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Abstract. Camouflaged object detection (COD), which aims to accu-
rately identify objects that visually blend into surroundings, has at-
tracted increasing interest recently. Existing models usually seek a break-
through in the RGB domain. However, it is difficult to distinguish the tar-
get objects that are visually consistent to the backgrounds in some chal-
lenging scenarios. Considering that the frequency components can more
effectively capture the details and structures of the image, we rethink the
COD task from the perspective of the frequency domain. To this end,
we propose a frequency learning network to mine boundary and position
cues for prediction. Specifically, we design the frequency feature aggre-
gation module to merge cross-level frequency features, which are then
grouped to generate details and position cues by the frequency feature
learning module. Subsequently, we propose the frequency-assisted object-
boundary calibration module and the dual-guidance feature reasoning
module to progressively optimize the dual-guidance cues to help calibrate
the camouflaged object feature for high-quality prediction. Quantitative
and qualitative experimental results demonstrate that our network out-
performs the state-of-the-art COD methods.

Keywords: Camouflaged object detection · Spatial frequency · Guid-
ance cue

1 Introduction

In nature, most wild animals visually blend in with their surroundings to avoid
detection by predators, since their colors, textures and patterns are highly sim-
ilar to the background, making them difficult for the predators to distinguish.
Camouflaged Object Detection (COD) is a task that aims to detect and segment
objects that are perfectly hidden in their surroundings. It has attracted increas-
ing research interest and has been widely used in many real-world applications,
ranging from pest monitoring [?] in agriculture to polyp segmentation [?,?] and
lung infection segmentation [?,?] in medicine.

Different from other dense pixel prediction tasks (e.g., semantic segmenta-
tion, salient object detection), COD is more challenging due to the low contrast
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Image GT Ours FEDER ZoomNet SINetV2

Fig. 1: Visual comparisons of the prediction results generated by the representative
models (i.e., ZoomNet [?], SINetV2 [?], and FEDER [?]) in three challenging scenarios
including occlusion, indistinguishable boundaries and multiple objects.

between the camouflaged objects and the background, resulting in two issues:
the incomplete interior regions and edge disruption. The former is caused by the
difficulty in coarsely locating the positions of the potential camouflaged objects;
and the latter is attribute to ambiguous object boundaries.

To tackle these challenges, some bio-inspired COD methods [?,?,?,?] are pro-
posed to mimic the human visual perception mechanism or predator behaviors
for segmenting the camouflaged objects. Some other methods make efforts to
introduce additional guidance cues, such as boundary detection [?,?,?], texture
prediction [?] or both [?], to help the network to distinguish the camouflaged
objects from the similar backgrounds by performing the multi-task learning. Al-
though these deep learning-based camouflaged object detection methods have
achieved excellent performance, it is still quite difficult to accurately segment
the entire camouflaged objects while achieving explicit boundaries and effectively
suppress the distraction from the confusing background in a simple but effective
way, especially in some challenging scenarios such as occlusion, highly uncer-
tain or fuzzy object boundaries, and multiple camouflaged objects. As shown in
Fig.1, the existing representative methods can be misled by the visually similar
background, leading to low-quality prediction results.

In general, the visual low contrast between the target object and the back-
ground makes the identification process in the RGB domain very difficult. Biolog-
ical studies [?] have shown that the human vision system utilizes different neural
pathways to respond to different frequency stimuli, allowing for the processing of
specific information. In the image frequency domain analysis, the high-frequency
component describes the fine details, while the low-frequency component pro-
vides the global structure. Thus we rethink COD in terms of frequency domain
to fully exploit and integrate the spatial frequency information to localize the
concealed target objects and identify the uncertain boundaries.

