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Abstract. Human Motion Prediction (HMP) is crucial for human-robot
collaboration, surveillance, and autonomous driving applications. Re-
cently, di!usion models have shown promising progress due to their ease
of training and realistic generation capabilities. To enhance both accu-
racy and diversity of the di!usion model in HMP, we present RD-Di!:

RLTransformer-based Di!usion model with Diversity-inducing

modulator. First, to improve transformer’s e!ectiveness on the fre-
quency representation of human motion transformed by Discrete Co-
sine Transform (DCT), we introduce a novel Regulated Linear Trans-
former (RLTransformer) with a specially designed linear-attention mech-
anism. Next, to further enhance the performance, we propose a Diversity-
Inducing Modulator (DIM) to generate noise-modulated observation con-
ditions for a pretrained di!usion model. Experimental results show that
our RD-Di! establishes a new state-of-the-art performance on both ac-
curacy and diversity compared to existing methods.
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1 Introduction

Human Motion Prediction (HMP) predicts future human motion based on an
observation sequence, finding critical applications in areas such as human-robot
collaboration (HRC), surveillance and autonomous driving [30, 40, 46, 47, 54, 63,
75, 81, 90, 103]. Due to the inherent uncertainty and stochastic nature of hu-
man movement, predicting accurate and diverse human poses and motions is
particularly challenging, especially in safety-critical applications.

Prior research on deterministic HMP aims to regress a single future sequence
of human skeletal poses based on observations [3,4,17,23,24,27,48,50,51,56,61,
65,67,70,87]. This approach often leads to the most likely result without consid-
ering the uncertainty and multi-modal nature of human motion. To address this,
deep generative models have been introduced for better performance. Various ap-
proaches have employed generative adversarial networks (GANs) [9, 32, 35] and
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Fig. 1: RD-Di! Architecture. Our RD-Di! consists of novel Regulated Linear
Transformer (RLTransformer), RLTransformer-based di!usion model Dω and Diversity-
Inducing Modulator (DIM) Mε. (a) RD-Di! employs a two-stage learning pipeline.
(b) RLTransformer is designed with a specialized attention mechanism for frequency-
transformed motion sequences to replace the conventional softmax transformer used in
both Dω and Mε. (c) Mε conducts post-hoc modulation to observation x, and gener-
ates noise-modulated conditions {ẑk(t)}Kk=1 as di!usion progresses. Through a tailored
combination of RLTransformer, Dω and Mε, RD-Di! fosters diverse and reasonable
predictions in HMP.

variational autoencoders (VAEs) [11,26,44,60,93,98,100,104] to produce multiple
future motion samples from an observed sequence. These approaches establish a
conditional distribution for future poses, incorporating multiple loss constraints
to ensure sample quality and diversity. However, these encoding-decoding ap-
proaches often face di!culties in fidelity and avoiding mode collapse [19,22]. Re-
cently, di"usion models [38] have been introduced in HMP [1,8,19,80,96], showing
improved distribution matching and avoidance of mode collapse [28,58,78]. De-
spite these advancements, there has been limited exploration of achieving strong
performance in accuracy and diversity using the di"usion model.

In this paper, we propose RD-Di", a novel di"usion-based model for HMP.
Tailored for frequency-transformed motion sequences, we propose a Regulated
Linear Transformer (RLTransformer), which is adopted in RLTransformer-based
di"usion model Dω to replace the softmax transformer. To further enhance the
capability of the di"usion model for both accuracy and diversity, we introduce a
novel condition-modulating strategy, Diversity-Inducing Modulator (DIM) Mε,
for the pretrained Dω. DIM Mε facilitates the generation of diverse results
by sampling latent noise variables from an imbalanced multimodal distribu-
tion using Gumbel-Softmax sampling. Subsequently, it modulates the observed
pose sequence as di"erent noise-modulated conditions by introducing scheduled,
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monotonically decreasing diversity-inducing latent noise variables. The design
of RD-Di" is grounded in a nuanced understanding of future human motions,
acknowledging their deterministic properties influenced by physical laws and
historical movements, as well as the imperative need for diversity in real-world
applications. The decomposition of establishing a motion prior and diversity-
induced sampling process enhances control and flexibility. The modular design
of DIM Mε has the potential to be employed alongside any given pretrained
model and sampling algorithm. Experiment results on two typical benchmark
datasets demonstrate that RD-Di" substantially improves the diversity and ac-
curacy of HMP over existing models, and produces new state-of-the-art on all
metrics. In summary, our contributions are three-fold:

1. We propose RD-Di", a novel generative di"usion model for HMP with a
two-stage training pipeline to enhance the di"usion model’s capabilities for
both accuracy and diversity.

