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Abstract. 3D occupancy prediction based on multi-sensor fusion, cru-
cial for a reliable autonomous driving system, enables fine-grained under-
standing of 3D scenes. Previous fusion-based 3D occupancy predictions
relied on depth estimation for processing 2D image features. However,
depth estimation is an ill-posed problem, hindering the accuracy and
robustness of these methods. Furthermore, fine-grained occupancy pre-
diction demands extensive computational resources. To address these
issues, we propose OccFusion, a depth estimation free multi-modal fu-
sion framework. Additionally, we introduce a generalizable active training
method and an active decoder that can be applied to any occupancy pre-
diction model, with the potential to enhance their performance. Exper-
iments conducted on nuScenes-Occupancy and nuScenes-Occ3D demon-
strate our framework’s superior performance. Detailed ablation studies
highlight the effectiveness of each proposed method.

Keywords: 3D feature learning · 3D occupancy prediction · Multi-
modal learning · Depth estimation free · Multi-sensor fusion

1 Introduction

Accurate and complete perception of 3D surroundings in urban contexts is crucial
for autonomous driving, facilitating tasks such as map construction and vehicle
motion planning, thereby ensuring safe and reliable driving. Recent years have
seen a surge in research on semantic occupancy perception [1, 9, 13, 16, 48, 51].
Unlike 3D object detection [5,24,30,57], which typically employs bounding boxes
to approximate the location of dynamic objects, semantic occupancy perception
models the entire sensor field, encompassing static objects and areas beyond the
immediate interest. This approach yields finer-grained 3D scene representations,
aligning more closely with real-world driving scenarios, making it a promising
research direction.

In previous works on semantic surrounding perception [4,16,21,33,34,39,41,
46,48,49,51,56], converting 2D features to 3D through depth prediction has been
a conventional approach [4,21,33,41,48,49,56]. However, it is widely recognized
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Fig. 1: Visualization of our coarse-grained and fine-grained prediction results. The first
row shows the ground truth and prediction for two coarse-grained samples, while the
second row displays the ground truth and prediction for the same two samples at a
fine-grained level. Better viewed when zoomed in.

that lifting 2D image features to 3D [38] inherently attempts to solve an ill-
posed problem. The robustness of depth estimation cannot be guaranteed, and
considering its use in downstream tasks, the instability of depth estimation poses
significant risks to various driving tasks [24].

By employing multi-modal methods, depth information can be introduced
through LiDAR data, mitigating the ill-posed nature of the problem. However,
the challenge remains in effectively integrating 2D image features with 3D LiDAR
features without depth estimation. While previous literature [3,17] has indicated
that the fusion of multi-modal data can provide redundancy and higher accuracy,
to date, only a few studies have focused on multi-modal 3D semantic occupancy
prediction [36,48], and these methods have relied on depth estimation for image
features, resulting in suboptimal robustness and accuracy (see Fig. 2).

On the other hand, representative fusion-based occupancy prediction meth-
ods [36,48] are based on the CONet (Cascade Occupancy Network) architecture,
which refines coarse-grained voxels, improving precision while conserving com-
putational resources. However, we point out that splitting operations for most
high-confidence voxels are unnecessary and only increase computational load.
Additionally, existing models use specific loss functions to address voxel class
imbalance from a micro perspective [36, 45, 48] but overlook the long-tail effect
of training data scenes from a macro perspective. New methods are needed to
enable the model to selectively learn from more challenging samples, thereby
enhancing robustness.

