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Abstract. This work addresses the task of zero-shot monocular depth
estimation. A recent advance in this field has been the idea of utilising
Text-to-Image foundation models, such as Stable Diffusion [51]. Founda-
tion models provide a rich and generic image representation, and there-
fore, little training data is required to reformulate them as a depth es-
timation model that predicts highly-detailed depth maps and has good
generalisation capabilities. However, the realisation of this idea has so far
led to approaches which are, unfortunately, highly inefficient at test-time
due to the underlying iterative denoising process. In this work, we pro-
pose a different realisation of this idea and present PrimeDepth, a method
that is highly efficient at test time while keeping, or even enhancing, the
positive aspects of diffusion-based approaches. Our key idea is to extract
from Stable Diffusion a rich, but frozen, image representation by running
a single denoising step. This representation, we term preimage, is then fed
into a refiner network with an architectural inductive bias, before enter-
ing the downstream task. We validate experimentally that PrimeDepth is
two orders of magnitude faster than the leading diffusion-based method,
Marigold [28], while being more robust for challenging scenarios and
quantitatively marginally superior. Thereby, we reduce the gap to the
currently leading data-driven approach, Depth Anything [72], which is
still quantitatively superior, but predicts less detailed depth maps and
requires 20 times more labelled data. Due to the complementary na-
ture of our approach, even a simple averaging between PrimeDepth and
Depth Anything predictions can improve upon both methods and sets a
new state-of-the-art in zero-shot monocular depth estimation. In future,
data-driven approaches may also benefit from integrating our preimage.

Keywords: Monocular Depth Estimation · Diffusion Models

1 Introduction

Depth estimation from a single image is a long-standing problem in computer
vision. Although it is formally ill-posed, metric and affine-invariant depth es-
timation are well-defined tasks, and humans can also solve it approximately
from cues such as texture-gradient, shading and shadows, or relative size [45].
Monocular-image depth estimation can also serve as an essential component for
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2 D.Zavadski et al.

Fig. 1: Results of Depth Anything [72] (top row), Marigold [28] (middle row) and
our PrimeDepth (bottom row), for a challenging scene from the ETH3D Dataset [59].
While our non-optimised method is fast at test time (0.57 sec1), as well as Depth
Anything (0.13 sec), Marigold is rather slow (62.84 sec). Runtimes were measured
on an A100 GPU. Visually, our result shows most details, i.e. more detailed than
Depth Anything and less grainy than Marigold, which however is not reflected in the
quantitative numbers for this image (Depth Anything δ1 = 99.95%, Marigold δ1 =
99.88% and Ours δ1 = 99.18%). The reason is the sparse ground truth LIDAR data
with holes for objects with fine details (see bottom, left). While the data-driven method,
Depth Anything, requires a large corpus of training data (1.5M labelled and 62M
unlabelled images), ours and Marigold only need 74K synthetic training images.

monocular-video depth estimation of dynamic scenes [6] or in case of a forward-
moving camera, as in a famous “Hitchcock shot”.

In the area prior to deep learning, depth estimation was only performed
on a coarse superpixel-resolution, e.g. [54], or by approximating the scene with
vertical planes, as in the automatic photo pop-up work [23]. In recent years, the
research field underwent a major transformation and current methods achieve
a level of detail that is oftentimes not even captured in the respective ground

1With precomputed captions. On the fly, BLIP-2 [36] image captioning adds on
average additional 0.13 sec in runtime.
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truth data, due to physical limitations of depth measurement devices, such as
LIDAR.

In this work, we address the task of zero-shot, monocular depth estimation.
This means that, once trained, our approach should work well on a broad range of
image domains, such as indoor and outdoor, as well as in a variety of conditions,
such as imagery of night scenes. Arguably, the first work that attempted zero-
shot depth estimation has been MiDaS [49]. The first MiDaS version uses a
high-capacity encoder, which got replaced by a Vision-Transformer [11] later on
(MiDaS v3.0 [48]). The key strategy to success has been to use a very large
corpus of labelled training images, real and synthetic, from different domains.
The latest work with this data-driven philosophy is Depth Anything [72], which
achieves impressive results using 1.5M labelled and additionally 62M unlabelled
training images. It is a transformer-based architecture which is very fast at test
time. Fig. 1 shows a result of Depth Anything [72] for a 768× 512 image.

