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Abstract. Transportation of samples across different domains is a cen-
tral task in several machine learning problems. A sensible requirement
for domain transfer tasks in computer vision and language domains is
the sparsity of the transportation map, i.e., the transfer algorithm aims
to modify the least number of input features while transporting samples
across the source and target domains. In this work, we propose Elastic
Net Optimal Transport (ENOT) to address the sparse distribution trans-
fer problem. The ENOT framework utilizes the L1-norm and L2-norm
regularization mechanisms to find a sparse and stable transportation
map between the source and target domains. To compute the ENOT
transport map, we consider the dual formulation of the ENOT optimiza-
tion task and prove that the sparsified gradient of the optimal potential
function in the ENOT’s dual representation provides the ENOT trans-
port map. Furthermore, we demonstrate the application of the ENOT
framework to perform feature selection for sparse domain transfer. We
present the numerical results of applying ENOT to several domain trans-
fer problems for synthetic Gaussian mixtures and real image and text
data. Our empirical results indicate the success of the ENOT frame-
work in identifying a sparse domain transport map. Code is available at
github.com/buyeah1109/ENOT.

Keywords: Generative model · Domain transportation · Feature selec-
tion

1 Introduction

Deep neural networks (DNNs) have revolutionized the performance of computer
vision models in domain transfer applications where the features of an input
sample are altered to transfer the sample to a secondary domain [14, 26, 39].
The common goal of domain transfer algorithms is to transport an input data
point to a target distribution by applying minimal changes to the input. Over
recent years, domain transportation algorithms based on generative adversarial
networks (GANs) including CycleGAN [38] and StyleGAN [16] have achieved
empirical success in addressing the domain transfer task for image distributions.
The success of these algorithms has inspired several studies of GAN-based do-
main transfer methodologies [6, 27,37].

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
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2 Zhang and Farnia

While the GAN-based methods have led to successful results in image-based
domain transfer problems, their application demands significantly higher com-
putational costs than standard GAN algorithms including only one genera-
tor/discriminator neural net pair to transfer a latent Gaussian vector to the data
distribution. The extra computations in these domain transfer algorithms aim
to ensure an invertible transfer map and thus limited modifications to an input
sample. For example, the CycleGAN algorithm considers two pairs of genera-
tor/discriminator neural nets to impose a reversible transformation of an input
image. However, the additional pair of neural nets in the CycleGAN setting will
lead to a more challenging optimization task and higher training costs.

In this work, we focus on sparse domain transfer problems where the transfer
of samples between source and target domains can be achieved by editing only a
limited subset of input features. We note that the assumption of a sparse trans-
port map applies to several real-world domain transfer problems, e.g. object
translation, text revision, and gene editing problems. In the mentioned tasks,
the sparsity level of the transfer map results in a meaningful measure of changes
applied to an input sample. While sparse transportation maps are desired in
many real-world domain transfer problems, the commonly-used GAN-based al-
gorithms often lead to dense transfer maps editing a considerable fraction of
input features.

To address sparse domain transfer tasks, we propose an optimal transport-
based approach which takes advantage of the induced sparsity of the L1-norm
regularization and the stability properties of the L2-norm regularization. Our
proposed framework, which we call Elastic Net Optimal Transport (ENOT),
solves an optimal transport problem where the transportation cost follows from
the elastic net function [40] combining standard Euclidean-norm-squared and
L1-norm cost functions. Therefore, the ENOT approach can be interpreted as
a mechanism to regularize the standard optimal transport map toward sparser
transportation functions. By tuning the coefficient of the L1-norm regulariza-
tion in ENOT’s elastic net cost, the learner can adjust the sparsity level of the
transportation map and explore the spectrum between the standard and fully
L1-norm-based optimal transport tasks.