We propose the OccFusion framework, which eliminates depth estimation for
image features. Unlike previous methods that blend image features into point
cloud features and suffer from density discrepancies between camera and LiDAR
features [22, 47, 55], our OccFusion method uses preprocessed LiDAR points to
sample image features. Specifically, we voxelize the space around the vehicle and
preprocess each voxel’s point cloud: for voxels with sparse LiDAR points, we
uniformly generate synthetic point clouds; for voxels with dense LiDAR points,
we use the farthest point sampling algorithm [40] to select a subset of points.
Then, we project the point cloud onto the image using camera intrinsics and
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extrinsics to establish correspondences between 2D camera features and 3D Li-
DAR features. We use respective encoders to obtain 3D and 2D features, and
then perform deformable cross attention [61], using LiDAR voxel features con-
catenated with point coordinates as queries and corresponding camera features
as keys, directly fusing 3D LiDAR and 2D camera features. The features of each
LiDAR point within a voxel are averaged to obtain the selected camera feature
for that voxel, which is then added to the corresponding LiDAR voxel feature be-
fore normalization, resulting in the multi-modal feature. To achieve fine-grained
results, we improve upon CONet [48] by introducing an active occupancy de-
coder, which selectively splits challenging voxels to learn fine-grained features,
significantly reducing model complexity. Finally, we propose an active training
method, allowing the model to prioritize learning from more difficult samples.
Experiments show that this simple strategy further improves model performance
and can be generalized to the training of other models.

Our contributions can be summarized as follows:
– We introduce a novel point-to-point multi-modal feature fusion framework

for 3D occupancy prediction, OccFusion, which eliminates the need for depth
estimation of image features during the fusion process.

– We propose an efficient point cloud preprocessing algorithm that produces
denser and more uniform point clouds, which, as demonstrated by experi-
ments, significantly enhances feature fusion.

– We propose an active occupancy decoder and an active training method,
both of which can be naturally transferred to other occupancy models to
improve their performance.

– Experiments on nuScenes show that our method achieves state-of-the-art
(or comparable) performance across all categories, with significant improve-
ments in the accuracy of small objects. Detailed ablation studies validate
the effectiveness of each proposed module and method.

2 Related Work

2.1 Vision-Based 3D Occupancy Prediction

Effectively representing the 3D environment around the vehicle remains a core
issue in autonomous driving. Voxel-based representation discretizes 3D space
into a voxel grid, computing features for each voxel in the grid to represent the
scene. This method provides finer granularity features than BEV (Bird’s Eye
View) based methods [24, 30, 38, 54, 59], aligning more closely with real-world
driving scenarios. The lack of direct geometric inputs and localization informa-
tion [3] makes purely camera-based 3D occupancy prediction [4,16] challenging.
Recent works [4,21,26,33,48,58] have utilized depth prediction methods to gen-
erate occupancy features. However, depth prediction is notoriously ill-posed, and
these methods often suffer from unstable depth estimation. While camera-only
approaches offer promising prospects, multi-modal methods deliver higher accu-
racy and more reliable results, crucial for the safe and trustworthy deployment
of autonomous driving.
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Fig. 2: Comparison of our method with one of the existing SOTA multi-modal base-
line [48] under challenging samples. The first row compares M-baseline [48] with the
proposed method for the coarse occupancy prediction task, while the second row com-
pares M-CONet [48] with our OccFusion at the fine stage. Better viewed when zoomed
in.

2.2 Feature Fusion of Camera and LiDAR

LiDAR provides precise localization and reflectance information, complementing
camera features [3,31,36,48]. However, LiDAR point clouds are often sparse and
vary greatly in density, and lack detailed semantic information such as color and
object edges [30]. Despite the greater expense associated with using multiple sen-
sors, multi-modal semantic occupancy prediction methods [36,48] can integrate
the strengths of both LiDAR and camera, outperforming methods based solely
on either. However, existing multi-modal approaches face challenges in multi-
channel fusion, current works [31,36,48] still rely on depth estimation to extract
image features, which is an inefficient method. In contrast, our innovative fusion
approach does not estimate depth but directly integrates camera and LiDAR
features, ensuring efficiency and robustness.

