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Abstract. Multi-task-learning(MTL) is a multi-target optimization task.
Neural networks try to realize each target using a shared interpretative
space within MTL. However, as the scale of datasets expands and the
complexity of tasks increases, knowledge sharing becomes increasingly
challenging. In this paper, we first re-examine previous cross-attention
MTL methods from the perspective of noise. We theoretically analyze
this issue and identify it as a flaw in the cross-attention mechanism. To
address this issue, we propose an information bottleneck knowledge ex-
traction module (KEM). This module aims to reduce inter-task interfer-
ence by constraining the flow of information, thereby reducing computa-
tional complexity. Furthermore, we have employed neural collapse to sta-
bilize the knowledge-selection process. That is, before input to KEM, we
projected the features into ETF space. This mapping makes our method
more robust. We implemented and conducted comparative experiments
with this method on multiple datasets. The results demonstrate that
our approach significantly outperforms existing methods in multi-task
learning.

1 Introduction

Some tasks are similar, such as segmentation and depth prediction. So, it’s nat-
ural to consider multi-target optimization. Within multi-task learning, we can
set a shared interpretative space for image [45]. The key idea is to utilize the
intrinsic correlation between tasks to share and transfer knowledge among dif-
ferent tasks. Under this paradigm, MTL has been successfully applied in many
fields [5, 16, 30, 43, 50]. A common pipeline for MTL is to design models using
a modular approach, employing cross-attention mechanisms for knowledge shar-
ing [14, 47]. MTFormer [47] utilizes a shared encoder module to process inputs
and then feeds this knowledge to each task-specific processing module. Inter-task
attention is used to exchange information between tasks. MTFormer has already
demonstrated its superior performance.

However, only a select few factors of variation are relevant for each down-
stream task. This becomes problematic as cross-attention mechanisms struggle
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Fig. 1: Toy experiment to illustrate the concept of noise. For simplicity, we utilized
a 2-layer single-head attention mechanism and added standard Gaussian noise to the
hidden states to simulate irrelevant information in Multi-Task Learning (MTL).

to share knowledge within large-scale datasets or complex tasks [20, 22, 23, 47].
As shown in Fig.2. a) As the number of tasks and their complexity increase, the
computational demands grow quadratically. b) A significant issue arises with the
softmax operation, which rarely results in zero weights for any position, lead-
ing to the creation of unnecessary noise that interferes with task performance.
To clarify the motivation, we designed a toy experiment under extreme condi-
tions. As illustrated in Figure 1(a), we introduce Task 3, which contains entirely
noise, to show that it can still influence Tasks 1 and 2 following the Softmax
operation. This setup can verify that Softmax alone cannot effectively eliminate
noise. The probabilities in real scenarios are visualized in Figure 1(b). Tasks 1
and 2 successfully share knowledge, demonstrating that MTL facilitates knowl-
edge transfer between task encoders. However, they still acquire approximately
20% of explicit noise information. Therefore, we can infer that irrelevant infor-
mation in Task 1 may be transformed into noise after the Softmax operation,
subsequently influencing Task 2.

Following this key insight, we propose a Multi-task Knowledge Extraction
Module (KEM). KEM compresses the knowledge from tasks into an information-
bottleneck memory and then distributes the memory to different tasks. We divide
this process into three steps: Retrieve, Write, and Broadcast. This is essentially
a selection mechanism that utilizes an additional memory slot to filter out noise
from the input features F , retaining only the useful data. Due to the choice
mechanism, KEM can eliminate ineffective noise information, retain common
information, and resist interference between tasks. The memory size L is con-
stant, and the accompanying benefit is that we can also reduce the algorithmic
complexity to a linear level.

We adopted the Top-K choice and completed the write operation in mem-
ory, as shown in Equation 1. However, the Top-K is easily influenced by the
statistical distribution of input data [8, 34, 48]. Additionally, the input feature
distribution given to KEM is uncontrolled; therefore, we must mitigate the im-
pact of unknown data distributions on the Top-K choice to generalize KEM to
other tasks.
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Fig. 2: The illustration of Knowledge-extraction module in multi-task learning using
Cross Attention Mechanism. (a) Knowledge extraction from the feature spaces of other
tasks, showing O(2n2

s ·de) computational complexity. (b) Attention weights calculation
using Softmax, which can be divided into noise and valuable weights, is one reason for
inter-task interference.