2. We introduce a specifically designed transformer architecture, RLTransformer,
for improved representation of frequency domain human motion features.

3. We introduce a novel condition-modulation method, DIM, which enables di-
verse and accurate sampling from complex imbalanced distributions, gener-
ates diversity-inducing Gaussian noise, and modulates condition embedding
in the di"usion model to achieve balanced capabilities for both accuracy and
diversity in HMP.

2 Related Work

Human Motion Prediction. Traditional methods for HMP typically employ
recurrent neural networks (RNNs) [5, 20, 21, 31, 53, 57, 68, 69, 73, 82, 86], trans-
formers [2, 16, 71, 95], graph convolutional networks (GCNs) [25, 49, 62, 64] or
multi-layer perceptrons (MLPs) [13, 34] to learn spatial-temporal dependencies.
Recently, diverse HMP approaches have gained attention [6,7,10,18,33,45,55,59,
66, 88, 89, 99, 102]. HP-GAN [10] introduces a generative adversarial framework,
using a random vector z to control diverse future pose generations. MT-VAE [99]
uses a Variational Autoencoder (VAE) for conditional data distribution model-
ing. Many GAN and VAE-based methods often result in similar predictions due
to latent vector similarities. E"orts have been made to improve the diversity.
Yuan et al. propose DLow [102], explicitly inferring diverse random vectors. [26]
disentangles the process of Dlow, while Mao et al. [66] introduce a method for
mapping random vectors and poses to a future sequence. STARS [97] employs
multi-level spatial-temporal anchors to generate diverse results, improving both
diversity and accuracy among the VAE-based methods. However, they may have
limited capacity to predict reasonable future motion sequences and have inherent
limitations of posterior collapse [96].

Di!usion Models. Di"usion models, as a promising addition to deep gen-
erative models, generate high-quality samples through a forward process in-
spired by the second law of thermodynamics. Denoising Di"usion Probabilistic
Models (DDPM) [58] achieves impressive results by predicting injected noise,
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but its inference process is time-consuming. Denoising Di"usion Implicit Model
(DDIM) [85] addresses this by introducing a non-Markovian di"usion process,
accelerating sampling while maintaining quality. Unlike previous stochastic ap-
proaches using GANs and VAEs to sample multiple plausible predictions, di"u-
sion models o"er a novel direction for considering uncertainty in HMP, gener-
ating diverse and contextually appropriate predictions [8,91]. HumanMAC [19],
TransFusion [91], MotionDi" [96], TCD [80] and BeLFusion [8] explore di"usion
models in HMP. HumanMAC [19] introduces a mask-completion formulation
rather than separated representations for observation and prediction. Without
diversity requirement, TCD [80] has produced the highest accuracy. However,
most di"usion models could not generate diverse motions while maintaining high
fidelity. Our work builds on recent di"usion model developments, prioritizing a
balance between accuracy and diversity.

3 Our Method

3.1 Preliminaries
Given the observed human motion x, HMP aims to forecast the future motion
sequence as ỹ. We adopt HumanMAC [19] as the di"usion baseline, capitalizing
on its ability to model entire motion sequences using mask operations. We let
h → R(O+F )→3J denote the complete sequence of human motion, where O rep-
resents the number of frames in the observation sequence x, F represents the
number of frames in the future sequence ỹ to be predicted, 3 denotes the Carte-
sian coordinates of a body joint, and J is the number of body joints. In line with
earlier research [16, 19, 34, 62–64, 95, 104], we apply the Discrete Cosine Trans-
form (DCT) [42] to transform the temporal domain into the frequency domain,
facilitating compact yet informative feature extraction. DCT leverages the ad-
vantages of frequency-domain representations to capture periodic patterns and
temporal dependencies thereby mitigating extreme jittering in human motion.

3.2 Method Overview
The architecture of RD-Di" is illustrated in Fig. 1. During training, RLTransformer-
based di"usion model Dω is trained in stage 1, building a motion prior; while
Diversity-Inducing Modulator (DIM) Mε is trained in stage 2, conducting post-
hoc modulation to observation x. During inference, RD-Di" samples a result
ỹ from the distribution of p(ỹ|x) =

∫
pω(ỹ|x, ẑ)rε(ẑ|x)dẑ. ẑ denotes a noise-

modulated condition sampled from a distribution generated by Mε, pω(ỹ|x, ẑ)
denotes the conditional distribution modeled by Dω parameterized by ω, and
rε(ẑ|x) denotes the latent distribution modeled by the Mε parameterized by
ε. Formally, the generation of ỹ involves two sequential steps:

ẑ = Mε(x), (1)
x̃, ỹ = Dω(x, ẑ). (2)

Dω outputs not only the predicted future pose sequence ỹ but also “predicted”
observed pose sequence x̃ for the ease of reconstruction loss in Sec. 3.6.
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3.3 Regulated Linear Transformer
Human motion may contain both low-frequency features (e.g., global body move-
ment) and high-frequency features (e.g., fine-grained hand or leg movement).
Meanwhile, high-frequency features might be related to noise and errors. Soft-
max transformer [92], which normalizes weights based on exponential terms,
often leads to sharp weight distribution [14, 77, 105]. In contrast, linear trans-
former [52] tends to be excessively smooth [15,41]. Inspired by [37], a model with
focus ability between a linear transformer and a softmax transformer achieves
high e!ciency and expressiveness in image tasks. However, the fixed mapping
function in [37] by adjusting element-wise power may not be ideal for captur-
ing the dynamic nature of human motion sequences. A more adaptive attention
mechanism is needed to accommodate the variations in human motion patterns.

We present Regulated Linear Transformer (RLTransformer), featuring
a novel attention mechanism built on top of a linear transformer to capture both
essential low-frequency movements and subtle high-frequency details, achieving a
better dominant frequency focusing. To regulate the linear transformer, we train
an adaptive frequency re-weighting function and a channel-wise re-weighting
function to adjust the query features. The architecture of the RLTransformer is
illustrated in Fig. 1 (b). The similarity function is defined as:

Sim (Qi,Kj) = ωq (Qi)ωk (Kj)
T
, (3)

where ωq(x) = ε (ReLU(x)), ωk(x) = ReLU(x), and ε denotes a novel regu-
lated function. To guide the initialization of query vectors and ensure the net-
work understands “what to query”, we introduce feature re-weighting on both
frequency and channel dimensions of the query vector q → RN→D, where N is
the number of frequency tokens and D is the hidden dimension. Specifically, we
initialize a trainable normalized vector S → RD, which is then multiplied with
normalized query vector q̂ to obtain the frequency re-weighting vector F → RN .
Subsequently, frequency re-weighting is applied to q to obtain the frequency-wise
regulated query qf . Channel-wise re-weighting is then conducted on qf using a
learnable vector C → RD, resulting in the channel-wise regulated query qfc. Fi-
nally, qfc undergoes an MLP layer and is added to the original q to obtain the
regulated query qr. Overall, the regulation function ε performs the following
calculation: F = norm(q̂ ↑ S), qf = q ↓ F, qfc = qf ↓ C, qr = q + MLP(qfc),
where norm denotes normalization and ↓ denotes element-wise multiplication.

Conventional linear transformers compute K
T
V first, which leads to the

complexity of O(ND
2). However, we compute QK

T first to save computation
cost, considering that the hidden dimension (D = 512) is larger than the number
of tokens (N = 20) in our task, in contrast to image tasks where N is usually
larger than D. Moreover, ε can be applied to query and key features, which will
be further discussed in Sec. 4.2.

3.4 RLTransformer-based Di!usion Model
In RLTransformer-based di!usion model Dω, the forward process begins
with projecting the motion sequence h to the frequency domain using the DCT
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Algorithm 1: Diversity-Inducing Modulator(DIM)
Input: Observation sequence x, number of output samples K, observation

encoder Sε

Output: K noise-modulated condition embeddings {x̂k(t)}Kk=1 for Dω at
di!usion step t

{Ak,bk}Kk=1 = Sε(x);
for k = 0, 1, . . . ,K do

zk → N (bk,Ak);
ωc
t = 1↑ εc

t , where εc
t is cosine scheduler;

ẑk(t) = zTrans(
↓
ωc
tx+

↓
1↑ ωc

tzk).

operation: hD = DCT(h), where hD
→ R(O+F )→3J . Given that crucial infor-

mation about human motion resides in lower frequency coe!cients and higher
frequency terms are likely noise-related, we retain only the first N frequency di-
mensions of data: hD