2.3 Active Learning and Hard Example Mining

The imbalance of spatial semantic categories and variability in samples can im-
pact model training, hence, random sample selection may degrade accuracy [29].
Inspired by previous active learning research [10, 12, 19], which suggests that
samples with high entropy require additional attention, our active occupancy
decoder refines features only for coarse voxels with the highest entropy. During
training, we draw inspiration from hard example mining [8, 43, 44], prioritizing
samples with greater uncertainty. Experiments demonstrate that this approach
significantly improves model accuracy.
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Fig. 3: The overall architecture of our method. Raw LiDAR points are processed by a
3D encoder to extract voxelized features, which, concatenated with point coordinates,
serve as queries. Multi-view image features, obtained directly through a 2D encoder
from surround-view images, act as keys. Enhanced point clouds are then subjected to
point-to-point fusion, resulting in multi-modal 3D voxel features. An active decoder
adaptively refines predictions in challenging areas.

3 Method

3.1 Overview

Figure 3 illustrates the architecture of our method. We employ VoxelNet [60]
and 3D sparse convolutions [53] to embed raw LiDAR points into voxelized fea-
tures FL ∈ R

D
S ×H

S ×W
S ×C(where S is the stride). For camera images, we use

ResNet101 [11] with FPN [27] as the backbone to extract multi-view features
Fmv ∈ RN×Hc×W c×C , without performing any depth-related operations. With
the voxel grid established, the initial state’s point cloud is considered to reside
within these voxels. Due to the sparsity of raw point clouds, to effectively sam-
ple image features, we employ specific sampling and generating methods (see
Sec. 3.2) to ensure each voxel contains dense and relatively uniform LiDAR
points. These LiDAR points are then projected onto images using camera in-
trinsic and extrinsic parameters, creating reference points. Using LiDAR points
as intermediaries, we establish the correspondence between LiDAR features and
camera features. Through spatial fusion (see Sec. 3.3), we fuse 3D LiDAR fea-
tures concatenated with point coordinates (as queries) with 2D image features
(as keys) on a point-to-point basis. For each LiDAR point, we obtain a feature,
and by averaging these features within each voxel, we derive a C-dimensional
feature for that voxel, which is then added to and normalized with the cor-
responding LiDAR feature. These features can directly yield coarse occupancy
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predictions through a simple classification head. Due to the high computational
complexity of directly predicting refined occupancy grids, we apply an active
coarse to fine pipeline to our obtained coarse-grained multi-modal occupancy
features, focusing fine-grained prediction only on voxels with the highest uncer-
tainty (see Sec. 3.4). During the training phase, we experiment with enabling
the model to actively learn from samples (see Sec. 3.5), which, as experiment
shows (see Sec. 4.3), can further improve model accuracy.

Algorithm 1 LiDAR Points Sampling Algorithm
Input Raw LiDAR Point Clouds
Output 3D Reference Points
Require NV

p ≥ 0, τ ∈ N, θ ∈ N (θ > τ)
1: for each voxel V do
2: if NV

p ≤ τ then
3: Uniformly generate up to θ points
4: else if τ < NV

p ≤ θ then
5: continue
6: else
7: Initialize S ← {P0} with P0 randomly chosen
8: repeat
9: Pj ← argmax

P /∈S
d(P, S)

10: S ← S ∪ {Pj}
11: until |S| = θ
12: end if
13: end for

3.2 3D LiDAR Feature Extraction and LiDAR Point Sampling
Algorithm

The method for embedding raw LiDAR points into 3D voxelized features is
consistent with [48]. In this process, 3D space is partitioned into a grid of size
D/S × H/S × W/S (where S is the stride). After partitioning the space, the
number of LiDAR points in voxel V is denoted as NV

p . We define two hyper-
parameters: τ ∈ N and θ ∈ N (θ > τ). For each voxel, there are three possible
scenarios. First, due to the sparsity of LiDAR point clouds, many voxels contain
no or few LiDAR points (i.e., NV

p ≤ τ); for these, we generate synthetic point
clouds using a simple uniform generation method to increase the point count to
θ. For voxels with an adequate number of LiDAR points (i.e., τ < NV

p ≤ θ), no
action is taken. The uneven spatial distribution of LiDAR point clouds results in
some voxels containing too many LiDAR points (i.e., NV

p > θ); for these, we use
farthest point sampling (FPS) [40] to select θ points. Specifically, we start with a
randomly chosen point P0 as the initial point, forming a sample set S = {P0}. We
define the distance from a point P to the set as d(P, S) := min d(P, Pi), Pi ∈ S,
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calculate the distance d(Pj , S) for all points other than P0, find

α = argmax
j

d(Pj , S), Pj /∈ S, (1)

and add Pα to the set S, repeating this process until θ points are obtained. This
point cloud sampling algorithm yields denser and more uniformly distributed
point clouds in each voxel, facilitating effective sampling of image features.