To analyze the ENOT problem, we leverage optimal transport theory [33] and
extend the duality results to the ENOT optimal transport setting. We prove a
generalization of standard Brenier’s theorem, highlighting the connection be-
tween the optimal potential function in the ENOT’s dual problem with the
optimal transport map transferring samples across domains. Our main theorem
suggests that the composition of a soft-thresholding function with the gradient
of the optimal potential function will perform sparse transportation across the
domains. This result indicates that the ENOT framework offers a combination
of the standard optimal transport problem with the squared-error cost function
and the L1-norm-based optimal transport problem which leads to a challenging
optimization problem without the L2-norm-based regularization in ENOT.

Furthermore, we utilize the ENOT framework to develop a feature selection-
based approach to reduce the sparse domain transport task to a constraint-free
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Sparse Domain Transfer via Elastic Net Regularization 3

distribution transfer problem where an unconstrained transfer map is applied to
only the selected feature subset. According to this variable selection-based ap-
proach, we break the domain transfer problem into two sub-problems: 1) ENOT-
based variable selection choosing features to undergo modification for a given
input sample, 2) Applying an unconstrained transportation map via standard
GAN frameworks that transfers the input sample masked by the feature selection
output to the target domain. By tuning the coefficient of the L1-norm regular-
ization in the ENOT’s elastic net cost, the learner can adjust the number of
selected features prior to performing a constraint-free GAN-based distribution
transfer.

Finally, we discuss the numerical results of the applications of the ENOT
framework to sparse domain transfer problems from various areas including com-
puter vision, computational biology, and natural language processing. Our em-
pirical findings show that the feature selection-based domain transfer via ENOT
can be easily adapted to different domains and achieves satisfactory results. We
qualitatively evaluate ENOT’s application for feature identification in sparse do-
main transfer. The numerical results support the proposed methodology of sparse
domain transfer via ENOT-based domain transportation and feature selection.
The contributions of this work can be summarized as:

– Proposing a feature selection-based approach for the sparse domain transfer
problem,

– Developing ENOT as an elastic net-based methodology to the sparse domain
transfer and variable selection,

– Extending the theory of standard squared-error-based optimal transport task
to the ENOT setting,

– Providing supportive numerical results for applying ENOT-based sparse do-
main transfer to various domain transfer tasks.

2 Related Work

Sparsity and Optimal Transport Methods. Several related works have
studied various notions of sparsity in optimal transport frameworks. References
[2,4,10,22,31] propose sparsity-based regularization of the transportation matrix
in optimal transport problems. However, we note that the sparsity objective pur-
sued in these works differs from the sparse domain transfer in our work: while the
mentioned papers aim for a sparse transportation matrix to gain a sparse align-
ment of source and target samples, our proposed ENOT method focuses on the
sparsity of the modified input features in the domain transfer. Meanwhile, [18]
proposed neural optimal transport and leverage neural networks to model poten-
tial functions and conduct image transportation, and considered the standard
Euclidean-norm-squared cost function for the transportation, which does not
focus on sparse transportation.

[7] first introduces an optimal transport-based approach to the sparse do-
main transfer problem, which aim to precisely solve an entropic-regularized op-
timal transport problem over the empirical samples and then use a kernel-based
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interpolation to generalize the solution to unseen data. The main difference be-
tween [7]’s analysis and ours is the focus on the primal vs. dual formulations of
the sparse optimal transport problem. The analysis in [7] concentrates on pri-
mal formulation and finds the precise solution to the primal OT problem on the
training data. On the other hand, our approach targets the dual formulation and
is more similar to the Wasserstein GAN framework, which involves a potential
neural net function and can be extended to large-scale image and text data.
Overall, our neural net-based method for the ENOT optimal transport problem
can be viewed as a complementary approach to the precise kernel-based frame-
work in [7]. Also, the trained neural net can be used as an efficient-to-compute
feature selection map, which we later used to introduce a feature selection-based
approach to sparse domain transfer, a topic that has not been studied in [7],
which is useful for large-scale image and text-related applications.