Given the rise of generative Text-to-Image Diffusion models, with Stable
Diffusion (SD) [51] as one of the first foundation models, a new paradigm
for monocular depth estimation has emerged. It has been observed in various
works [39, 65] that SD “understands the intrinsic representation of the real 3D
world” to some extent in order to generate images. For instance, in cross- and
self-attention maps single objects are visible. Equipped with this insight, var-
ious works [28, 32, 34, 46, 66, 80] have used the power of SD, or other diffusion
models, to perform depth estimation from a given image. There are, in general,
two lines-of-work for doing so. The most prominent line-of-work [28, 34] takes
a diffusion model and “repurposes” it for the task of depth estimation, such as
denoising a random noise-image to a depth-image output, guided by the given
image. In contrast to pure data-driven approaches, it estimates a more detailed
depth and, according to [34], also generalises better to very different domains
such as art paintings. Furthermore, since the knowledge of “realism” originates
from the diffusion model, it can be trained well with as little as 74K synthetic
training images, e.g. [28], which is only 4.9% of labelled training images com-
pared to the data-driven Depth Anything [72] method. Fig. 1 shows a result
from Marigold [28], which is, arguably, the leading method of this line-of-work.

However, this line-of-work has two major drawbacks: (i) It is rather slow,
since it requires multiple denoising steps to map random noise to a depth map.
Furthermore, due to the probabilistic nature, Marigold [28] has to average over an
ensemble output; (ii) If a latent Diffusion Model is used, e.g. SD, the depth-based
loss function has to be defined in latent domain. We show later that this leads
to sub-optimal performance. These two drawbacks can be redeemed by simply
using SD solely as a feature representation, i.e the features of a single denoising
step of SD are extracted and fed into a depth prediction module. This marks the
second line-of-work [32,33,46,80] which, to the best of our knowledge, has so far
not been applied to zero-shot depth estimation. Indeed, when integrating SD-
features in a straightforward manner to a downstream task then the performance
is considerably below state-of-the-art, as shown later. The focus of this work is
to look into the details of what should be extracted from SD and how it should be

924
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integrated into a downstream network. This analysis pays-off, and we arrive at a
method that is quantitatively marginally superior to the leading diffusion-based
method, Marigold [28], while being on average over 100× faster. When comparing
with Marigold, our results are also more robust to extreme imaging conditions
such as night scenes with very limited illumination. We conjecture that this is
due to Marigold changing the weights of the Stable Diffusion prior while we keep
the rich representation unchanged. We call our method PrimeDepth, and show
a result in Fig. 1. To summarise, our contributions are as follows:

– Preimage, an image representation of feature maps and attention maps that
are derived from the single, last denoising step of Stable Diffusion [51]. The
preimage can effectively be used for a downstream task when combined with
a refiner network that has an inductive bias by design.

– PrimeDepth, a single-step diffusion-based approach for zero-shot depth es-
timation. It has two conceptual advantages over multi-step diffusion ap-
proaches: i) very fast inference, e.g. on average 100× faster than Marigold [28];
ii) utilizing a loss function in pixel domain and not latent domain.

– PrimeDepth is in our quantitative evaluation the runner-up, and only inferior
to Depth Anything [72] that is, however, a data-driven approach and requires
over 20× more labelled training data, as well as roughly 25× longer training
times based on the information provided in [72]. PrimeDepth also predicts
more detailed depth maps than Depth Anything and is more robust than
Marigold [28] for challenging scenes such as at nighttime.

2 Related Work

2.1 Denoising Diffusion Models

Since their introduction [21, 62, 64], diffusion models have vastly advanced the
field of unconditional and conditional image generation [9, 22, 26]. By construc-
tion, these models have the theoretical capability to represent any arbitrary data
distribution [62]. This makes them the spearhead in Text-to-Image (T2I) gener-
ation [31,47,51,81] and tasks requiring a rich and faithful image representation,
such as image editing [7, 8, 18, 25] or image-to-image translation [52, 67]. Many
works have been dedicated to speed-up the generation process starting from opti-
mised sampling [10,42,63,79] up to the distillation of the internal representation
of pre-trained diffusion models into single step methods [37,53,73]. In this work,
we use the rich representation of the pre-trained Stable Diffusion and apply it to
the task of zero-shot monocular depth estimation using only one single iteration.