To further enhance the stability of the knowledge selection process, we intro-
duce the concept of neural collapse [38,51,52], and propose Stable-KEM(sKEM).
Neural collapse is a phenomenon where, in the later stages of model training, the
features of samples belonging to the same class converge to the same direction.
This phenomenon helps stabilize the knowledge selection process, making our
model more robust. sKEM projects the input features into an Equiangular Tight
Frame(ETF space), allowing memory to select even statistical-less features. We
have theoretically shown that sKEM can improve resistance within imbalanced
input. We also confirmed sKEM’s effectiveness through experiments.

In summary, we address inter-task interference in multi-task learning by
proposing KEM and analyzing its computational complexity. We further en-
hance KEM’s stability using Neural Collapse, leading to the development of
sKEM, whose stability we have theoretically proven. Lastly, we validate the ef-
fectiveness of both sKEM and KEM through comparisons with other baselines.

2 Related Works

2.1 Multi Task Learning

Multi-task learning (MTL) is an intriguing area of study. It uses a single model
to predict multiple targets, such as semantic segmentation, human parts seg-
mentation, depth estimation, surface normal estimation, and boundary detec-
tion. Technically, MTL frameworks can be categorized into CNN-based [12,42],
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NAS-based [2], and Transformer-based [41] models. For instance, Xu [47] em-
ployed a pre-trained model to enhance MTL performance and implemented
cross-attention mechanisms for knowledge sharing. In the line of disentangled
representations, several studies [9, 27, 29] have empirically explored this ques-
tion and obtained positive results. Theoretically, Lachapelle [20] discovered that
only a small subset of all factors of variations is useful for each downstream
task. We support this assumption and view knowledge sharing in MTL from the
perspective of distinguishing between valuable and noisy weights.

2.2 Information Bottleneck Module

The success of VQ-VAE [32,40] has demonstrated that it is possible to represent
high-dimensional data using low-dimensional discrete latent variables. This ap-
proach not only effectively captures the structure of the data but also removes
noise through quantization processes [17], thereby achieving higher resolution in
the reconstruction process [26]. Based on this research, Tucker [39] applies dis-
crete tokens in multi-agent communication, making agent performance robust to
environmental noise. Instead of Discrete IB, Liu [21] employs a Soft IB named
SAF, a shared knowledge source for sifting through and interpreting signals from
all the agents before passing them to the centralized critic. Zhang [49] proposes a
co-creation space among assemblers, solving scalability issue. Some works [13,15]
combined the Shared Global Workspace Theory to propose their understanding
of soft IB, improving single task’s performance.

2.3 Neural Collapse

Neural Collapse [31] is a phenomenon that occurs during the training of a clas-
sification model on a balanced dataset. During the later stages of training, the
features in the last layer of a neural network will converge toward specific centers,
creating an Equiangular Tight Frame(ETF) with clearly identifiable symmetric
properties. Training the network along this phenomenon can achieve better per-
formance [44, 51]. Later theoretical explorations [11, 18, 37, 52] aimed to unravel
the complexity of this phenomenon shows that neural networks after NC exhibit
higher linear separability. Following those, some research [34, 48, 51] has stud-
ied how to use NC under imbalance input. In this paper, we project the input
features into ETF space as [34,48], establishing a stable Top-K choice in KEM.

3 KEM: Multi-Task Knowledge Extraction Module

As we said before, we view knowledge sharing in MTL from the perspective
of value and noise weights. So, we propose an information bottleneck module
named KEM in 3.1. Furthermore, we conducted a complexity analysis on KEM
in 3.2.
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Fig. 3: The illustration of the proposed KEM framework. (a) A frozen pre-trained
Vision Transformer model is used for initial image encoding. (b) Each task learns its
encoder. (c) Features between tasks interact through an information bottleneck memory
slots, involving three steps: Retrieve, Write, and Broadcast. See Section 3 for details.
(d) Each task learns its decoder to decode data into the task-specific format.