3.3 Camera Feature Extraction and OccFusion: Point-to-Point
Multi-modal Feature Fusion

We use a 2D encoder [11,27] to extract multi-view image features without elevat-
ing them to 3D. Instead, we introduce the OccFusion module to fuse 2D image
features with 3D LiDAR features on a point-to-point basis. We project prepro-
cessed point clouds onto multi-view images using camera parameters, establish-
ing reference points. For each LiDAR point, we concatenate its coordinates with
the corresponding LiDAR voxel feature to create a query. This query allows us
to sample and fuse the relevant image features via deformable attention [61],
with bilinear interpolation employed for accurate sampling at designated posi-
tions. The deformable attention mechanism and the associated process can be
formalized as follows:

DA(zq, pq, x) =

Nhead∑
m=1

Wm

Nkey∑
k=1

Amqk ·W
′

mx(pq +∆pmqk) (2)

and

OccFuse(Q,X, V ) = Norm(QV +
1

|V |
∑
l∈V

1

|P(l)|
∑

i∈P(l)

DA(Ql
V , i,Xi)). (3)

In this context, Q represents the 3D LiDAR voxel features, and X is the 2D
feature map of surround-view images. The result on the left side of Eq. (3) cor-
responds to the final feature FV for a given voxel V , where l is a 3D reference
point within V , and P(·) denotes the projection from the LiDAR coordinate
system to the image coordinate system. P(l) is the set of reference points cor-
responding to the LiDAR point l after projection. Notably, due to the shared
field of view among cameras, a single LiDAR point may correspond to multiple
reference points across several images upon projection (see Fig. 4). Moreover,
a voxel always contains |V | ∈ (τ, θ] reference points after pre-sampling (see Al-
gorithm 1), and |P(l)| represents the number of reference points corresponding
to a single LiDAR point l. We apply averaging to address these one-to-many
relationships, then add the sampled feature to the corresponding LiDAR voxel
feature and normalize the result, yielding a single feature vector FV for each
voxel. Ql

V is the query corresponding to voxel V and 3D reference point l, and
Xi is the feature map of the image containing 2D reference point i. Wm and
W

′

m are learnable parameters, Amqk denotes the attention weight. In the pre-
diction phase, the derived feature FV is processed through a classification head,
enabling direct coarse semantic occupancy prediction, see Fig. 4.

3593



8 J. Zhang et al.

LiDAR Feature &
Point Coordinate

(Query)

Image Features
(Keys)

2D
 E

nc
od

er

Average (Reference points)

Average (LiDAR points)

Projection Fe
at

ur
e 

Em
be

dd
in

g
&

3D
 E

nc
od

er

Deformable Cross
Attention

............

 A
dd

 &
 N

or
mMulti-modal

Voxel
Feature

Fig. 4: Details of the OccFusion module. After pre-sampling, 3D reference points are
projected onto images as 2D reference points. Synthetic point clouds (points within
the circle) do not contribute to LiDAR feature generation. Due to overlapping camera
fields of view, a single 3D reference point may correspond to multiple projected 2D
reference points. Features for these reference points are averaged to derive features for
each 3D point, which are then averaged to obtain the sampled camera feature. Finally,
this feature is combined with the corresponding LiDAR feature through addition and
normalization to produce the multi-modal feature.