2.2 Zero-Shot Monocular Depth Estimation

In contrast to earlier works, which addressed in-domain monocular depth estima-
tion [1,14–16,35,80], zero-shot depth estimators aim to generalise to unseen data
distributions. Although there have been efforts on ordinal [5,70] and metric depth
estimation [75], in this work, we focus on the affine-invariant setting [49]. Thus
far, two main research directions have been explored. The first leverages strong
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priors, such as T2I diffusion models (see Sec. 2.3), while the second, discussed in
this section, is data-driven [13,48,49,72,76,78]. MiDaS [49] proposes training on
diverse datasets, while DPT [48] and Omnidata [13] further expand the number
of training data and use transformers. LeReS [76] proposes a framework that can
additionally estimate the depth-shift and focal length, while HDN [78] improves
on detailed depth prediction with a multi-scale depth normalisation method. Fi-
nally, Depth Anything [72] expands the datasets to large-scale unlabelled data
with a challenging student-teacher optimisation target. Since Depth Anything is,
to the best of our knowledge, quantitatively the leading method in this research
direction, we perform a detailed comparison to it.

2.3 Diffusion-Based Monocular Depth Estimators

Diffusion models for depth prediction can be roughly assigned to three different
paradigms.

Diffusion paradigm includes methods that take a not pre-trained diffu-
sion framework and train it from scratch to denoise depth maps [12, 27, 55–57].
DepthGen [57] conditions diffusion on an RGB image and operates in pixel do-
main. The authors addressed training on incomplete noisy ground truth data
using simple interpolation and unsupervised auxiliary pre-training. DDVM [55]
extended pre-training to include synthetic data and reduced the computational
overhead through coarse-to-fine refinement in a patch-wise manner. DMD [56]
extends DDVM to a joint indoor-outdoor predictor by learning depth in log
space. DDP [27] and DiffusionDepth [12] encode the conditional image with an
off-the-shelf feature extractor to a smaller resolution prior to diffusion. Further-
more, such methods yield a posterior uncertainty by design based on unstable
pixel regions [27,55–57].

Pre-trained diffusion paradigm uses a pre-trained network, oftentimes a
T2I model, and fine-tunes it on the downstream task [28,34]. This paradigm has
recently garnered popularity with the release of Marigold [28]. Marigold performs
diffusion and depth predictions in latent domain and is trained exclusively on
limited synthetic data. Its main drawback is the computational overhead with
a multi-step denoising approach, combined with an ensemble scheme. Due to
conceptual similarity, we compare extensively to Marigold. The goal of DMP
[34] is to show the generalisation of Stable Diffusion [51] for downstream tasks
such as depth estimation of highly creative synthetic data. It is done by training
a LoRA [24] and reformulating denoising as blending the image and depth map
to achieve deterministic prediction. This paradigm demonstrates good zero-shot
performance with detailed predictions, however, it is slow at inference time.

Representation extractor paradigm, in contrast to the previous, con-
siders the pre-trained T2I network primarily as a feature representation akin to
traditional backbones [32,33,46,66,69,80]. The representation is extracted using
image inversion and fed to a trainable depth predictor. Our method, PrimeDepth,
follows this paradigm. For depth estimation, the pioneering work VPD [80] ex-
tracts intermediate image features at four resolutions from Stable Diffusion [51]
and fuses them into a single low-resolution feature block using a semantic Fea-
ture Pyramid Network (FPN) [29]. The block is then processed by a lightweight
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upsampling decoder to form the final dense prediction. Notably, VPD demon-
strated that diffusion models provide a competitive representation that surpasses
traditional visual backbones like SwinV2 [40]. VPD considered only the task of
in-domain monocular depth estimation. In order to still compare to VPD, we
build a VPD-like architecture within our framework and show that it is inferior.
Recently, TADP [32] investigated the text guidance employed by VPD, showing
that text-image alignment promotes better performance on downstream tasks.
In their in-depth analysis of various captioning approaches they found that au-
tomated image captioning such as BLIP-2 [36] yield best performance. A con-
current work, ECoDepth [46] claimed that text guidance lacks expressiveness for
perception tasks and replaced the text embeddings with ViT [11] embeddings
extracted from the input image. Finally, MetaPrompts [66] completely obviates
the need for captions by making the text embeddings trainable. In our work, we
use BLIP-2 for caption generation, since improving text embeddings is not our
focus. The big advantage of this paradigm compared to the previous is inference
speed, as it requires only one single network forward pass.