3.1 Architecture Design

As shown in Figure 3, KEM comprises four components. The network processes
RGB images as input. KEM uses a pre-trained Swin-Transformer model for ini-
tial image encoding, with the encoder part frozen and only the decoder learning
during training. The image was split into m patches, each with a dimension of dp.
To enhance model efficacy across diverse tasks, we have designed specialized en-
coders and decoders for each task, realized as a 2-layer Vision Transformer (ViT).
We suppose there are n tasks and thus corresponding n task features. The total
output features are represented as F = F1 ⊕ F2 ⊕ · · · ⊕ Fn, where Fi ∈ Rm×dp

represents the features of the i-th task. After the task-specific encoder, the fea-
tures will be extracted through a memory slot R ∈ RL×dl . R consists of L slots
l0, l1, ..., lL−1. There are three steps: Retrieve, Write, and Broadcast.

Step 1: Retrieve the value of F KEM uses the memory slots R in order
to update itself. Among them, R is a learnable parameter to retrieve data within
F . The memory slot R is updated as:

R̂ = topk-softmax(
(RW qr)(FW kr)T√

de
)FW vr, (1)

where W qr, W kr, W vr represent the projection matrices.
Step 2: Write R̂ into each Task F̂ . The knowledge in R̂ is inconsistent

with F regarding dimensionality. Thus, we need to employ attention mechanism
once more to write the knowledge from R into F̂ , where the shape of F equals
F̂ .

F̂ = softmax(
(FW qw)(R̂W kw)T√

de
)R̂W vw, (2)
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where W qw, W kw, W vw represent the projection matrices.
Step 3: Broadcast F̂ through residual connection. wr is a weight for

residual connection, we set wr = 1.

F ← F + wrF̂ . (3)

Generally speaking, the knowledge extraction module acquires representa-
tions as inputs from various tasks and ultimately broadcasts the outputs to each
task. It is task-agnostic and can seamlessly replace the existing cross-attention
mechanism without complications.

3.2 Complexity Analysis for KEM

The formulation of cross-attention in Figure 2 is:

F ′ = softmax
(
(FW q)(FW k)T√

de

)
FW v. (4)

Here, F , and F ′ are ns × de matrices, where ns = n×m is the sequence length
and de is the feature dimension. First, we calculate FW q and FW k, each with
a complexity of O(ns · d2e). Secondly, we compute (FW q)(FW k)T , which is an
ns × ns matrix multiplication with a complexity of O(n2

s · de). And then, we
calculate another matrix multiplication with FW v, which also has a complex-
ity of O(n2

s · de). The computational complexity of the remaining parts can be
similarly calculated. The overall computational complexity is approximately:

O(2n2
s · de + 3ns · d2e) +O(n2

s).

KEM’s computation can be split into Equation 1 and Equation 2. In Equa-
tion 1, R is an L × de matrix, where L is the length of the memory slots.
Similarly, we calculate RW qr and FW kr, with complexities of O(L · d2e) and
O(ns · d2e) respectively. Then we compute (RW qr)(FW kr)T , an L × ns matrix
multiplication with a complexity of O(L · ns · de). The remaining parts can be
calculated analogously. The total computational complexity is:

O(2L · ns · de + L · d2e + 2ns · d2e) +O(L · ns).

For Equation 2, we calculate FW qw and R̂W kw, with complexities of O(ns ·
d2e) and O(L · d2e) respectively. Then we compute (FW qw)(R̂W kw)T , with a
complexity of O(ns · L · de). And we calculate other parts similarly. The overall
complexity for this equation is:

O(2ns · L · de + ns · d2e + 2L · d2e) +O(L · ns).

Combining the complexity analyses in the KEM method, the total computa-
tional complexity can be expressed as:

O(4L · ns · de + 3ns · d2e + 3L · d2e) +O(L · ns).

Given that ns > de > L, the total computational complexity for cross-
attention is O(2n2

s ·de). Meanwhile, the total computational complexity for KEM
is O(3ns · d2e), which implies that KEM has a lower computational complexity.
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3.3 Training Loss

To optimize the multi-task learning framework, we employ a classical MTL loss
function, which is designed to balance the training across multiple tasks effec-
tively. The MTL loss function is a combination of individual loss functions for
each task, weighted by a set of task-specific parameters that are optimized during
training. The general form of the MTL loss function is given by:

L(θ) =

n∑
i=1

αiLi(θi). (5)

where L(θ) is the total loss for the model, Li(θi) represents the loss function
for the i-th task, θi are the parameters specific to the i-th task, and αi are the
task-specific weights.