To this end, we propose a frequency feature learning network, which solves
the COD task exclusively from the perspective of spatial frequency, uses different
frequency components to extract details and positions of camouflaged objects,
and then calibrates and exploits them to guide the learning of the spatial fre-
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quency information. Specifically, in the frequency-aware feature learning stage,
the multi-level RGB features from the Transformer encoder are first converted
into the spatial frequency features. Then, a frequency feature aggregation (FFA)
is designed to merge the cross-level frequency information to obtain enhanced
frequency features at different levels, which are divided into two groups according
to their intrinsic properties. Subsequently, a frequency feature learning (FFL)
module is proposed to excavate the relationships of the intra-group frequency
features. In this way, we obtain a boundary cue that provides the detail of the
target object as well as a position cue that gives the coarse localization. In the
dual-guidance feature calibration stage. The frequency-assisted object-boundary
calibration (FOC) module is explored to gradually correct the errors of the dual
cues to improve their representation abilities under the help of the spatial fre-
quency features, which is different from the previous works [?,?] that generate the
supplementary information at the early stage. Simultaneously, the dual-guidance
feature reasoning (DFR) module is proposed to achieve the camouflage object
inference by integrating the object-boundary cues and the high-level inferred
results, thereby generating the final prediction results.

In summary, the main contributions of this paper are as follows:

– We propose a two-stage network to uniformly identify the camouflaged ob-
ject from the visually similar background in the spatial frequency domain.
The comprehensive experiments demonstrate that our network is competi-
tive against the representative models on the public benchmarks.

– A frequency-aware feature learning stage is designed to integrate the cross-
level spatial frequency features and fully exploit the advantages of different
frequencies at different levels, thereby obtaining the coarse detail and posi-
tion cues of the camouflaged objects.

– A dual-guidance feature calibration stage is proposed to progressively cali-
brate the camouflaged object feature for prediction with the assistance of the
boundary and position cues, which are simultaneously optimized to identify
the indistinguishable target objects and the subtle details.

2 Related Work

2.1 Camouflaged Object Detection

Recently, compared to the handcrafted models, deep learning-based COD ap-
proaches [?, ?, ?, ?] have made great progress. Inspired by the hunting process
of predators, Mei et al. [?] develop a distraction mining strategy for distrac-
tion discovery and removal. To capture the subtle discriminative features, He
et al. [?] propose to learn an auxiliary edge reconstruction task to promote the
precise segmentation. In [?], a boundary-guided network is designed to enforce
the network to focus on the object structure and details. Jia et al. [?] propose an
iterative refinement framework which integrates Segment, Magnify and Reiterate
in a multi-stage detection fashion.
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Due to the outstanding performance of Transformers originating from the
natural language processing, Transformers are introduced to COD [?] for model-
ing the long-range dependencies. Lyu et al. [?] adopt two independent branches
that simultaneously perform uncertainty reasoning and edge inference. Huang et
al. [?] use ViT as the encoder and hierarchically decode locality-enhanced neigh-
boring transformer features through progressive shrinking. Xing et al. [?] perform
cross-level and adjacent-level feature fusion to obtain rich searched features and
fine segmentation. Yang et al. [?] designed a hierarchical location guidance mod-
ule to to locate the potential objects. Although these methods have significantly
improved segmentation performance, there still remains several challenging is-
sues regarding uniformly detected interior regions and explicit boundaries and
details in complex scenarios.

2.2 Frequency-aware Feature Learning

The human visual spatial frequency model shows that an image can be decom-
posed into high- and low-spatial frequency parts. Introducing frequency cues will
help the model to better identify camouflaged objects from the background. The
pioneering work in [?] is to explore learning in the frequency domain for object
detection, where the Discrete Cosine Transform (DCT) coefficients are fed into
a convolutional neural network (CNN) model for inference. Gueguen et al. [?]
trains CNNs directly on DCT coefficients in JPEG codecs to accelerate and im-
prove network performance. Zhong et al. [?] introduce frequency cues in COD
task and design a frequency enhancement module for dense prediction. In [?],
a two-stage framework is proposed to distinguish camouflaged objects by learn-
ing high-frequency and low-frequency features, and to obtain the final refined
detection results through a progressive refinement mechanism.

In contrast, we attempt to detect and segment the camouflaged objects from
the perspective of the spatial frequency domain instead of partially exploiting
the frequency information.

3 Methodology

3.1 Overview

In this paper, we propose a frequency learning network based on dual-guidance
calibration, called DCNet, to achieve the segmentation results with explicit
boundaries from the similar background and interference objects. As shown in
Fig. 2, our network consists of a frequency-aware feature learning stage and a
dual-guidance feature calibration stage.