3 Method
3.1 Stable Diffusion

As a latent Text-to-Image (T2I) diffusion model, Stable Diffusion (SD) gener-
ates images by successively transforming Gaussian noise zT to a latent encoding
z0 in 1000 overall steps. This generative process in latent domain is performed
by a U-Net f consisting of different neural blocks, i.e. residual, self- and cross-
attention blocks, that are executed sequentially and at different scales. The ex-
cessive training of SD on the diverse LAION-5B [60] dataset allows for a rich
representation of arbitrary imagery. The motivation for our SD representation
stems from [20,43], which has shown that for the semantic correspondence task,
the last denoising step f(z1) contains rich information. This intuitively makes
sense since at that time-step the representation contains the least amount of
“potential hallucinations” of the generative model.

3.2 Preimage Representation
We define our preimage as all the intermediate, multi-scale feature maps, cross-
and self-attention maps of every neural block in the last denoising step of SD
version 2.1, see Fig. 2 (left). In contrast to prior work VPD [80], we also utilise
self- and cross-attention maps which encode similar but complementary learned
structural and semantic concepts. While the feature activation maps can be used
right away, the attention maps require further processing to reduce the respective
channel-size and possible redundancies. With H attention heads, height h and
width w, the self-attention maps have the dimension H×h×w×Np, with Np =
h ·w being the number of pixels, since all pixels attend to each other. Similarly,
the cross-attention maps, attending to 77 text tokens, have the dimension H×
h × w × 77. For an image with the resolution of 512 × 512, the corresponding
largest self-attention map in latent domain has the dimension H×64×64×4096.
Using all maps is not only computationally infeasible, but also impossible, as the
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Fig. 2: (Left) Stable Diffusion preimage consisting of intermediate feature maps, cross-
and self-attention maps for every neural block of the last denoising step. (Right) Exam-
ples of self-attention maps, with respect to the red square, and cross-attention maps.
Below is the fusion model shown, for the aggregation of the preimage parts.

channel size Np changes with the resolution of the input. We circumvent both
problems by dividing the attention maps in 8× 8 regions and averaging over the
respective attention-regions. Because each head can potentially attend to, and
therefore encode, different kind of content, we do not average over heads. This
means formally,

RH×h×w×Np
regional−−−−−→
average

RH×h×w×64 −→ Rh×w×(64·H) (self-attention) (1)

RH×h×w×77 −→ Rh×w×(77·H) (cross-attention). (2)

Fig. 2 (right) shows examples for attention maps after averaging over regions.
Before passing the extracted parts of the preimage to the refining network, the
features need to be aggregated. The fusion module for the aggregation is illus-
trated in Fig. 2 (bottom, right) and comprises a sequence of concatenations and
convolution projections of all feature and attention maps.

3.3 PrimeDepth Architecture

The full architecture design of PrimeDepth is shown in Fig. 3. The depth pre-
diction pipeline starts by encoding the image x with the SD Pixel-to-Latent
(P2L) encoder to its latent domain representation z0 and adding one step of
noise to receive the slightly noisy latent z1. In the denoising step of the frozen
U-Net, the preimage parts, shown with red arrows, are passed through fusion
modules (Fig. 2, bottom right) and provided to the preimage refining decoder
via concatenations at the respective blocks. The output of the refining decoder
is a latent representation that can be used by downstream decoder-heads to get
the final output in pixel domain. In contrast to diffusion-based approaches that
use multiple-denoising steps, like Marigold [28], we define the loss function in
the output domain. The downside of defining the loss function in latent domain
like Marigold is twofold: i) The task decoder cannot be trained at the same time;
ii) The loss function in latent domain is a surrogate of the one in pixel domain.

The downstream heads are trainable copies of the SD latent-to-pixel (L2P)
decoder with an increased bottleneck size from 4 input channels to 512. We
use two downstream heads for training, one for depth prediction and the other
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Fig. 3: PrimeDepth Pipeline. The input image is first encoded to latent domain, aug-
mented with one noise step and processed by the frozen U-Net of Stable Diffusion.
The intermediate parts of the preimage (red arrows) are aggregated with the fusion
module (see Fig. 2) and provided to the preimage refiner network at the respective
intermediate stages. The output of the refiner is fed to two downstream heads for the
respective downstream tasks.

one for semantic segmentation as regularisation. We utilise 150 semantic classes
as in [82] and see later that it improves the performance. Note that previous
works have also demonstrated the benefits of auxiliary tasks for regularisation,
including semantics [4, 19,30,71] or normal prediction [41,74].