3.4 Active Coarse to Fine Pipeline

CONet (Cascade Occupancy Network) conserves computational resources by
refining coarse occupancy instead of directly predicting refined occupancy fea-
tures [36,48]. In real-world scenarios, refining features for most voxels is unnec-
essary: for large objects like buses, coarse voxels within the occupied space can
effectively represent the category using coarse occupancy features. In contrast,
small objects such as traffic cones and bicycles require finer-grained predictions
due to the sparsity of the coarse grid. To optimize resource use while enhancing
recognition of small or overlapping objects, we introduce an entropy filter to
determine the necessity of feature refinement for each voxel. Specifically, we em-
ploy classical information entropy to assess the need for fine-grained prediction
in a voxel. We set a threshold δ representing the proportion of voxels requiring
fine-grained feature prediction, and after passing coarse voxel features through
a classification head, we obtain probabilities for each class in a voxel V denoted
as pVi , i = 1, . . . , Nclass, where Nclass is the total number of classes. Using the
formula

Entropy(V ) = −
Nclass∑
i=1

pVi log pVi , (4)
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Fig. 5: Active coarse to fine pipeline. We refine features only for voxels with greater
uncertainty.

we calculate the uncertainty within each coarse-grained voxel. When Entropy(V )
is sufficiently high, we predict further fine-grained features for the voxel, i.e.,
splitting the voxel into smaller voxels to serve as occupancy queries for feature
sampling through corresponding 2D image features and 3D multi-modal features
using camera intrinsic and extrinsic parameters. The details are the same as the
coarse to fine pipeline in [48]. For voxels with lower entropy, we still split them,
but for each smaller voxel, we directly use the category obtained from coarse-
grained features, see Fig. 5. Note that our pipeline can naturally be extended to
other occupancy prediction models, not just multi-modal models.

3.5 Active Training Method

Due to class imbalance among voxels within each sample, nearly all 3D occu-
pancy prediction methods employ loss functions such as focal loss [28], OHEM
loss [43] and semantic mIoU [4] to enhance model performance on minority se-
mantic classes. However, we note that the complexity of different scenes varies
due to factors such as lighting, weather, and surrounding environments. Inspired
by classical hard example mining techniques [8,43,44], we designed an extremely
simple active training approach that biases the model towards difficult samples,
which, as demonstrated by experiments, significantly improves model perfor-
mance. Specifically, at epoch t, starting with the model trained in the previous
epoch as model t, training is divided into two stages. In the training stage, we
train using the training set t filtered from the previous epoch to obtain model
t + 1. Then, using model t + 1, we score the loss for each sample in the entire
training set and rank these samples from high to low, see Fig. 6. The higher the
loss for a sample, the greater the necessity for the model to re-learn that sample.
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Fig. 6: Active training method. In the training stage, we train the model using the
training set sampled from the previous stage. In the resampling stage, we use the
model trained in the training stage to score the loss on the full training set, selecting
the top K percent of samples to form the training set for the next training cycle.

Note, in the first round of training, we train the model using all samples. This
active training method allows the model to learn from more challenging samples
specifically. Although an additional resampling stage for loss ranking is required,
this stage does not involve back-propagation, resulting in minimal computational
overhead. Moreover, in each epoch (except the first), training only uses the top
K percent of samples. Note that our training method is independent of the loss
function, meaning it can be combined with any loss function from previous works
to enhance model performance.

Here, our model loss is the sum of multiple loss functions, specifically, the
cross-entropy loss Lce, lovasz-softmax Lls [2], affinity loss Lgeo

scal and Lsem
scal [4] (i.e.,

geometric IoU and semantic mIoU) are combined as the model’s loss function,
formulated as:

Ltotal = Lce + Lls + Lgeo
scal + Lsem

scal . (5)