These weights are crucial as they help in prioritizing some tasks over oth-
ers, depending on their importance and contribution to the overall performance
of the model. The task-specific weights αi can be dynamically adjusted during
training. Dynamic weighting approaches adjust the weights based on the train-
ing dynamics, potentially leading to better overall performance by automatically
balancing the learning rates across tasks. The optimization of the model parame-
ters θ is performed using gradient descent techniques, with backpropagation used
to compute the gradients of the loss function with respect to each parameter.

4 Stable Knowledge Extraction Module

The Top-K choice and memory slot write operations are influenced by the input
data’s statistical distribution [8, 34,48]. KEM is no exception. To eliminate this
issue, we provide an experiment in 4.1 and propose stable KEM in 4.2.

4.1 KEM under Different Distributions

The capacity of R is smaller than that of F . Assuming the features input to the
KEM are balanced, a reasonable knowledge extraction function can be learned
using the stochastic gradient descent method. However, if the input features
are unbalanced, the KEM’s knowledge extraction function will favor the more
statistically prevalent features. For example, in vision tasks, the features input
to the KEM come from an image, where the background typically occupies half
of the features. However, KEM is used as a plugin in MTL. Evaluating KEM
with different distributions of F is quite difficult, as PF lacks interpretability
and is challenging to construct manually. Therefore, we design a toy experiment
to demonstrate this claim.

We conducted toy experiments on Sort-of-clever [33]. Sort-of-CLEVER is a
dataset used for visual reasoning and learning. Due to its small size and random
generation, it is very suitable for simulating the problem of imbalance in com-
puter vision. We have constructed a long-tailed distribution with a power-law
exponent of 2, where baseline is a balanced distribution.
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Table 1: Comparing sKEM and KEM on different distributions. We show that KEM
is sensitive to changes in input distribution by testing it on a long-tailed distribution.

Methods Use NC Balance Imbalance Accuracy

1 KEM × ✓ × 81%
2 sKEM ✓ ✓ × 79%
3 KEM × × ✓ 71%
4 sKEM ✓ × ✓ 79%

As shown in Table 1, we evaluate KEM on both balanced and imbalanced
distributions. The accuracy of KEM drops from 81% to 71%, see the first and
the third rows of Table 1, indicating its sensitivity to imbalanced inputs. This
experiment aims to demonstrate KEM’s sensitivity to input variability. In MTL,
KEM’s input is unknown, underscoring the need for a stable KEM.

4.2 Stable KEM with Neural Collapse

Inspired by Neural Collapse, we present a straightforward yet effective approach.
By projecting the input features into an ETF space before they are processed by
the KEM, we improve feature differentiation. This improvement helps the KEM
focus less on statistically dominant features and more on diverse attributes,
reducing bias [34, 48]. To implement this projection, we use a fixed matrix W ∗,
defined as:

W ∗ =
K

K − 1
U

(
IK −

1

K
1K1T

K

)
, (6)

where W ∗, U ∈ Rd×K , and UTU = IK , with IK representing the identity matrix.
Here, 1K is an all-ones vector. K is the number of ETF vertices corresponding
to the number of tasks, and d is the dimension, matching the dimension of KEM.
The matrix W ∗ is then used in the preprocessing step as described in Equation 1.
It is applied in a dot product operation with the pre-filtered data. Afterward,
the data is filtered through a topk-softmax function and multiplied by FW vr to
complete the attention mechanism, with the results stored in R̂:

R̂ = topk-softmax
(
(RW qr)(FW kr)T√

de
W ∗

)
FW vr. (7)

As shown in Table 1, we evaluate sKEM on balanced and imbalanced dis-
tributions. Referring to the first and the third rows of Table 1, the accuracy of
sKEM is virtually unchanged, indicating its robustness to imbalanced inputs.
Referring to the third and the fourth rows of Table 1, the accuracy rose from
71% to 79%, indicating sKEM’s stability. Please note that apart from consider-
ing a stable KEM as sKEM in this section, the subsequent section will use KEM
to represent sKEM.
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5 Experiments

In this section, we present our experimental setup and evaluation metrics for
assessing the performance of KEM across multiple tasks.