→ RN→3J . The noisy DCT pose sequence hD
t

at di"usion
step t is sampled using the reparameterization trick:

hD
t

=
↔
ϑ̄th

D
0 +

↔
1↗ ϑ̄tϑ, (4)

where ϑ̄t =
∏

t

i=1 ϑi, ϑi → [0, 1] are pre-defined variance parameters, ϑ ↘ N (0, I),
and hD

0 corresponds to hD [19].
Regarding noise prediction in the backward process, we adopt RLTransformer

for the noise prediction network ϑω instead of the U-net used in the original
DDPM [38], as shown in Fig. 1 (a). To enable predictions conditioned on the
observation, we leverage the FiLM conditioning [76], which carries out feature-
wise a!ne transformation, to guide the generation. The observation sequence x
is first padded with the last observed frame to match the length of the complete
motion sequence. Subsequently, the padded sequence is processed through the
DCT operator to obtain compact historical information. The noise prediction
network ϑω comprises l1 layers of RLTransformer and long skip connections be-
tween the shallow and deep layers, following U-Net [79]. The introduction of
the RLTransformer allows the network to focus on relevant features and adap-
tively modify the input query before further processing. In addition, we adopt
“FreeU” [83] to re-weight feature maps from the backbone and skip connections
to enhance generation quality. In the output stage, the motion sequence can be
recovered from frequency coe!cients using the inverse discrete cosine transform
(IDCT): h = IDCT(hD).

3.5 Diversity-Inducing Modulator

Existing diversity-promoting methods, consisting of diversity loss and direct de-
coding from latent space, might cause premature deviations from the ground
truth, leading to implausible predictions [19,91]. As a remedy, we propose a novel
Diversity-Inducing Modulator (DIM) Mε, where diversity is promoted by
injecting learned decreasing noises to the condition of the di"usion model in all
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di"usion steps. Fig. 1 (c) and Algorithm 1 illustrate the modulating process. We
first introduce an observation encoder Sε with Gumbel-Softmax sampling to
generate di"erent Gaussian distributions from which noises are sampled. Then,
we introduce a modulation strategy with a cosine scheduler to modulate the
condition of the di"usion model using the generated noise. Unlike DLow [102],
which focuses on diversifying latent flows, our DIM present a more flexible way
by adjusting the noise intensity injected into the observation conditions.

Formally, given the observation sequence x, observation encoder Sε, pa-
rameterized by ε, generates K di"erent sets of mean bk → RD and variance
Ak → RD→D. Specifically, padded observation sequence is fed into l2 layers of RL-
Transformer to optimize a latent subspace V = span(v1, . . . ,vN), with N learned
base embeddings v → RD. One can conceptualize that the acquired embeddings
collectively constitute a “latent subspace”. Fundamentally, the latent subspace
is optimized, from which random sampling e"ectively mirrors diverse samples
from the target distribution. With the latent subspace, we use Gumbel-Softmax
sampling to sample a weight vector w → RN that contains N weights to com-
bine the base embeddings as a point in the latent subspace:

∑
N

i=1 w
k

i
vi, where∑

N

i=1 w
k

i
=1. We repeat the process K times to obtain K points from the latent

subspace, which are then passed into two MLPs to get {Ak}
K

k=1 and {bk}
K

k=1,
respectively. Afterwards, Mε employs the reparameterization trick to sample
latent noise variables from these distributions: zk ↘ N (bk,Ak) = Akϑ + bk,
where ϑ ↘ N (0, 1). To maintain the essential correspondence between the con-
dition and the output, a scheduling strategy is employed that lessens the noise
corruption in the condition as the di"usion progresses from t = T to t = 0,
causing it to diminish during the final steps, where T is the number of di"usion
steps. More specifically, inspired by the forward process of di"usion models, we
transform a given x to a noise-modulated condition:

ẑk(t) = zTrans(
√
ϑc
t
x+

√
1↗ ϑc

t
zk), (5)

where ϑc
t
= 1↗ϖ

c
t
, ϖc

t
is the cosine scheduler [72], and zTrans denotes z-Transform

to rescale the conditioning vector back toward its prior mean and standard devi-
ation. Mε processes a di"erent ẑk(t) at each step with scheduled fading noise,
leading to more diverse outputs. Finally, we map x and ẑk(t) to a future pose
sequence using the pre-trained Dω introduced in Sec. 3.4.

3.6 Learning Objective

In stage 1, we train ϑω in Dω by minimizing the mean squared error (MSE):
L1 = Et,hD

0 ,ε

∥∥ϑ↗ ϑω
(
hD
t
, t
)∥∥2

2
. It aims to learn the accurate representation of

the observed data and establish a robust prior. In stage 2, we adopt the pre-
trained Dω to train Mε, where the condition is encoded in a latent space that is
then corrupted with decreasing noise to maximize diversity while keeping the la-
tent and the predicted motion accurate. Stage 2 aims to introduce variability and
diversity into predictions. We minimise three loss functions: diversity loss, accu-
racy loss [102] and a newly proposed reconstruction loss to train the Sε in Mε.
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The diversity loss Ldiv is optimized to increase the distances between pairs of
predictions from the same input x: Ldiv = 1

K(K↑1)