4 Experiments

4.1 Experimental Setup

Dataset and Metrics. We conduct experiments on the challenging nuScenes
dataset [3], the ground truth labels are from OpenOccupancy [48] and Occ3D [45].
The labels from Occ3D spans a range of −40m to 40m for the X and Y directions
and −1m to 5.4m for the Z direction, with a voxel size of 0.4m. For OpenOc-
cupancy, the evaluation range for the X and Y axes is set to [−51.2m, 51.2m],
and for the Z axis, it is set to [−3m, 5m]. The voxel resolution is 0.2m, resulting
in a final occupancy grid spatial scale of 40× 512× 512. We utilize the metrics
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Table 1: Performance on the nuScenes-Occupancy validation set [48]. C, D, L, M
represent camera, depth, LiDAR, and multi-modal, respectively. Details of the baseline
setup are available in the dataset [48].
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MonoScene [4] C 18.4 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3 7.9 7.4 10.0 7.6
TPVFormer [16] C 15.3 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0 8.3 8.0 9.2 8.2
3DSketch [6] C&D 25.6 10.7 12.0 5.1 10.7 12.4 6.5 4.0 5.0 6.3 8.0 7.2 21.8 14.8 13.0 11.8 12.0 21.2
AICNet [20] C&D 23.8 10.6 11.5 4.0 11.8 12.3 5.1 3.8 6.2 6.0 8.2 7.5 24.1 13.0 12.8 11.5 11.6 20.2
LMSCNet [42] L 27.3 11.5 12.4 4.2 12.8 12.1 6.2 4.7 6.2 6.3 8.8 7.2 24.2 12.3 16.6 14.1 13.9 22.2
JS3C-Net [52] L 30.2 12.5 14.2 3.4 13.6 12.0 7.2 4.3 7.3 6.8 9.2 9.1 27.9 15.3 14.9 16.2 14.0 24.9
C-CONet [48] C 20.1 12.8 13.2 8.1 15.4 17.2 6.3 11.2 10.0 8.3 4.7 12.1 31.4 18.8 18.7 16.3 4.8 8.2
L-CONet [48] L 30.9 15.8 17.5 5.2 13.3 18.1 7.8 5.4 9.6 5.6 13.2 13.6 34.9 21.5 22.4 21.7 19.2 23.5
M-CONet [48] C&L 29.5 20.1 23.3 13.3 21.2 24.3 15.3 15.9 18.0 13.3 15.3 20.7 33.2 21.0 22.5 21.5 19.6 23.2
Co-Occ [36] C&L 30.6 21.9 26.5 16.8 22.3 27.0 10.1 20.9 20.7 14.5 16.4 21.6 36.9 23.5 25.5 23.7 20.5 23.5
OccFusion (ours) C&L 32.4 22.4 25.3 17.0 22.5 25.9 16.5 22.4 24.0 16.1 16.0 22.1 35.6 22.1 24.0 23.9 21.3 24.0

Table 2: 3D semantic occupancy prediction results on Occ3D [45] benchmark. C, L,
R represent camera, LiDAR, and Radar, respectively.
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MonoScene [4] C 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVDet [15] C 11.73 2.09 15.29 0.0 4.18 12.97 1.35 0.0 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26

BEVFormer [24] C 23.67 5.03 38.79 9.98 34.41 41.09 13.24 16.50 18.15 17.83 18.66 27.70 48.95 27.73 29.08 25.38 15.41 14.46
BEVStereo [23] C 24.51 5.73 38.41 7.88 38.70 41.20 17.56 17.33 14.69 10.31 16.84 29.62 54.08 28.92 32.68 26.54 18.74 17.49
TPVFormer [16] C 28.34 6.67 39.20 14.24 41.54 46.98 19.21 22.64 17.87 14.54 30.20 35.51 56.18 33.65 35.69 31.61 19.97 16.12
OccFormer [58] C 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97
CTF-Occ [45] C 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00

RenderOcc [37] C 26.11 4.84 31.72 10.72 27.67 26.45 13.87 18.20 17.67 17.84 21.19 23.25 63.20 36.42 46.21 44.26 19.58 20.72
BEVDet4D [14] C 42.02 12.15 49.63 25.10 52.02 54.46 27.87 27.99 28.94 27.23 36.43 42.22 82.31 43.29 54.46 57.90 48.61 43.55
PanoOcc [50] C 42.13 11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.40 56.04 45.94 40.40
FB-OCC [25] C 43.41 12.10 50.23 32.31 48.55 52.89 31.20 31.25 30.78 32.33 37.06 40.22 83.34 49.27 57.13 59.88 47.67 41.76
OctreeOcc [32] C 44.02 11.96 51.70 29.93 53.52 56.77 30.83 33.17 30.65 29.99 37.76 43.87 83.17 44.52 55.45 58.86 49.52 46.33
Ming et al . [35] C+L+R 46.67 12.37 50.33 31.53 57.62 58.81 33.97 41.00 47.18 29.67 42.03 48.04 78.39 35.68 47.26 52.74 63.46 63.30