To summarise, PrimeDepth fulfils three conceptual requirements. (i) The
base model weights remain unaltered. We believe that this is an advantage, since
SD was trained extensively on a large amount of data. By adapting the weights,
as e.g. done in Marigold [28] and VPD [80], the representation capabilities may
decrease and with this the generalisation power, as seen later in reduced robust-
ness of e.g. Marigold. (ii) Utilisation of the full preimage representation. As we
see later, using the full representation of SD, i.e. using all intermediate feature
maps, self- and and cross-attention maps, is beneficial for the depth prediction
task. (iii) Exploiting architectural inductive bias for the preimage representation.
The refining decoder has the same architecture as the SD decoder, but with only
50% of the original channel sizes. Hence it introduces a natural inductive bias
to the architecture for the gradual processing of the preimage. All components
of the preimage are provided to the refiner at its respective resolution stages.

It is worth to note that using an inductive architectural bias is not new,
and for instance has shown to be beneficial in the context of controlled image
generation for SD [77]. We believe that transformer architectures could also
benefit from the integration of the generative preimage with architectural bias
and sketch a possible integration to a DPT-based [48] refiner in the supplement.

3.4 Training Protocol

Although the preimage refiner network has the same architecture as the SD-
decoder, it has to be initialised with random weights since the channel sizes
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differ. To compensate for the random initialisation, we first pre-train the model
with unlabelled data. Note that this is a common strategy, also used for in-
stance by Depth Anything [72], and gives a marginal quantitative boost in per-
formance as shown later. For the pre-training, we use a subset of 600K images
from the LAION-Aesthetics dataset, which contains images of high visual qual-
ity from arbitrary domains. We compute a pseudo ground truth for depth using
Depth Anything [72] and for segmentation maps with InternImage-H [68]. We
use BLIP-2 [36] to captionise all images. The model is first pre-trained on the
pseudo ground truth data and then trained on 74K images of synthetically la-
belled data. Since our model uses a preimage that is computed in one single
forward pass, we are not restricted by latent losses. We use the scale and shift
invariant loss of MiDaS [49] for the depth estimation in pixel domain. We first
shift and scale the ground truth depth d∗ = d−t(d)

s(d) with t(d) = median(d) and

s(d) = 1
hw

∑hw
i=1 |di − t(d)| and then compute the mean squared error between

the affine-invariant ground truth d∗ and the depth prediction d̂, which is aligned
to d∗ by least squared errors α(d∗, d̂), to get the shift and scale invariant loss

Lssi = MSE
(
d∗, α(d∗, d̂)

)
. (3)

For the regularisation through semantic segmentation, we use a combination
of the Dice Loss [44] and the Focal Loss [38] with respect to the one-hot encoded
semantic segmentation maps for C = 150 classes

Ldice = 1− 1

C

C−1∑
c=0

2
∑hw

i=1 y
∗c
i · ŷc

i∑hw
i=1(y

∗c
i + ŷc

i )
, Lfocal = −

hw∑
i=1

(1− y∗
i · ŷi)2 log(y∗

i · ŷi) (4)

with y∗, ŷ being the ground truth and the predicted segmentation maps,
respectively. We dynamically weigh the depth loss to the segmentation loss and
arrive at the final training objective

L = Ldice + Lfocal + λLssi, with λ = sg
(
Ldice + Lfocal

Lssi

)
, (5)

where sg(·) represents the stop-gradient operator.

4 Experiments

4.1 Datasets and Evaluation Metrics

Training datasets. We utilised the same datasets as Marigold [28] to allow
for a fair comparison. These are the two synthetic and densely-labelled datasets
Hypersim [50] and Virtual KITTI 2 [2], which represent indoor and outdoor sce-
narios. The LAION-Aesthetics dataset [60] is used for pre-training our method,
see details in Sec. 3.4, and gives a marginal boost in performance, see below.

Test datasets. We evaluate in total on five unseen datasets: KITTI [17]
using Eigen split [14] (654 images), NYUv2 [61] (656 images), ETH3D [59] (456
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10 D.Zavadski et al.