∑
K

i=1

∑
K

j ↓=i
exp

(
↗

↔ỹi,ỹj↔2

ϑ

)
,

where ỹi and ỹj denote predicted pose sequence, and ϱ denotes the scaling factor.
Besides, the accuracy loss Lacc is employed: Lacc = mink ≃y, ỹk≃2, k → [1,K],
where y is the ground truth future pose sequence. Furthermore, we aim to gener-
ate one good sample close to the ground truth and align all predictions with the
observed pose sequence while maintaining a certain degree of diversity. There-
fore, we propose an additional reconstruction loss Lrec for alignment with the
observed pose sequence:

Lrec =
1

K

∑K

i=1
(≃x, x̃i≃2) . (6)

Altogether, the training loss in stage 2 is: L2 = ςdivLdiv + ςaccLacc + ςrecLrec,
where hyper-parameters ςdiv, ςacc, and ςrec, denoting weights of diversity loss
Ldiv, accuracy loss Lacc and reconstruction loss Lrec respectively, are employed
to achieve a balance among the three losses. The two-stage training pipeline aims
to untangle the direct association between network parameter learning tasks and
diverse predictions. This enables the network to generate extreme predictions
present in minor target distributions [26].

4 Experiments

4.1 Settings

Datasets. The performance of RD-Di" is evaluated on two widely used HMP
datasets: Human3.6M [39] and HumanEva-I [84], following the evaluation pro-
tocols established in [66, 102]. (1) Human3.6M: It comprises seven subjects,
each performing 15 action categories. Training utilizes data from five subjects
(S1, S5, S6, S7, S8), with the remaining two subjects (S9, S11) used for test-
ing. There are 17 joints in total for each pose after removing unnecessary joints.
The input consists of 25 frames (0.5s at 50fps), predicting 100 frames (2s) into
the future. (2) HumanEva-I: This dataset involves three subjects, each par-
ticipating in five action categories. Each pose is described by 15 joints, and we
predict 60 future poses (1s at 60fps) based on 15 frames (0.25s). As highlighted
in [102], Human3.6M o"ers a larger dataset with greater motion variation, while
HumanEva-I is smaller with less variation.

Evaluation Metrics. Five metrics are employed in the evaluation: (1) APD
measures the Average Pairwise Distance of predicted results from an input, indi-
cating the diversity of results [7]. (2) ADE computes the Average Displacement
Error between the ground truth and the most similar result, while (3) FDE
calculates the Final Displacement Error, focusing only on the last pose. (4)
MMADE and (5) MMFDE, the multimodal versions of ADE and FDE intro-
duced in [102], evaluate accuracy by considering multiple similar past motions
xp and their corresponding future motions {yp}

P
p=1. These metrics collectively

provide insights into the diversity and accuracy of the predicted results.
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(a) Human3.6M (b) HumanEva-I

Fig. 2: Performance on both diversity and accuracy (1-error). The dot markers indicate
di!usion models, the cross markers indicate other models, and the red dot represents
our RD-Di! model. Markers towards the top right corner indicate better performance.

Implementation Details. RD-Di" is trained on both datasets using a 1000-
step di"usion model, and sampling is performed with a 100-step DDIM [85]. Dω

is trained for 1000 epochs, and Mε is trained for 200 epochs. Scaling factors for
backbone (bFreeU ) and skip connection (sFreeU ) in “FreeU” are 1.2 and 1.0. For
both datasets, the learning rate is 3e↑4 for train stage 1 and 1e↑3 for train stage
2. Variance scheduling in Dω is achieved using the cosine scheduler [72]. We set
the number of samples K = 50 for comparison with previous approaches, and the
values for hyperparameters ςdiv, ςacc, and ςrec are 1, 2, and 0.2 for Human3.6M,
and 4, 1, and 0.1 for HumanEva-I, respectively. All experiments are conducted
using PyTorch [74] on an NVIDIA Tesla V100 GPU, and Adam [43] is employed
as the optimizer for consistency across all experiments. RD-Di" (B) and RD-Di"
(L) denote base and large versions of RD-Di", where regulation function ε in
RLTransformer is applied to Q in RD-Di" (B), and applied to both Q and K

in RD-Di" (L). Unless otherwise stated, all experiments are conducted on the
Human3.6M dataset using RD-Di" (B).