Unsupervised Image to Image Translation (UI2I). Several related
works attempt to address image-based transportation problems. For the image
style transfer task, CycleGAN [38] uses a cycle-consistent loss and two GANs to
conduct cyclic unpaired transformation. DRIT++ [20] adopts encoders to obtain
the latent representation of images and similar cross-cycle consistency loss. For
the image colorization transfer task, Conditional GANs are leveraged to improve
colorization performance [13]. [36] propose a real-time user-guided neural net-
work colorization. Moreover, cyclic-loss [3, 29, 34, 38] and GANs [6, 27, 37] have
been utilized to address UI2I. However, unlike ENOT, these related works do
not focus on the sparsity of transfer maps.

Sequence to Sequence Translation. Sequence to sequence (Seq2Seq)
neural net models are typically designed based on an encoder-decoder architec-
ture. [15] propose the application of a convolutional neural network (CNN) as
the encoder and a recurrent neural network (RNN) as the decoder. [30] utilize
an RNN-based architecture for both the encoder and decoder neural nets. [32]
propose a transformer based on multi-head self-attention. BART [21] offers a
sequence-to-sequence pretraining solution and adopts a bidirectional encoder
similar to BERT [8], and a decoder similar to GPT [28]. Unlike our proposed
ENOT approach, the discussed methods usually result in a dense transportation
map. We also note that Seq2Seq and GAN-based transfer methods are almost
exclusively used for language and image distributions, respectively.

3 Preliminaries

Consider random vectors X,Y ∈ Rd with probability distributions PX , PY , re-
spectively. Given n independent samples x1, . . . ,xn from PX and m independent
samples y1, . . . ,ym from PY, the goal in the domain transfer problem is to learn
a map ψ : Rd → Rd transporting an input X from distribution PX to an output
ψ(X) distributed as PY , i.e.,

ψ(X)
dist
= Y.

Here, dist
= denotes identical probability distributions.
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Sparse Domain Transfer via Elastic Net Regularization 5

Without any constraint on the map ψ, there exist infinitely many trans-
portation maps resulting in the required identical distributions. To uniquely
characterize the transfer map, the optimal transport framework [33] seeks to
find a map minimizing the expected transportation cost measured based on a
cost function c : Rd ×Rd → R. According to this framework, the transportation
map follows from the optimal coupling ΠX,Y , marginally distributed as PX and
PY , that is minimizing the expected transportation cost formulated as

OTc(PX , PY ) := inf
ΠX,Y :ΠX=PX

ΠY =PY

E(X,Y )∼Π

[
c(X,Y)

]
.

Here, OTc(PX , PY ) denotes the optimal transport cost between PX , PY . It is
well-known that under mild regularity conditions, a deterministic coupling map-
ping X to a sample with distribution PY exists that solves the above problem.
Also, the dual representation of the above optimization problem can be formu-
lated via the Kantorovich duality [33] as

sup
ϕ:Rd→R

E
[
ϕ(X)

]
− E

[
ϕc(Y)

]
,

where ϕ is the potential function and the c-transform ϕc is defined as ϕc(y) :=
supy′ ϕ(y′)− c(y,y′).

Example 1. In the special case of a norm cost c1(x,y) = ∥x − y∥, the result of
Kantorovich duality can be written as

OTc1(PX , PY ) = sup
ϕ:1-Lipschitz

E
[
ϕ(X)

]
− E

[
ϕ(Y)

]
where the potential function ϕ : Rd → R is constrained to be 1-Lipschitz with
respect to the assigned norm ∥ · ∥, i.e., for every x,x′ ∈ Rd:∣∣ϕ(x)− ϕ(x′)

∣∣ ≤
∥∥x− x′∥∥.

Example 2. In the special case of the L2-norm-squared cost c2(x,y) = 1
2∥x−y∥22,

the result of Kantorovich duality can be written as

sup
ϕ̃:convex

E
[1
2
∥X∥22 − ϕ̃(X)

]
+ E

[1
2
∥Y∥22 − ϕ̃⋆(Y)

]
(1)

where the potential function ϕ(x) := 1
2∥x∥

2
2 − ϕ̃(x) is constrained to be the

subtraction of a convex function ϕ̃ from 1
2∥x∥

2
2, and ϕ̃⋆ is the Fenchel conjugate

defined as
ϕ̃⋆(x) := sup

x′
x′⊤x− ϕ̃(x′).