5.1 Basic Setting

Datasets. We evaluate KEM with two datasets NYUDv2 [35] and PASCAL
VOC [10]. The NYUDv2 dataset is used for both semantic segmentation and
depth estimation tasks. It contains a total of 1449 images, split into 795 images
for training and 654 images for validation. For the PASCAL VOC dataset, we
utilize the PASCAL-Context split [7], which includes annotations for seman-
tic segmentation, human part segmentation, and composite saliency labels [25]
derived from state-of-the-art pre-trained models [1, 6]. This dataset comprises
10,103 images, with 4998 images designated for training and 5105 for validation.

Baselines. In this paper, we compare several MTL methods to evaluate
KEM’s performance. The methods we selected include MTfomer [47], MTL-
A [24], Cross-stitch [28], MTI-Net [42], Switching [36], ERC [4], NDDR-CNN [12],
PAD-Net [46], Repara [19], AST [25], and Auto [3]. We use the same dataset
and evaluation metrics to ensure a fair comparison.

Evaluation metric. For evaluating our models, we use different metrics
based on the specific tasks. Semantic segmentation, saliency estimation, and
human part segmentation are evaluated using the mean Intersection over Union
(mIoU). The mIoU measures the overlap between the predicted segmentation
and the ground truth, averaged over all classes:

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi

where N is the number of classes, TPi, FPi, and FNi are the true positive, false
positive, and false negative pixel counts for class i. Depth estimation is evaluated
using the Root Mean Square Error (RMSE), which measures the difference be-
tween the predicted depth and the actual depth values, providing an indication
of the model’s accuracy:

RMSE =

√√√√ 1

n

n∑
i=1

(pi − ai)2

where n is the number of depth values, pi is the predicted depth, and ai is
the actual depth. In addition to individual task metrics, we assess the overall
performance of MTL approach using a composite metric, ∆m, adapted from [47].
This metric is defined as:

∆m =
1

n

n∑
i=1

(−1)li
(
Mm,i −Ms,i

Ms,i

)
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10 R. Zhang et al.

where Mm,i is the performance of the MTL model on the i-th task, Ms,i is the
performance of the single-task learning (STL) model on the same task, and li is
1 if a lower value indicates better performance for the i-th task, and 0 otherwise.
This composite metric helps us quantify the benefit of multitask learning by
comparing it against single-task learning across multiple tasks.

Other implementation details. We employed the AdamW optimizer, which
effectively handles sparse gradients and high-dimensional data while also help-
ing to mitigate overfitting. For the PASCAL dataset, we set the learning rate to
0.000025, whereas for the NYUD-v2 dataset, the learning rate was set to 0.00005.
The difference in learning rates is adjusted based on the characteristics and re-
quirements of each dataset, ensuring optimal performance during training. The
weight decay coefficient for both datasets was set to 0.0001 to further control
model complexity and prevent overfitting. Additionally, we adopted a polyno-
mial learning rate scheduling strategy. This strategy maintains a higher learning
rate at the beginning of training and gradually decreases it over time, ensuring
that the model continuously adjusts during convergence to achieve higher accu-
racy. The pretrained model we used is from Xu [47]. For task configuration, we
set the loss weights for semantic segmentation, human part segmentation, and
saliency detection in the PASCAL dataset to 1.0, 2.0, and 30.0, respectively. In
the NYUD-v2 dataset, the loss weights for semantic segmentation and depth
estimation were both set to 1.0. These weight settings are adjusted based on the
importance and difficulty of each task.

5.2 Main Result of KEM

Table 2 presents the experimental results for the NYDU-v2 and PASCAL datasets
across all architectures. Our KEM method surpasses most baselines in all tasks.
Notably, KEM exhibits exceptional performance in the composite metric, ∆m.
Furthermore, when evaluating the metrics for each individual task, KEM achieves
three best and two second-best results. Additionally, we conducted an ablation
study, as shown in Table 3. We established a baseline (KEM w/ CA) by replac-
ing the IB memory slots in KEM with cross-attention. This allowed us to focus
on the core module of our method, minimizing the influence of other training
optimization strategies on the contribution of KEM. Figures 4 and 5 provide a
visual comparison between the cross-attention baseline and KEM. It is evident
that our method significantly improves noise handling. For instance, in Figure 4,
the first marked location on the segmentation mask clearly shows that KEM
demonstrates higher robustness to noise. In Figure 5, within the blurry areas of
the human body, KEM possesses better noise-resistant capabilities.