4.2 Comparison with the State-of-the-Arts

Quantitative Results. To show a global view of performance comparison, we
create 2D charts as shown in Fig. 2, where APD indicates diversity (horizontal
axis) and [1-(ADE+FDE)/2] indicates accuracy (vertical axis), for consistency
between two datasets. Our model is nearest to the upper-rightmost corner in both
plots and significantly leads over other models, highlighting substantial progress.
The quantitative comparisons are shown in Tab. 1, where the previous methods
are classified into two categories: deterministic methods (first four rows) and
stochastic methods (remaining rows). Deterministic methods produce a single
output, lacking APD scores for comparison. All stochastic methods predict 50
future sequences for each input historical pose sequence. By predicting multiple
results, stochastic methods can capture diverse possibilities. They are further
divided into di"usion-based methods (the 5 methods above RD-Di") and the
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Table 1: Quantitative comparisons where the bold number indicates the top perfor-
mance and the underlined number for the second position. All the results are calculated
using 50 prediction samples for each input historical pose sequence.

Method Human3.6M HumanEva-I
APD ↔ ADE ↗ FDE ↗ MMADE ↗ MMFDE ↗ APD ↔ ADE ↗ FDE ↗ MMADE ↗ MMFDE ↗

ERD [31] - 0.722 0.969 0.776 0.995 - 0.382 0.461 0.521 0.595
acLSTM [53] - 0.789 1.126 0.849 1.139 - 0.429 0.541 0.530 0.608

LTD [67] - 0.516 0.756 0.627 0.795 - 0.415 0.555 0.509 0.613
MSR [27] - 0.508 0.742 0.621 0.791 - 0.371 0.493 0.472 0.548

Pose-Knows [94] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375
MT-VAE [99] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577
HP-GAN [10] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769

BoM [12] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351
GMVAE [29] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410
DeLiGAN [36] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371

DSF [101] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340
DLow [102] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
GSPS [66] 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331

DivSamp [26] 15.310 0.370 0.485 0.475 0.516 6.109 0.220 0.234 0.342 0.316
STARS [97] 15.884 0.358 0.445 0.442 0.471 6.031 0.217 0.241 0.328 0.321

MotionDi! [96] 15.353 0.411 0.509 0.508 0.536 5.931 0.232 0.236 0.352 0.320
BeLFusion [8] 7.602 0.372 0.474 0.473 0.507 - - - - -

HumanMAC [19] 6.301 0.369 0.480 0.509 0.545 6.554 0.209 0.223 0.342 0.335
TransFusion [91] 5.975 0.358 0.468 0.506 0.539 1.031 0.204 0.234 0.408 0.427

TCD [80] - 0.356 0.396 0.463 0.445 - 0.199 0.215 - -
RD-Di! (B) 15.714 0.347 0.401 0.445 0.444 6.561 0.199 0.218 0.321 0.308
RD-Di! (L) 15.950 0.342 0.387 0.441 0.431 6.607 0.191 0.210 0.317 0.302

Fig. 3: End poses in 5 samples. STA and Hum denote STARS [97] and Human-
MAC [19], respectively.

rest. These results indicate that our RD-Di" achieves superior capability among
other models. This suggests that the RD-Di" e"ectively captures the variability
in training data and covers a broad range of variability that previous methods
cannot encompass.
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Fig. 4: Given observation frames, 8 samples are generated by RD-Di! on Human3.6M
and HumanEva-I datasets, respectively. GT denotes the ground truth motion sequence.

Table 2: Comparison with baseline models.

Method Human3.6M HumanEva-I
APD ↔ ADE ↗ FDE ↗ MMADE ↗ MMFDE ↗ APD ↔ ADE ↗ FDE ↗ MMADE ↗ MMFDE ↗

(1) Baseline 6.325 0.371 0.484 0.513 0.549 6.300 0.217 0.229 0.346 0.349
(2) Baseline + RLTransformer 6.452 0.365 0.417 0.479 0.468 6.263 0.211 0.225 0.342 0.325
(3) Baseline + DIM 15.657 0.351 0.408 0.449 0.457 6.515 0.203 0.222 0.323 0.326
(4) RD-Di! 15.714 0.347 0.401 0.445 0.444 6.561 0.199 0.218 0.321 0.308

Qualitative Results. To illustrate the diversity of the predicted poses, we
visualize five end poses from pose sequences predicted by STARS [97], Human-
MAC [19], and our proposed method, in Fig. 3. STARS realizes high diversity but
with some failure cases regarding physical constraints. HumanMAC [19] gener-
ates realistic poses that typically lack diversity. By contrast, while maintaining
high fidelity across di"erent datasets, our method produces more diverse and
reasonable results than STARS and HumanMAC. Furthermore, Fig. 4 shows
8 samples generated for each dataset, which shows our RD-Di" can produce
diverse and reasonable motion sequences.