The Brenier theorem reveals that in the setting of Example 2, the gradient of the
optimal solution ϕ̃ provides the unique monotone (gradient of a convex function)
map transporting samples between the two domains:
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6 Zhang and Farnia

Theorem 1 (Brenier’s Theorem, [33]). Suppose that PX , PY are absolutely
continuous with respect to one another. Then, the gradient of the solution ϕ̃∗ to
equation 1 is the unique monotone map for transferring PX to PY , that is

∇ϕ̃∗(X)
dist
= Y.

In the following sections, we aim to define and analyze optimal transport
costs that can capture the sparsity of the transportation map, i.e. the number
of non-zero coordinates of y − x.

4 Elastic Net Regularization for Sparse Optimal
Transport

In this work, we aim to address the sparse domain transfer problem where the
transfer map ψ between distributions PX , PY alters the fewest possible coordi-
nates in the d-dimensional feature vector X = [X(1), . . . , X(d)]. To apply the
optimal transport framework, a proper cost function is the cardinality (number
of non-zero elements card(z) =

∑d
i=1 1[zi ̸= 0]) of the difference between the

original and transported samples:

csparse(x,y) = card(x− y).

Since the cardinality function lacks continuity and convexity, the resulting op-
timal transport problem will be computationally difficult. A common convex
proxy for the cardinalty function is the L1-norm where we simply use cL1

(x,y) =
∥x − y∥1. While the primal optimal transport problem could be solved for the
empirical samples with the L1-norm cost, the domain transfer map requires solv-
ing the optimization problem for the data distribution which would be complex
in the primal case. Therefore, we focus on the dual optimization problem to the
optimal transport task. However, solving the dual optimization problem of the
L1-norm cost requires optimizing over the L1-norm-based 1-Lipschitz functions
which would be challenging.

To handle the computational complexity of the dual optimization problem
with L1-norm cost function, we propose to apply the elastic net [40] cost function
with coefficients 0 ≤ α ≤ 1 and λ > 0:

cα,λEN (x,y) = λ(1− α)
∥∥x− y

∥∥2
2
+ λα

∥∥x− y
∥∥
1
. (2)

Using the above cost function, we propose the Elastic Net-based Optimal Trans-
port (ENOT) as the optimal transport method formulated with the cost function
in equation 2. For the dual formulation of the ENOT problem, we can apply the
Kantorovich duality to obtain the following optimization task:

max
ϕ:Rd→R

E
[
ϕ(X)

]
− E

[
ϕc

α,λ
EN (Y)

]
(3)

where the elastic-net-based c-transform can be written as follows:

ϕc
α,λ
EN (y) := max

δ∈Rd
ϕ(y + δ)− λ(1− α)∥δ∥22 − λα∥δ∥1.
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Sparse Domain Transfer via Elastic Net Regularization 7

Theorem 2. Consider the ENOT dual problem in equation 3. Then, there exists
an optimal potential function ϕ∗ for this problem which satisfies the following
weakly-concavity property: for every x,y ∈ Rd and real value γ ∈ [0, 1]:

ϕ∗
(
γx+ (1− γ)y

)
≥ γϕ∗(x) + (1− γ)ϕ∗(y)

− λγ(1− γ)(1− α)
∥∥x− y

∥∥2
2
− λα

∥∥x− y
∥∥
1
.

Proof. We defer the proof to the Appendix.

The above result shows the existence of an optimal potential function possess-
ing a weakly-concave structure defined based on an elastic net function. Our
next result reveals the extension of the Brenier’s theorem to the elastic net cost
function. In this extension, we use STγ to denote the soft-thresholding operator
defined for a scalar input as

STγ(z) :=


z + γ if z ≤ −γ
0 if − γ < z < γ

z − γ if γ ≤ z.