OccFusion (ours) C+L 48.74 12.35 51.77 33.01 54.56 57.65 33.99 43.03 48.35 35.54 41.22 48.55 83.00 44.65 57.13 60.01 62.46 61.25

of Intersection-over-Union (IoU) and mean Intersection-over-Union (mIoU) to
evaluate our method’s performance. Following [45, 48], we train our model on
the training set and evaluated its performance on the validation set.

Implementation Details. Our method is based on CONet and is highly com-
parable to M-CONet [48] and Co-Occ [36]. For fairness, we adopt a foundational
setup largely similar to [48]. Specifically, we utilize an ImageNet [7] pretrained
ResNet101 [11] with FPN [27] as the 2D encoder for images, with an input im-
age size of 1600 × 900. For LiDAR branch, we voxelize 10 LiDAR sweeps and
use [53,60] as 3D encoder. During the training phase, we employ the AdamW [18]
optimizer, with weight decay and initial learning rate set to 0.01 and 2e-4, re-
spectively. A cosine learning rate scheduler with linear warm-up in the first
500 iterations is leveraged. Image augmentation strategies follow those used in
BEVDet [15]. In the point pre-sampling process, hyper-parameters θ and τ are
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set to 20 and 5, respectively. Our model is trained for 24 epochs on 8 A100 GPUs
with a batch size of 8. Moreover, the effectiveness of the active training method
proposed above (see Sec. 3.5) is tested separately (see Tab. 4).

4.2 3D Semantic Occupancy Prediction

We compare our method with recent state-of-the-art (SOTA) models, with ac-
curacy data provided by [35,36]—all results reported by the authors themselves
or obtained using open-source code (see Tabs. 1 and 2). Across two benchmarks,
our method achieves SOTA mIoU and notably increases mIoU by a large margin
(2.07) on Occ3D. Our approach also excels in small object categories. Specifically,
on the nuscenes-occupancy benchmark, our model’s IoU improves relative to M-
CONet [48] by 27.8% for bicycle, 40.9% for motorcycle, 33.3% for pedestrian,
and 21.1% for traffic cone. On Occ3D, our model also significantly enhances
IoU in most small object categories. Notably, compared to M-CONet, our model
reduces computational load by about 70% during the coarse to fine phase and
maintains complexity comparable to vision-based methods (see Tabs. 5 and 6).
On both benchmarks, compared to the best existing uni-modal methods, our
model respectively achieves a relative mIoU increase of 41.8% and 10.7%, show-
casing the significant advantages of multi-modal approaches.

4.3 Ablation Study

To validate the effectiveness of the methods we proposed and the computational
complexity of our model, we conduct extensive ablation experiments on the
OpenOccupancy benchmark [48].

The Role of Point Cloud Preprocessing. As noted in the literature [31],
there is a density difference between LiDAR and camera features; without any
preprocessing of the point cloud, "only 5% of camera features will be matched
to a LiDAR point while all others will be dropped." By generating points in
empty voxels, a denser point cloud can be achieved for intensive image feature
sampling, alleviating this disparity. Farthest point sampling is only used in voxels
with numerous LiDAR points, preserving the cloud’s geometric features to some
extent, reducing noise, and decreasing computational load during feature fusion.
Omitting any of these methods would impair model accuracy, see Tab. 3.