Given an RGB image I ∈ RH×W×3, we adopt Swin Transformer as our
backbone to extract multi-level features, denoted as Xi(i = 1, 2, ..., 4). In the
frequency-aware feature learning stage, we first transform the RGB features at
different levels into the spatial frequency features through the octave convolu-
tion [?]. Each feature has its specific characteristic, and the adjacent-level fea-
tures have similar properties. Inspired by this observation, we first design the
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Fig. 2: The framework of our proposed network DCNet, which consists of a frequency-
aware feature learning stage and a dual-guidance feature calibration stage.

frequency feature aggregation (FFA) module to capture the complementary in-
formation between the adjacent-level spatial frequency features to enhance the
representation ability of frequency features, thus obtaining the enhanced shallow-
level, mid-level, and deep-level frequency features Fs, Fm, and Fd, respectively.
According to their different intrinsic characteristics, we then design a frequency
feature learning module for coarse detail extraction, namely FFL-B, to obtain a
boundary feature Binit, and use a frequency feature learning module for coarse
localization extraction, namely FFL-O, to obtain an object feature Oinit. Subse-
quently, in the dual-guidance feature refinement stage, with the guidance of the
boundary feature Bi and the object feature Oi, the camouflaged object feature
F p
i are progressively optimized by the frequency-assisted object-boundary cali-

bration (FOC) module and the dual-guidance feature reasoning (DFR) module.
Finally, the final prediction result is obtained by our DFR module.

3.2 Spatial Frequency-aware Feature Learning

Different from previous COD models [?,?,?,?] which enhance the feature repre-
sentation ability in the RGB domain, we perform our network in the frequency
perspective. The plug-and-play octave convolution [?] is employed to process
low-frequency and high-frequency features separately. In this paper, we integrate
them to produce a merged spatial frequency feature.

Specifically, let Xi = (XH
i , XL

i ) and Fi = (FH
i , FL

i ) be the input and output
tensors, where XH

i and FH
i are the high-frequency components, and XL

i and
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Fig. 3: Illustration of our frequency feature aggregation (FFA) module.

FL
i are the low-frequency components in the spatial domain. The process of

separating RGB features into high-frequency and low-frequency components in
octave convolution can be formulated as follows:

FH
i = f(XH

i ;WH→H) + Up(f(XL
i ;W

L→H), 2) (1)

FL
i = f(XL

i ;W
L→L) + f(pool(XH

i , 2);WH→L) (2)

where f(X;W ) denotes a convolution with parameters W , pool(X, k) is an av-
erage pooling operation with kernel size k×k and stride k, Up(X, k) is an up-
sampling operation by a factor of k via nearest interpolation.

Then we fuse the high-frequency component FH
i and the low-frequency com-

ponent FL
i as a complete frequency representation of spatial domain:

Fi = R(FH
i ) +R(FL

i ) (3)

where R(·) denotes that the feature resolution is set to a fixed size. In this
way, the RGB information from the backbone is converted to spatial frequency
domain features Fi(i = 1, 2, 3, 4).

Frequency Feature Aggregation (FFA) Module. To enhance the limited
feature representation ability of a single level, we design the FFA module to inte-
grate the cross-level frequency features to obtain a more powerful frequency fea-
ture representation. Considering that the adjacent-level features have relatively
smaller semantic gap, we implement our FFA module by mining the adjacent-
level contextual relationship.

The details of our FFA module is shown in Fig. 3. Given the current-level
feature Zi and the adjacent deep-level feature Zi+1 as inputs, our FFA module
first equally splits the inputs into two features along the channel dimension,
denoted as {Z1

i , Z
2
i } and {Z1

i+1, Z
2
i+1}, respectively. Then, they are regrouped

into two feature groups, denoted as {Z1
i , Z

1
i+1} and {Z2

i , Z
2
i+1}, which are fed

into the channel-aware integration (CI) block and the spatial-aware integration
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(SI) block, respectively, producing complementary features F c
i and F s

i . It can be
computed as:

F c
i = CI(Z1

i , Z
1
i+1) (4)

F s
i = SI(Z2

i , Z
2
i+1) (5)

Then they are combined to produce the spatial domain feature Ft as follows:

Ft = C3([F c
i , F

s
i ]) (6)

where [·] is the concatenation operation, Ck(·) denotes a k×k convolutional layer,
and t is s, m, and d when i is 1, 2, and 3, respectively.