For a vector input z ∈ Rd, we define the soft-thresholding map as the coordinate-
wise application of the scalar soft-thresholding function, i.e.,

∀i ∈ {1, . . . , d} : STγ(z)i = STγ(zi)

Theorem 3. Consider the dual ENOT problem in equation 3. Then, given the
optimal potential function ϕ∗ the following will provide the optimal transport
map transferring samples across domains:

X− ST α
2(1−α)

( 1

2λ(1− α)
∇ϕ∗(X)

)
dist
= Y.

Proof. We defer the proof to the Appendix.

Note that the above theorem is a generalization of the Brenier theorem for the
elastic net cost, and in the special case of α = 0 reduces to the Brenier theorem.
On the other hand, by selecting a larger L1-regularization coefficient α, the soft-
thresholding map will apply a more stringent sparsification to the gradient map
of the optimal potential function. This result suggests that by choosing a larger
α, one can achieve a sparser transportation map which is the goal sought by the
sparse transfer algorithm. Theorem 3 reduces the search for the elastic net-based
transport map to the computation of the optimal potential function ϕ in the dual
optimization problem, which as shown in Theorem 2 satisfies a weakly-concavity
property.
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8 Zhang and Farnia

Algorithm 1 GAN Training with ENOT-based Feature Selection
Require: Training data X, target data Y, hyperparameters λ, α, generator G and

discriminator D, pre-trained ENOT potential function ϕ∗(x)
1: Initialize generator G and discriminator D
2: while not converged do
3: Sample minibatch x ∼ X and y ∼ Y
4: Compute feature selection mask I(x):

5: ∀i ∈ {1, . . . , d} : I(x)i =

{
0 if

∣∣∇ϕ∗(x)i
∣∣ ≤ λα,

1 if
∣∣∇ϕ∗(x)i

∣∣ > λα

6: Update D by ascending its stochastic gradient:
7: ∇D [E [log (D(y))] + E [log (1−D (I(x)⊙G(x) + (1− I(x))⊙ x))]]
8: Update G by descending its stochastic gradient:
9: ∇G [E [log (1−D (I(x)⊙G(x) + (1− I(x))⊙ x))]]

10: end while
11: return Trained generator G and discriminator D

5 ENOT-based Feature Selection for Sparse Domain
Transfer

In the previous section, we have shown sparse transfer map could be derived
by applying the soft-thresholding function to the gradient of the optimal po-
tential function. In addition to directly performing a sparse optimal transport,
the trained potential function in the ENOT framework can be used for variable
selection to undergo an unconstrained distribution transfer. Therefore, we also
propose a feature selection algorithm for domain transfer using the optimal po-
tential function ϕ∗ in equation 3. Here for an input x ∈ Rd, we define the feature
selection mask I : Rd → {0, 1}d as

∀i ∈ {1, . . . , d} : I(x)i =

{
0 if

∣∣∇ϕ∗(x)i∣∣ ≤ λα,

1 if
∣∣∇ϕ∗(x)i∣∣ > λα

(4)

The above masking identifies the feature coordinates modified by the ENOT
transport map. Given the above masking function, we can train a generator
function G : Rd → Rd to perform a constraint-free domain transportation on
the ENOT’s selected features. We can employ the standard GAN framework [11]
consisting of a generator G and discriminator function D : Rd → R to do this
task. Following the standard min-max formulation of GANs, we propose the
following optimization problem for the ENOT feature selection-based domain
transport:

min
G∈G

max
D∈D

E
[
log

(
D(Y)

)]
(5)

+ E
[
log

(
1−D

(
I(X)⊙G(X) +

(
1− I(X)

)
⊙X

))]
In the above, the generator G attempts to match the distribution of modified
I(X)⊙G(X)+

(
1− I(X)

)
⊙X with the distribution of Y, where ⊙ denotes the
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Sparse Domain Transfer via Elastic Net Regularization 9

Table 1: ENOT’s achieved NLL with different coefficients of L1-regularization on the
Gaussian mixture transfer.