Fig. 4: Qualitative results of two competing methods (Depth Anything [72] and
Marigold [28]) for 4 datasets, while results for ETH3D are shown in Fig. 1. The main
visual artefacts of the respective methods are indicated by arrows. The prominent ob-
servations across many images are as follows. Depth Anything has less sharp depth
maps (KITTI, nuScenes-C, Fig. 1) and can see inside mirrors (NYUv2) and through
transparent surfaces (supplement). Marigold predicts sharp depth maps but sometimes
with grainy artefacts (KITTI, Fig. 1). It also struggles to predict sky (KITTI, nuScenes-
C) and objects at mid-distance (rabbitai). Our method gives sharper depth maps than
Depth Anything (KITTI, NuScenes-C), but can also struggle with sky (supplement).

images), rabbitai [58] (60 images)2, and a manually chosen subset of nuScenes [3],
we term nuScenes-C (3489 images). Since KITTI, ETH3D and NuScenes-C were
captured with LIDAR sensors, the ground truth measurements are sparse with
occasional holes, e.g . in the sky and objects with fine details. The NYUv2 dataset
was captured with an active RGBD-kinect sensor. It has dense ground truth
apart from occasionally missing regions at depth-borders. While the rabbitai
dataset has fewest number of images, it represents, at the same time, a dataset
with dense and highly detailed ground truth depth. It was captured with a pas-
sive light-field camera setup. We created the nuScenes-C dataset by selecting 87
scenes (in total 3489 images) from nuScenes that represent challenging scenar-
ios, such as images in bad weather conditions, nighttime, and adversarial visual
cues including reflections and artefacts on the lens. We further categorised the
nuScenes-C dataset into 6 categories, see Fig. 5.

Metrics. As in training, a predicted depth map d̂ is first affinely aligned with
ground truth d∗. We use two common metrics: i) absolute relative error AbsRel =
1
hw

∑
hw

|d∗−d̂|
d∗ and ii) accuracy under threshold δ1 = 1

hw

∑
hw[max( d̂

d∗ ,
d∗

d̂
) <

1.25], measuring the fraction of pixels that satisfy the condition.
2See Robust Vision Challenge 2020 (http://www.robustvision.net/rvc2020.php).
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Table 1: Comparison of 8 methods for zero-shot monocular depth estimation, where
numbers are taken from Marigold [28], apart from the numbers of Depth Anything [72],
taken from their article, and our numbers using our protocol. Since the methods may
not be evaluated consistently, the average rank may be the best performance indicator.

KITTI NYUv2 ETH3D Average Num. Architecture
Model δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ Rank Train Samples Type

MiDaS [49] 63.0 23.6 88.5 11.1 75.2 18.4 8.0 2M ResNeXt101
LeReS [76] 78.4 14.9 91.6 9.0 77.7 17.1 6.5 354K ResNeXt101
Omnidata [13] 83.5 14.9 94.5 7.4 77.8 16.6 5.7 12.2M Transformer
DPT [48] 90.1 10.0 90.3 9.8 94.6 7.8 4.7 1.4M Transformer
HDN [78] 86.7 11.5 94.8 6.9 83.3 12.1 4.5 300K Transformer
Marigold [28] 91.6 9.9 96.4 5.5 96.0 6.5 2.3 74K Multi-step diffusion
Depth Anything [72] 94.7 7.6 98.1 4.3 88.2 12.7 2.2 63.5M Transformer