To address concerns regarding the variability of experimental results, we
employed multiple random seeds in our experiments. The findings, as detailed in
Table 4, indicate that despite inherent fluctuations, the enhancements achieved
by our KEM method over the baseline approaches remain consistently robust
and reliable.
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Table 2: Comparison on NYUD-v2 and PASCAL Datasets. It can be seen that KEM
outperforms the baseline on most metrics.

NYUD-v2 PASCAL

Method Seg↑ Dep↓ ∆m↑ Seg↑ Part↑ Sal↑ ∆m↑

AST 42.16 0.570 -13.39 68.00 61.12 66.10 -3.24
Auto 41.10 0.541 -11.58 64.07 58.60 64.92 -6.99
Cross-stitch 41.01 0.538 -11.37 63.28 60.21 65.13 -6.41
NDDR-CNN 40.88 0.536 -11.30 63.22 56.12 65.16 -8.56
MTL-A 42.03 0.519 -8.40 61.55 58.89 64.96 -7.99
Repara 43.22 0.521 -7.36 56.63 55.85 59.32 -14.70
PAD-Net 50.20 0.582 -6.22 60.12 60.70 67.20 -6.60
MTFormer-T 50.04 0.490 +2.87 73.52 64.26 67.24 +1.55
Switching 45.90 0.527 -5.17 64.20 55.03 63.31 -9.59
MTI-Net 49.00 0.529 -2.14 64.98 62.90 67.84 -2.86
Ours(KEM) 49.63 0.474 +3.78 73.60 64.94 67.82 +2.24

Table 3: Ablation study for the soft IB module, replaced with cross-attention. This
allowed us to focus on our core method and minimize the impact of other training
optimizations on KEM’s contribution.

NYUD-v2 PASCAL

Method Seg↑ Dep↓ ∆m↑ Seg↑ Part↑ Sal↑ ∆m↑

KEM w/ CA 48.72 0.472 +2.97 73.45 64.93 67.71 +2.10
Ours(KEM) 49.63 0.474 +3.78 73.60 64.94 67.82 +2.24

sK
EM

K
EM

 w
/ C

A

Input Image Segmentation
Mask Depth Estimation

Fig. 4: NYUD-v2 validation results on semantic segmentation and depth estimation.
Red boxes highlight regions of interest, showing the effectiveness of our method and
the baseline with cross-attention.
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Table 4: Performance metrics with multiple random seeds showing robust improve-
ments of KEM over baseline.

Number Seg↑ Dep↓ ∆m↑ Number Seg↑ Dep↓ ∆m↑

0 49.48 0.477 +3.55 5 49.70 0.480 +3.48
1 49.59 0.480 +3.42 6 49.35 0.474 +3.72
2 49.50 0.479 +3.39 7 49.77 0.479 +3.67
3 49.30 0.477 +3.36 8 48.95 0.478 +2.88
4 49.63 0.476 +3.78 9 49.31 0.479 +3.17

Table 5: Grid search results for memory slot L, where L = 20 represents the optimal
configuration identified through our exploration.

L Seg↑ Dep↓ ∆m↑ L Seg↑ Dep↓ ∆m↑

5 48.92 0.477 2.98 20 49.63 0.474 3.78
10 49.55 0.478 3.51 25 49.44 0.476 3.57
15 48.85 0.478 2.79 30 49.49 0.479 3.38

Table 6: Computation and Memory Cost.