ENOT L1 coefficient

f dimension baseline 0 1e-3 5e-3 1e-2 5e-2 1e-1 5e-1

MLP-22
1000 4.87×103 4.46×103 4.13×103 3.52×103 1.50×103 1.50×103 1.51×103

100 3.22×103 3.15×103 2.97×103 1.82×103 1.62×102 1.64×102 1.82×102

10 1.53×101 1.50×101 1.42×101 1.39×101 1.31×101 1.40×101 1.51×101

MLP-12
1000 4.56×103 4.42×103 4.02×103 3.48×103 1.50×103 1.50×103 1.50×103

100 2.73×103 2.58×103 2.85×103 1.27×103 1.50×102 1.51×102 1.51×102

10 1.60×101 1.39×101 1.51×101 1.48×101 1.34×101 1.48×101 1.67×101

MLP-4
1000 3.67×103 3.62×103 3.44×103 3.01×103 1.50×103 1.50×103 1.50×103

100 2.62×103 2.53×103 1.44×103 1.01×103 1.50×102 1.51×102 1.51×102

10 1.52×101 1.36×101 1.38×101 1.44×101 1.32×101 1.47×101 1.77×101

element-wise Hadamard product. On the other hand, the discriminator D seeks
to identify the original Y samples from the modified X data. Since we utilize
the feature selection mask of the trained ENOT potential function, we do not
need to ensure the invertibility of the generator and can reduce the number of
machine players compared to the CycleGAN algorithm.

The above feature selection-based approach enables the application of neural
net generator functions which could improve the vanilla ENOT’s performance
due to the power of a properly-designed generator to model the structures in
the text and image data. This is similar to the Wasserstein GAN (WGAN) [1]
as the optimal-transport-based GAN formulation in WGANs also considers a
generator G instead of relying on the gradient of the potential function.

6 Numerical Results

In this section, we present the empirical results of the applications of ENOT and
the baseline domain transfer algorithms to several standard datasets, including
synthetic Gaussian mixture models, and real image and text datasets. We defer
the details of our numerical experiments, including the dataset pre-processing,
neural network architectures, and hyperparameter selection to the Appendix.

6.1 ENOT applied to Synthetic Gaussian Mixture Data

We evaluated the performance of ENOT in domain transfer problems across mul-
tivariate Gaussian mixture models (GMMs). In our experiments, we considered
bimodal source and target GMMs: the source GMM p(x) = ϕsN

(
x|µs, σ

2Id
)
+

(1− ϕs)N
(
x| − µs, σ

2Id
)
, and target GMM p(y) = ϕtN

(
y|µt, σ

2Id
)
+(1− ϕt)

N
(
y| − µt, σ

2Id
)

both consist of two multivariate Gaussian components with
different means and identical covariance matrix with σ = 1. There exist two
component-based mappings: (1) mapping Nµs → Nµt , N−µs → N−µt or (2)
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Fig. 1: Transportation for Black→Blonde hair and Apple→Orange on CelebA and
Apple2Orange.

mapping Nµs → N−µt , N−µs → Nµt . We set µs = [γ, ϵd, · · · , ϵd] ,µt = [−γ, ϵd,
· · · , ϵd] and chose ϵd·

√
d− 1 < γ to distinguish the optimal L1-norm-based sparse

and standard L2-norm-based transfer maps. We set γ = 10, ϵ10 = 2, ϕs = ϕt =
0.5, and scaled ϵd = ϵ10√

d/10
to ensure the inequality holds in different dimensions.