4.3 Ablation Study

Comparison with Baseline. Tab. 2 presents ablation studies confirming the
e!cacy of the design components in our RD-Di". In Method (1), the baseline
method adopts a vanilla softmax transformer and di"usion model, following Hu-
manMAC [19], where the observed pose sequence x directly serves as a condition
embedding. In Method (2), we replace the softmax transformer with RLTrans-
former, resulting in diversity boosts but slight accuracy drops. In Method (3),
adding DIM to the baseline significantly boosts performance. In Method (4), we
further replace the softmax transformer in Baseline and DIM (i.e., Method (3))
with RLTransformer, which further boosts the performance. It is worth noting
that the DIM is a strong contribution, where the idea of inducing stochasticity in
the condition applies to any di"usion-based system. The results show that DIM
can promote diversity and accuracy with the only cost of a second training stage.
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Fig. 5: The attention weights heatmaps of linear transformer, softmax transformer, and
our RLTransformer on DCT frequency domain from a motion clip in Human3.6M. For
better visualization, we replace the diagonal attention scores with zero, then normalise
the rest of the scores from 0 to 1. Red arrows indicate the range of attention focus.

Table 3: Re-weighting methods in RLTransformer. FR and CR denote frequency re-
weighting and channel re-weighting, respectively. The “-” sign means removing a module
from RD-Di!.

Method APD↗ ADE↘ FDE↘ MMADE↘ MMFDE↘
RD-Di! w/o FR 15.701 0.350 0.406 0.447 0.455

RD-Di! w/o CR 15.707 0.348 0.403 0.447 0.450

Table 4: Number of RLTransformer Layers. l1 denotes the numbers of layers in
RLTransformer-based di!usion model.

Human3.6M HumanEva-I
l1 APD↔ ADE ↗ FDE↗ MMADE ↗ MMFDE ↗ APD↔ ADE ↗ FDE↗ MMADE ↗ MMFDE ↗
2 17.976 0.424 0.472 0.508 0.496 6.904 0.208 0.227 0.335 0.319
4 16.294 0.363 0.433 0.494 0.492 6.561 0.199 0.218 0.321 0.308

6 15.644 0.355 0.423 0.475 0.498 6.568 0.201 0.219 0.343 0.309
8 15.714 0.347 0.401 0.445 0.444 6.493 0.202 0.217 0.349 0.314
10 14.771 0.346 0.410 0.446 0.467 6.435 0.202 0.221 0.344 0.312

RD-Di" suggests a way to build a motion prior (i.e., Dω) and induce stochastic-
ity in the condition through DIM. Ablation studies on one-stage training will be
detailed in the supplementary material.

RLTransformer. As shown in Fig. 5, softmax attention produces a sharp dis-
tribution along the diagonal and the top left corner (shortest red arrowed line),
and linear attention’s distribution is relatively smooth (longest red arrowed line),
while RLTransformer shows a sharpness between them. This shows that the soft-
max transformer has a small “attention window” in frequency tokens (nearest 5
frequency tokens). It might tend to emphasize dominant frequency components,
potentially causing a global attention bias and neglecting other crucial infor-
mation, such as high-frequency components containing fine-grained body move-
ments. Our RLTransformer slightly smooths the sharp distribution in softmax
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Table 5: Random noise added to observation. “Baseline 2” refers to “Method (2)”
in Tab. 2. b and A denote the mean and variance in a normal distribution N (b, A).

Human3.6M HumanEva-I

RD-Di! Baseline 2 b=0 b=1 RD-Di! Baseline 2 b=0 b=1
A = 1 A = 1.5 A = 2 A = 1 A = 1.5 A = 2 A = 1 A = 4 A = 6 A = 1 A = 4 A = 6

APD ↔ 15.714 6.452 10.311 14.360 18.643 10.285 14.464 18.632 6.561 6.263 6.252 7.206 7.641 6.307 7.219 7.745
ADE ↗ 0.347 0.365 0.512 0.624 0.794 0.509 0.625 0.793 0.199 0.211 0.316 0.486 0.613 0.302 0.451 0.642
FDE ↗ 0.401 0.417 0.679 0.868 0.907 0.643 0.869 0.892 0.218 0.225 0.291 0.415 0.619 0.312 0.409 0.607

MMADE ↗ 0.445 0.479 0.671 0.741 0.838 0.686 0.716 0.822 0.321 0.342 0.391 0.546 0.649 0.374 0.547 0.661
MMFDE ↗ 0.444 0.468 0.591 0.670 0.809 0.606 0.701 0.790 0.308 0.325 0.364 0.615 0.631 0.384 0.637 0.645

Table 6: Noise schedulers in DIM.