Our 93.7 7.9 96.6 5.8 96.7 6.8 2.0 74K Single-step diffusion

4.2 Comparison to other Methods

While reproducing the results of previous methods, it became apparent that
the evaluation for the same datasets can unfortunately differ substantially be-
tween articles. As an example, Depth Anything [72] reports δ1 = 88.2% for the
ETH3D dataset, while using our protocol, which tries to match the numbers
of Marigold [28], the score is much better, i.e. δ1 = 98.1% for ETH3D. Tab. 1
shows a comparison of 8 methods for three unseen datasets, where all numbers
are from Marigold, apart from the numbers of Depth Anything [72] which are
from their article and our numbers using our protocol. Since individual numbers
might not be fully representative, we provide the average rank as an indicator
for overall performance3. We observe that the two recent methods, Marigold
and Depth Anything, have clearly the best rank, i.e. 2.3 and 2.2, alongside our
approach with rank 2.0. Given this, we do a detailed analysis of these three
methods for 5 unseen datasets using our evaluation protocol, see Tab. 2. We
see that Depth Anything is superior to the other methods, while our method
is clearly the runner-up. Our method without pre-training is on a par with
Marigold. As mentioned in the introduction, Marigold and our approach only
use a fraction of labelled training data compared to Depth Anything (74K versus
1.5M). Furthermore, since our approach uses only a single diffusion step, we are
on average 100 times faster than Marigold at test time.4 Despite the pre-training
on Depth Anything predictions, the results of PrimeDepth and Depth Anything
are complementary. To show this, we provide two simple approaches for com-
bining the results of Depth Anything and PrimeDepth. The Pixel-wise-Average
method simply averages the two results pixel-wise. It improves over both Depth
Anything and PrimeDepth, meaning that the two signals are not fully corre-
lated. We also run an Image-Oracle, which selects either the Depth Anything
or PrimeDepth result. The oracle improves the results noticeably, and in 21%
to 55% of cases the PrimeDepth result is selected. Qualitative results are shown

3We take the average with respect to both measures, δ1 and AbsRel.
4Computed from 1000 runs of different image resolutions on an A100 GPU.
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Table 2: Comparison to Depth Anything (DA) [72] and Marigold [28] for zero-shot
monocular depth estimation using the same (our) evaluation protocol.

KITTI NYUv2 ETH3D rabbitai nuScenes-C Avg. Rank
Model δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓

Image-Oracle (Upper Bound) 95.7 7.0 98.5 4.1 98.4 4.9 80.0 18.0 82.9 13.6 -
(Our%/DA%) (42/58) (53/47) (38/62) (21/79) (37/63) (31/69) (50/50) (55/45) (28/72) (30/70) -

Depth Anything (DA) [72] 94.6 8.0 98.0 4.3 98.1 5.6 76.9 20.7 81.9 14.5 1.9
Marigold [28] 91.6 10.0 96.4 5.5 96.5 6.0 56.6 27.2 64.0 24.1 4.3
Our w/o pre-train 91.2 9.5 91.8 9.0 95.1 8.2 71.6 20.3 73.9 18.5 4.4
Our 93.7 7.9 96.6 5.8 96.7 6.8 76.2 20.1 79.2 15.8 3.0
Pixel-wise-Average (Our & DA) 95.3 7.3 97.7 4.6 98.1 5.5 77.7 19.4 81.6 14.3 1.3

Fig. 5: Box plot for the δ1 accuracy of challenging scenes from the nuScenes-C dataset,
split into 6 categories, where long, vertical stripes provide the median values. Our
PrimeDepth is consistently, marginally inferior to Depth Anything [72], but consistently
and sometimes considerably superior to Marigold [28]. The variability, measured by
IQR score i.e. size of a box, is considerably higher for Marigold than Depth Anything
and our method. For nighttime scenes, the performance drops for all methods, however
Marigold is clearly more affected (lowest median and highest variability).

and discussed in Fig. 1 and Fig. 4. In brief, the depth maps of Depth Anything
exhibit blurriness, although this is not reflected in the quantitative results due
to missing values in the ground truth. Also, Depth Anything has the same arte-
facts as in the ground truth, e.g. it sees through reflective objects. Marigold and
our method are visually more detailed, however, again, giving missing ground
truth it is difficult to clearly measure its correctness. Marigold is occasionally
too detailed which results in grainy artefacts, and sometimes struggles to predict
depth at mid-distance. Our method and Marigold sometimes do not predict sky
at infinity.