We applied the ENOT approach by solving the dual optimization prob-
lem (Eq. 3) using a multi-layer perception neural net with different number
of ReLU layers. We attempted different L1-norm coefficients, where a zero co-
efficient reduces to the standard optimal transport baseline. We evaluated the
performance of the domain transfer algorithm using the averaged negative log-
likelihood (NLL) of transferred samples with respect to the target Gaussian
mixture distribution. Based on our quantitative results in Table 1, we observed
that the ENOT’s sparse transfer maps led to better performance scores for the
three potential function architectures.
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Sparse Domain Transfer via Elastic Net Regularization 11

6.2 Image-based Domain Transfer

We utilized the proposed ENOT framework to perform image domain transfer
and compared its performance with image translation baselines: CycleGAN [38],
MUNIT [12], and UGATIT [17]. We also selected baseline DoRM [35] from the
domain adaptation literature. In our computer vision experiments, we used four
standard datasets: MNIST [19], CelebA [23], Apple2Orange [38] and FFHQ [16].
Due to the page limit, we defer the DoRM and FFHQ results to the Appendix.
For training the ENOT’s potential function, we used a 5-layer MLP in the
MNIST experiments and used a Vision Transformer (ViT-base) model with patch
size 16 from [9]. We defer the discussion on the selection of the α, λ coefficients
we performed in the ENOT-based feature selection to the Appendix.

The object translation task in a computer vision setting typically results in a
sparse domain transfer task. For example, if we wish to change the hair color of
a human, only partial pixels regarding hair are expected to be modified. In com-
puter vision domain transfer problems, the standard domain transfer algorithms
leverage high-capacity GANs to reach satisfactory visual quality. However, in
GANs, the goal of the generator is to fool the discriminator. This goal might
lead to suboptimal results. For example, in Figure 1, when change the hair color
from black to blonde for an individual wearing black clothes, the GAN-based
methods could mistakenly alter the color of the clothes to yellow simultaneously,
thereby outputting a realistic but overly-changed sample. In this case, sparsity is
desired. However, integrating the sparsity prior to the GAN optimization could
lead to highly challenging min-max optimization tasks.

In Figure 1, we present the empirical results for randomly selected CelebA
samples in the transport task: black hair → blonde hair, and Apple2Orange sam-
ples in the transport task: apple → orange. We observe that transportation maps
from the baseline methods are unsatisfactory in several sparse-transportation
cases. Two common types of failures are present in Figure 1. The first one is
over-transportation, where unnecessary pixels are modified. This is commonly
observed in baseline methods which employ dense-transportation algorithms.
The second failure is insignificant transportation since baselines are not sensi-
tive enough to the sparse transportation regions. On the other hand, by using
ENOT-based feature selection, the transfer results are considerably improved. As
shown in Figure 2, the ENOT feature selection successfully identified the pixels
corresponding to the subject’s hair in CelebA and the apples in Apple2Orange
samples. The proper variable selection led to a more meaningful domain transfer
in these computer vision applications.

6.3 IMDB Review Sentiment Reversal

We also performed the numerical experiments on the IMDB movie review text
dataset [24]. This dataset contains 50,000 movie reviews with positive and neg-
ative categories. We defined the transportation task as modifying part of the
words to flip the review’s sentiment: negative to positive reviews. We attempted
a sparse domain transfer task in this case, as the sparsity level could be a sensible
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Fig. 2: Saliency maps of transportation for Black→Blonde hair and Apple→Orange
on CelebA and Apple2Orange.

quantification of the revision made to the text data. We expect that a sparse
transport map exists in this case, when the transfer map only flips the negative
and positive adjectives in the text.

We used ENOT to perform domain transfer in this text-based setting. For the
potential function in (Eq. 3), we finetuned a pre-trained BERT transformer [8].
As the baseline, we considered a pre-trained Seq2Seq model GPT-3 [5]. Table 2
shows the empirical results of the baseline and ENOT on a randomly selected
sample. For this sample, we observed the revision made with the ENOT-based
feature selection method is sparse and only a few words regarding movie review
sentiment are modified. In contrast, the baseline Seq2Seq model GPT-3 modified
almost all the text, including sentences describing the movie details that sound
unrelated to the review sentiment. We present the results for more samples in
the Appendix.