In our CI block shown in Fig. 3, we first perform a 1×1 convolution on each of
the two input features, respectively. Then we employ two convolution branches
with different kernels for the interaction of spatial features, thus fully perceiving
complementary information. The kernel sizes are set to 3 and 5 in our experi-
ments. And then the fused features are fed into an MSCA block [?] to reduce the
semantic gap by combining local and global contexts. Finally, the refined input
features are merged by an addition operation and a 3×3 convolutional layer.
The structure of our SI block is similar to that of the CI block. The difference is
that in our SI block, we replace the concatenation operation with the addition
operation in two convolution branches.

Note that, since the high-frequency component describes the fine-grained
details and the low-frequency component depicts the global structures and lay-
outs, we employ the high-frequency component FH

1 in F1 and the low-frequency
component FL

4 in F4, instead of the complete frequency features F1 and F4, to
generate enhanced frequency features Fs and Fd at the shallow and the deep lev-
els, respectively, thereby emphasizing detail and semantic learning. In this way,
the different characteristics of the features at different levels are fully exploited.

Frequency Feature Learning (FFL) Module. According to the characteris-
tics of features at different levels, we divide all the enhanced frequency features
{Fs, Fm, Fd} into two groups, namely the detail group {Fs, Fm} and the se-
mantics group {Fm, Fd}, to take full advantage of different frequency features.
Furthermore, we perform different implementations when our FFL module is
applied to different frequency feature groups, i.e., FFL-B for mapping the de-
tail group to the boundary cue and FFL-O for injecting the semantics group to
the localization cue, respectively, to explore the differences of the inter-group
frequency features in a more effective way.

Specifically, as shown in Fig. 4, for the FFL-O module, we first apply a multi-
scale receptive field block [?] to each of the input frequency features {Fm, Fd} to
enlarge the receptive field and capture more contextual information, producing
two enhanced features F r

m and F r
d , and then they are interacted and merged

to generate the object feature Oinit that provides the positions of the potential
camouflaged objects. This process can be formulated as:

Oinit = C3(Avg(Up(F r
d , 2)⊗ F r

m) + C3[Up(F r
d , 2), F

r
m]) (7)
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Fig. 4: Illustration of the frequency feature learning module for object (FFL-O).

where ⊗ denotes the element-wise multiplication, and Avg(·) is the global av-
erage pooling operation which emphasizes the important information from the
perspective of the channel dimension.

Meanwhile, the spatial frequency features {Fs, Fm} are sent to the FFL-B
module to produce boundary information. The detailed illustration of the FFL-
B module is similar to that of the FFL-O module. The difference lies in the
pooling operation, i.e., we use the global max pooling in our FFL-B module.
Global max pooling is employed to emphasize the detected regions with drastic
changes, thereby capturing the high-frequency boundary feature representation.
It can be expressed as:

Binit = C3(Max(Up(F r
m, 2)⊗ F r

s ) + C3[Up(F r
m, 2), F r

s ]) (8)

where Max(·) denotes the global max pooling operation.

3.3 Dual-guidance Feature Calibration

Our dual-guidance feature calibration stage aims to introduce the coarse bound-
ary feature Binit, the coarse object feature Oinit to help progressively distin-
guish the camouflaged objects and produce results with explicit boundaries in
a dual-path manner, as shown in Fig. 2. It consists of two key components: the
frequency-assisted object-boundary calibration (FOC) module for optimizing the
object feature and the boundary feature simultaneously, and the dual-guidance
feature reasoning (DFR) module for progressively refining the camouflaged ob-
ject feature under the help of the optimized boundary and object features.