Scheduler APD↗ ADE↘ FDE↘ MMADE↘ MMFDE↘
None 16.592 0.468 0.596 0.460 0.498

Linear 11.549 0.382 0.425 0.450 0.448

Sqrt 15.236 0.463 0.594 0.453 0.488

Cosine 15.714 0.347 0.401 0.445 0.444

attention, contributing to the performance boosts, as shown in Tab. 2. Addition-
ally, we conduct a quantitative analysis of attention sharpness by calculating the
entropy of the attention matrix. A sharper attention map will yield smaller en-
tropy, indicating a greater concentration on specific positions. The sharpness of
the linear transformer, softmax transformer, and RLTransformer is 8.33, 8.05,
and 8.25, respectively, consistent with the observation from Fig. 5.

We compare GFLOPs and the number of parameters on one layer of softmax
transformer and RLTransformer with one video clip in Human3.6M. GFLOPs
are 0.089 and 0.091, respectively, whereas the number of parameters is the same
for both designs (0.099m). This shows that our RLTransformer can achieve bet-
ter expressiveness than softmax attention while maintaining the relatively same
amount of computation.

To further investigate the individual e"ects of re-weighting methods in RL-
Transformer, we remove frequency re-weighting (FR) and channel re-weighting
(CR) from RD-Di", as shown in Tab. 3. The removal of FR has a more pro-
nounced e"ect than CR as it allows capturing of crucial temporal patterns.

Tab. 4 presents the results of experiments with di"erent numbers of layers in
RLTransformer-based di"usion model (l1) on the Human3.6M dataset. We adopt
8 layers for Human3.6M and 4 for HumanEva-I, yielding the best performance
in most error metrics. Afterwards, we fix l1 and study the number of layers in
DIM (l2), and find l2=4 is the optimal option for both datasets.

Diversity-Inducing Modulator. We conduct experiments to determine what
will happen if random noises, instead of latent noise variables, are added to the
observed pose sequence x. We remove observation encoder Sε and draw noise
zk from a random normal distribution N (b, A), rather than sampling from the
Gaussian distribution generated by observation encoder Sε. We conduct experi-
ments on di"erent means and variances. As shown in Tab. 5, incorporating noise
in observation x enhances result diversity, with noise in larger A leading to more
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(a) Diversity Weight ϖdiv (b) Accuracy Weight ϖacc (c) Reconstruction Weight ϖrec

Fig. 6: Ablation on weights of di!erent losses. Each subplot uses the left axis (diversity)
for the APD metric and the right axis (error) for both ADE and FDE metrics. The
weights of the other losses that are not being evaluated in each subplot are fixed at 1.

diverse outcomes. Nevertheless, this comes at the cost of reduced accuracy, re-
sulting in unrealistically generated poses. Consequently, our observation encoder
Sε in DIM proves superior over directly introducing noise to observations.

We assess the e"ects of various noise schedulers in DIM, including none (no
noise scheduler applied), linear, sqrt, and cosine, as shown in Tab. 6. The method
“None” yields the worst performance, where noise intensity does not change as
di"usion progresses. In contrast, the cosine scheduler yields the most favourable
outcomes for noise modulation. This shows that the noise needs to decrease to
a low value early before di"usion ends to ensure the observation information is
passed e"ectively.

Weights of di!erent losses. In Fig. 6, we perform an ablation study on the
weight of the di"erent losses. We set ςdiv to 0, 0.1, 0.5, 1, 2, and 5. As shown
in Fig. 6a, as ςdiv increases, diversity increases, but error increases. We set
ςacc to 0, 0.2, 1, 2, 4, and 10. As shown in Fig. 6b, as ςacc increases, the error
decreases, but diversity decreases. We set ςrec to 0, 0.01, 0.05, 0.1, 0.2, and 1. As
shown in Fig. 6c, as ςrec increases, the error decreases, but diversity decreases.
We finally choose ςdiv, ςacc and ςrec are 1, 2 and 0.2 for Human3.6M, achieving
a desirable balance between diversity and accuracy.

5 Conclusion

In conclusion, we present RD-Di!, a novel HMP model that improves fidelity
and diversity. Our Regulated Linear Transformer (RLTransformer) dynamically
regulates linear attention via adaptive modeling of inter-dependencies among
di"erent frequencies, optimizing the network’s learning process. In addition, our
Diversity-Inducing Modulator (DIM) e"ectively generates noise-modulated con-
ditions for a pretrained di"usion model, utilizing a novel modulation strategy
with a cosine scheduler, resulting in more varied and accurate predictions. RD-
Di" outperforms existing state-of-the-art methods in quantitative and qualitative
comparisons.
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