Also, we empirically observed that informative words in the generated sparse
transportation maps by ENOT have higher correlations with the sentiment com-
pared with other parts of the input text. We present this phenomenon in Fig-
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Fig. 3: Left: IMDB sentiment transfer quality and density. Every point represents a
transported sample: color indicates the L1-coefficient in ENOT. The quality is mea-
sured by confidence score from a BERT classifier. A density value of 0.5 indicates that
50% of the input tokens have been modified by ENOT. Right: Transportation quality,
the middle line and diamond show the median and mean. The green bar (coefficient
1e−4) achieves the highest quality.

ure 3, where we quantified the transportation performance using the confidence
score [25] from a pre-trained BERT model [8] on IMDB sentiment classification.
We analyzed the correlation between performance and sparsity in the ENOT’s
transportation. In the scatter plot, each point is a random transported sample:
the bottom-left region indicates sparse and poor performance, and the top-right
region suggests dense and good performance. The box plot statistics in Figure 3
show that a sparsity coefficient of 10−4 attains the best performance compared
to the dense baseline and other coefficients.

7 Conclusion

In this work, we focused on the sparse domain transfer task and attempted
to apply L1-norm regularization to the standard optimal transport framework
by considering an elastic net cost function. Our numerical results suggest the
proposed method’s performance gain under a sparse transfer map. An interesting
future direction is to apply the proposed framework to the latent space of image
and text data where tighter sparsity constraints may hold in the learning setting.
The extension of the elastic net-based optimal transport framework to provide
a sparse and concise interpretation of domain transfer maps is another direction
for future exploration.
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14209920, and is partially supported by a CUHK Direct Research Grant with CUHK
Project No. 4055237.
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Table 2: IMDB Movie Review Sentiment Transportation Maps

Transfer Task: Negative Review → Positive Review
Red: ENOT’s Selected Words for Domain Transfer. Blue: Modified Parts

Source Baseline Seq2Seq ENOT

Lonely, disconnected,
middle-class housewife in
the midst of a divorce seeks
solace to reflect on her
immediate future. at some
sort of bed and breakfast
by ( well, literally in the sea
) the ocean that for some
sort of odd reason she subs
for the owner. enter lonely,
arrogant richard gere. he
is a plastic surgeon. he
is the only guest at the
inn in the sea. Diane lane
is the lonely housewife.
you’ll never guess these two
fall immediately in love. a
tropical storm makes them
true lovers. the subplots in
this melodrama make little
or no sense. the locations,
photography are fine. Gere
remains one of the most
over-rated actors in cinema
and does not disappoint.
ms. lane must’ve needed
the money, but phones in
her part with grace.

Ambitious, determined,
middle-class housewife
in the midst of a trans-
formative journey seeks
inspiration to chart her
new path. She finds herself
at a charming bed and
breakfast right by the
beautiful ocean, where
she unexpectedly steps
in to help the owner.
Then, enter the charismatic
Richard Gere, a skilled
plastic surgeon and the
only guest at this idyllic
seaside inn. Diane Lane
portrays the captivating
housewife. You’ll be pleas-
antly surprised as these
two form an instant and
profound connection. A
tropical storm adds a touch
of magic to their love story.
The various subplots in
this heartfelt drama weave
together seamlessly. The
stunning locations and
photography enhance the
overall experience. Gere
continues to be one of the
most respected actors in
cinema, delivering a stellar
performance as always.

Lonely, disconnected,
middle-class housewife in
the midst of a divorce seeks
solace to reflect on her
immediate future. at some
sort of bed and breakfast
by ( well, literally in the sea
) the ocean that for some
sort of odd reason she subs
for the owner. enter lonely,
charismatic richard gere.
he is a plastic surgeon. he
is the only guest at the inn
in the sea. Diane lane is
the lonely housewife. you’ll
never guess these two fall
immediately in love. a trop-
ical storm makes them true
lovers. the subplots add
depth and intrigue to this
melodrama. the breath-
taking locations, stunning
photography are absolutely
remarkable. Gere proves
once again that he is one of
the most respected actors
in the world of cinema and
does a fantastic job. ms.
lane must’ve needed the
money, and delivers her
part with grace.
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