4.3 Comparison for challenging scenarios

To better understand the behavior of methods for challenging scenarios, we visu-
alise their performance with respect to 6 different categories in form of a boxplot.
Fig. 5 shows the δ1 accuracy computed on a per-frame basis. The median value
is marked with a long, vertical stripe. The variability in the results is shown by
the size of the solid box, which is the interquartile range (IQR) containing 50%
of all inlier predictions. We observe that the general trend matches that of the
benchmark above. Our method is marginally inferior to Depth Anything [72],
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Fig. 6: Challenging scenes for category “Day Rain” (top row), “Night Rain” (middle
row) and “Night Dark” (bottom row). Depth Anything [72] wrongly predicts depth for
reflections on a wet surface (top row). Marigold [28] struggles to predict the depth of
objects at mid-depth (bottom row) and sky (all rows). A failure case for both methods,
Marigold and ours, is a water drop on the camera lens which is likely predicted as a
round object in the scene (middle row).

but consistently superior to Marigold [28]. The IQR scores of our method and
Depth Anything are similar and relatively small, in contrast to Marigold. For
nighttime scenes, the drop in median score and higher IQR scores is notice-
able for all methods, however, considerably and consistently more prominent for
Marigold. We conjecture that the low robustness of Marigold stems from the fact
that Stable Diffusion itself is modified from being an image generation method
to being a depth prediction method. In contrast, we retain the rich information
of the frozen Stable Diffusion model. Qualitative samples of challenging scenes
at night and in rain are shown in Fig. 6. It is noticeable that Marigold struggles
to predict objects at mid-distance as well as the sky region. Depth Anything
wrongly predicts depth for reflections on a wet surface. A failure case of both,
Marigold and our approach, is a water drop on the camera lens, which is likely
predicted as a round object in the scene.

4.4 Ablation Study
To evaluate the effectiveness of the individual components of our method, we
ablate in Tab. 3 each design choice after pre-training on pseudo ground truth
images only. The PrimeDepth architecture is called V.Full and performs best
across the board. By training the model in latent domain (V.Latent), as done by
methods like Marigold [28], we see a decrease in performance across all datasets.
Omitting the regularisation with respect to the segmentation loss (V.NoSegmen),
results in a similar decrease in the overall accuracy. Using V.NoSegmen and
additionally removing either the feature maps (V.NoFeature) or the attention
maps (V.NoAttent), gives a further decline in performance. Overall, feature maps
appear to be more informative than attention maps, but attention maps still
contain useful additional information. We also compare our network design with
designs suggested in previous works [32,80]. For this we use our full preimage and
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Table 3: Ablation Study of different design choices, noted by Version.* (V.*). All
versions are only pre-trained on a 600K image subset of LAION, and not trained on
ground truth data as our variants in Tab. 1 and Tab. 2.

KITTI rabbitai nuScenes-C Avg. Rank
Model Segm Atten Feat PixLoss δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓

V.Full x x x x 92.8 8.7 73.5 21.9 80.6 14.2 1.0
V.Latent x x x - 92.5 8.8 70.1 24.4 79.8 15.0 3.0
V.NoSegmen - x x x 92.8 8.9 72.9 24.6 79.8 15.0 3.0
V.NoAttent - - x x 92.7 9.3 72.7 25.4 79.1 16.3 4.2
V.NoFeature - x - x 88.0 11.4 67.9 23.9 76.5 16.9 4.8
V.BlockPreIm - x x x 86.6 12.4 65.3 26.5 80.1 14.8 4.7

re-scale it as a single “block” with uniform resolution and provide it as regular
input to the downstream task. The key difference to our design is that the natural
inductive bias of the preimage refiner is not exploited. To be in spirit close to [80],
we inserted the preimage of V.NoSegmen as a block into our preimage refiner.
We refer to this design as V.BlockPreIm (see full network design in supplement).
The performance of V.BlockPreIm, compared to V.NoSegmen, is clearly inferior
for the KITTI dataset and the densely labelled rabbitai dataset, while for the
sparse nuScenes-C data, the performance is basically on par.

5 Conclusion and Future Work
In this work, we presented PrimeDepth, a method for harnessing and utilising
the complete, rich preimage of Stable Diffusion for zero-shot monocular depth
estimation. Our model achieves competitive results on a variety of datasets
while being considerably faster than competitive diffusion-based approaches,
like Marigold [28], owing to a single diffusion step. By keeping the diffusion
prior fixed, our method achieves robust results while being trained on a fraction
of synthetically labelled data compared to competing data-driven methods, like
Depth Anything [72]. The competitive performance of PrimeDepth advocates for
the richness of the preimage of large-scale generative models as a starting point
for downstream tasks, potentially also beyond depth estimation. One avenue
of future research is to explore the complementary nature of data-driven and
diffusion-based approaches, since the latter may generalise better, see [34].We
sketch in supplement how a preimage can be integrated into a DPT-based [48]
approach, as used in Depth Anything.
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