Method KEM sKEM Cross-Attention

Computation (Step/Second) 10.22 7.53 3.68
GPU Memory (MB) 265 285 314

sK
EM

K
EM

 w
/ C

A

Input Image Part Segmentation Saliency 
Estimation

Segmentation
Mask

Fig. 5: PASCAL validation results on human part segmentation, saliency estimation,
and semantic segmentation. Red boxes highlight regions of interest, demonstrating the
effectiveness of our method and baseline with cross-attention. In blurry areas of the
human body, KEM shows superior noise resistance.
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5.3 Discussion of Expeiments

This section will discuss two important hyperparameters: the number of memory
slots L and K in topk-softmax. The former influences the shared memory space
size of the KEM module, while the latter affects the selection number in the
Top-K operation during the screening process. Both of these hyperparameters
have a significant impact on the KEM module. They cannot be set too high or
too low, as this would significantly impact the KEM module. In this paper, we
employ a grid search method to identify a suitable set of hyperparameters.

Memory Slot L. The number of memory slots L directly determines the
size of the memory space, thereby impacting the results of knowledge extraction.
A value of L that is too low cannot accommodate sufficient knowledge, while an
excessively high L increases memory overhead and complexity, resulting in the
dilution of the selected knowledge within the memory. To identify the optimal
L, we conducted search experiments. As shown in Table 5, the experiments on
three tasks in the NYUD dataset indicate that the best training results were
achieved with L set to 20. Consequently, other experiments primarily utilized
the configuration of L = 20.

Computation and Memory Cost.
We have thoroughly compared the computational efficiency and memory us-

age of KEM, sKEM, and Cross-Attention, as detailed in the Table 6. The results
are consistent with our expectations: KEM is the fastest and has the fewest pa-
rameters due to its use of Information Bottleneck. sKEM incurs higher costs and
more parameters due to the additional projection layer, while Cross-Attention
has the lowest efficiency and the highest parameter count.

Top-K operation K. K is a crucial parameter in the Top-K operation of
the Retrieve step in the knowledge extraction module training. It directly affects
the number of items retained during the filtering operation and is essential for
managing the extraction process. As K too low can result in excessive filter-
ing, where a significant amount of useful knowledge is not retained for further
learning. Conversely, an excessively high K can lead to low filtering effective-
ness, retaining too much irrelevant noise information, which causes interference
between tasks. Therefore, we conducted an experiment on the K choice.

The experimental results are recorded in Table 7. As can be seen, a com-
prehensive comparison of the results for the three tasks in the NYUD dataset
reveals that the highest training effectiveness of the knowledge extraction mod-
ule was achieved when the K was set to 3. Consequently, this study primarily
used the hyperparameter configuration of K=3 for all other experiments.

5.4 Limitation and future work

This study concentrated on computer vision datasets, which often face imbal-
ances and data interference issues. The experiments were limited to this domain,
necessitating further validation of multitask learning in other fields. KEM’s goal
is to reduce obvious noise and interference between tasks rather than pinpoint
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Table 7: Grid search results for Top-K K, where K = 3 represents the optimal con-
figuration identified through our exploration.

K Seg↑ Dep↓ ∆m↑ K Seg↑ Dep↓ ∆m↑

1 49.42 0.480 3.22 4 49.47 0.477 3.50
2 49.14 0.476 3.26 5 49.63 0.474 3.78
3 49.79 0.476 3.97 6 49.33 0.476 3.45

effective features. We aim to propose a framework that identifies effective fea-
tures and promotes them with learnable weights, which could enhance MTL
and lead to a more interpretable model. While we currently lack visualization
methods for this process, addressing this challenge is a priority for future explo-
ration. Additionally, applying soft IB (information bottleneck) extends beyond
MTL; it may also benefit complex single-task learning (STL), such as in NLP
with numerous tokens or in 3D reconstruction with many light rays. These areas
represent promising avenues for our future research.

6 Conclusion

In this paper, we propose a novel multi-task learning (MTL) method called KEM.
We first re-examine previous Transformer-based cross-attention MTL methods
from the perspective of noise. To address the noise issue, we introduce a new
method based on the soft information bottleneck (soft IB). Extensive exper-
iments demonstrate that KEM effectively mitigates the interference between
tasks. Moreover, we find that KEM significantly reduces computational com-
plexity, which is crucial for efficient resource utilization. Additionally, we utilized
Neural Collapse to enhance the stability of KEM and proposed sKEM. We have
experimentally proven the stability of sKEM. In future work, we plan to propose
a framework to identify effective features in MTL and extend the model to an
interpretable general model. Additionally, we will explore the potential of KEM
in single-task scenarios within other complex environments.
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