB) Dataset whole image Unknown

MSE∗ SAD MSE∗ SAD

MSCANtiny [10] 2.56 1.57 3.95
RWP-636 [36] 14.107 7.519 63.723 5.431

P3M-500-NP [16] 2.369 1.619 14.926 1.296
P3M-500-P [16] 2.998 1.736 18.735 1.295

MSCANtiny

w/o SC 0.00 1.55 3.95
RWP-636 [36] 12.423 5.925 60.345 3.112

P3M-500-NP [16] 1.645 1.321 13.994 1.076
P3M-500-P [16] 2.386 1.184 16.842 1.130

MSCANtiny

with UNet−− 0.14 1.71 4.23
RWP-636 [36] 14.835 7.611 64.192 5.587

P3M-500-NP [16] 2.391 1.689 15.164 1.325
P3M-500-P [16] 3.042 1.728 19.236 1.313

Fig. 7: Visualization results of the proposed MSCANtiny [10] with UNet−− on image
matting.

of absolute differences and the mean squared error between the ground-truth
alpha matte and the predicted alpha matte, respectively.

For each model, we calculate the average values of MSE and SAD on three
datasets. With the 94.5% memory savings, the proposed MSCANtiny with UNet−−
outperforms the baseline model MSCANtiny with 0.246 (whole image), 0.402
(unknown region) in MSE and 0.051 (whole image), 0.067 (unknown region) in
SSIM, respectively. Some visualization results are shown in Fig. 7.

5 Conclusion

We have presented an effective method to reduce the memory demand for skip-
connections in U-Net and its variants. In addition, we have obtained more en-
riched information based on the feature map transmitted by skip-connection.
Applying the method, we construct a memory-efficient and feature-enhanced
network architecture, UNet−−. It is shown that the approach achieves better
or comparable results compared to the models with common skip-connections
on various kinds datasets for different applications, including image denoising,
image deblurring, image super resolution, and image matting.
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