Coordinate Concatenation. Although 3D-to-2D projection is generally more
stable than depth estimation when provided with accurate intrinsic and extrinsic
parameters, previous studies have shown that inaccuracies in extrinsic calibra-
tion can hinder the effectiveness of feature fusion [36]. We use deformable atten-
tion [61] to mitigate calibration errors. Notably, if LiDAR voxel features are used
directly as querys, our method resembles Spatial Cross Attention (SCA) [24] in
form. However, during feature fusion, we found that concatenating the coordi-
nates of 3D reference points with LiDAR voxel features to form queries yields
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Table 3: Ablation study on the proposed methods. w/o indicates without the corre-
sponding method.

Methods mIoU

w/o farthest point sampling 21.8
w/o points generation 21.2

w/o coordinate concatenation 22.0
w/o active training method 21.9
w/o active coarse to fine 22.5

OccFusion 22.4

Table 4: Ablation study on the resampling proportion in the resampling stage of the
active training method.

Training resampling
proportion (percent) OccFusion mIoU M-CONet mIoU

30 19.8 17.5
50 22.0 20.3
70 22.4 21.2

better results than using LiDAR voxel features alone, see Tab. 3. This might
be because the coordinate information of each point can provide distinct offsets
predictions for different reference points, thereby extracting the most effective
camera features and point-by-point alleviating issues from imprecise calibration.

Generalizability of Active Training. Our proposed active training method
is a very simple hard example mining technique. It’s important to emphasize
that this technique is designed to enhance the model’s learning from challenging
scenes, rather than biasing towards minority classes like loss functions such as
focal loss [28] do. Our training method is independent of loss function design and
applicable across all models. This means that by using our training method in
conjunction with loss functions biased towards minority classes, we can enable
the model to learn from difficult regions within challenging samples, thereby
further improving model performance. Experiments show that the active training
method, with a resampling ratio of 70%, simultaneously enhances the mIoU for
both our OccFusion and M-CONet [48], demonstrating its high generalizability,
see Tab. 4.

The Role of the Active Decoder. In Tabs. 3 and 5, we observe that removing
the entropy gate mechanism in the decoder results in a 0.1 improvement in the
model’s mIoU. However, we point out that for practical applications of occupancy
prediction, reducing model complexity can enhance inference speed, necessitat-
ing a balance between accuracy and complexity. The entropy gate reduces the
computational load by approximately 70% during the feature refinement stage,
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Table 5: Ablation study on the proportion of voxels refined in the active coarse to fine
pipeline.

Coarse to fine proportion
(percent) mIoU

10 17.9
20 21.2
30 22.4
100 22.5

Table 6: Experiment on the computational efficiency. GPU Mem. represents the GPU
memory consumption at training phase. ↓: the lower, the better. ↑: the higher, the
better.

Methods GPU Mem.(↓) GFLOPs (↓) mIoU (↑)

M-CONet 24.0 GB 3066 20.1
C-CONet 22.0 GB 2371 12.8
OccFusion 17.0 GB 1566 22.4

achieving similar accuracy with significantly less complexity, making it a more
efficient decoder. Moreover, like CONet [48], our decoder does not impose any re-
strictions on the model’s head and can be extended to any occupancy prediction
model to enhance their performance.

Computational Performance of Our Model. In Tab. 6, we showcase the
computational performance of our OccFusion. Benefiting from our model’s sim-
pler mechanisms, it not only significantly enhances mIoU but also reduces the
GFLOPs to half that of M-CONet. Notably, our model’s GFLOPs are 34% lower
than those of C-CONet (note that C-CONet is a uni-modal method), while
nearly doubling the mIoU. During the training phase, our model also uses fewer
computational resources. This highlights our model’s efficiency in maintaining
low computational demand while ensuring reliability as a multi-modal model,
demonstrating its exceptional performance.

5 Conclusion

In this paper, we introduce OccFusion, a depth estimation-free multi-sensor fu-
sion method that provides improved robustness over traditional methods. It
incorporates a transferable active training method and an active occupancy de-
coder. Experiments on OpenOccupancy and Occ3D benchmarks confirm our
method’s superiority over current state-of-the-art models. Ablation studies fur-
ther illustrates the effectiveness of our proposed components.
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