Frequency-assisted Object-boundary Calibration (FOC) Module. We
utilize the frequency features to provide additional information to compensate
for deficiencies and correct errors in our FOC module, progressively optimizing
the object features Oi and the boundary features Bi. Fig. 5 depicts its workflow.
The object feature Oi+1 and the boundary feature Bi+1 generated from the
adjacent higher level, as well as the side-output frequency feature Fi are taken
as inputs. We first utilize the frequency feature Fi to guide the learning of the
boundary feature and the object feature to focus on the important context and
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ule and the dual-guidance feature reasoning (DFR) module.

to suppress the noise, respectively. This allows the network to take advantage of
the frequency feature Fi to provide useful information to enrich the object and
boundary features. This process can be formulated as:

Ba
i = C3(σ(Bi+1)⊗ Fi + Fi) (9)

Oa
i = C3(σ(Oi+1)⊗ Fi + Fi) (10)

where σ(·) is the Sigmoid activation function. A gate function is then used to
further refine the boundary and object features by emphasizing the important
feature channels, making the network aware of where to learn:

Bi = σ(C1(Max(Ba
i )))⊚Ba

i (11)

Oi = σ(C1(Max(Oa
i )))⊚Oa

i (12)

where ⊚ is the channel-wise multiplication. Note that, for the FOC module ap-
pending at the top level of our network, the features Binit and Oinit generated by
the FFL-B and FFL-O modules are taken as inputs to provide the coarse bound-
ary and localization information, and the deep-level frequency feature Fd is also
taken as input to further emphasize the importance of semantics in positioning
the camouflaged objects.

Dual-guidance Feature Reasoning (DFR) Module. Since there are se-
mantic gaps between the boundary feature Bi, the object feature Oi and the
camouflaged object feature F p

i+1 from the adjacent deeper level, we design the
DFR module to integrate these features to obtain the current-level camouflaged
object feature F p

i , instead of simply aggregating them by addition, concatena-
tion or multiplication as some previous models [?, ?, ?] do in the decoder, as
shown in Fig. 5. Specifically, the object feature Oi and the boundary feature Bi

are introduced to excavating the localization and detail cues of the camouflaged
object feature F p

i+1. And the attention unit [?] is employed to refine features
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from the perspective of the spatial and channel dimensions. Thus, we obtain the
camouflaged object feature F p

i at the current level as follows:

F p
i = C3([A(σ(Bi)⊗ F p

i+1 + F p
i+1), A(σ(Oi)⊗ F p

i+1 + F p
i+1)]) (13)

where A(·) is the attention unit [?]. Note that we use the shallow-level frequency
feature Fs as input to provide detail information for the DFR module that is
appended at the top level of our network.

3.4 Loss Function

In the proposed network, we implement supervisions on the predicted camou-
flaged object prediction maps Pi generated from the features F p

i , the object
maps Si generated from the features Oi and the boundary maps Ei generated
from the features Bi.

Following previous work [?], we employ a hybrid loss function Lhybrid com-
posed of a weighted BCE loss ℓωbce [?] and a weighted IoU loss ℓωiou [?] to measure
the differences between the predictions Pi and Si and the ground truth. For the
boundary supervision, we use the dice loss Ldice [?]. Therefore, the overall loss
of our DCNet can be expressed as:

Loverall =

4∑
i=1

(Lhybrid(Pi, G) + Lhybrid(Si, G) + Ldice(Ei, Ge)) (14)

where Ge is the boundary ground truth, G is the object ground truth.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Metrics. To verify the effectiveness of our proposed
model, we evaluate our network on three COD public benchmark datasets, in-
cluding CAMO [?], COD10K [?] and NC4K [?]. CAMO consists of 1000 training
images and 250 images for testing. COD10K contains a total of 5066 images,
where 3040 images are used for training and 2026 images for evaluation. NC4K
is another large-scale COD dataset consisting of 4121 images for testing. Fol-
lowing the previous works [?,?,?], we use 3040 images from COD10K and 1000
images from CAMO as the training set.

Four widely used metrics are employed to evaluate the performance, including
mean absolute error (M) [?], weighted F-measure (Fω

β ) [?], S-measure (Sm) [?]
and E-measure (Em

ϕ ) [?].

Implementation Details. Our proposed network is implemented by PyTorch
with an NVIDIA GTX 3090 GPU (24GB memory). We adopt the Swin Trans-
former as backbone network, and the learning rate is initialized to 5e-5, divided
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Table 1: Quantitative comparison with the SOTA methods on three benchmark
datasets. Notes ↑ / ↓ denote the larger/smaller is better, respectively. “–” is not avail-
able. The top two models are bolded and underlined for highlighting, respectively.

Method Publication CAMO COD10K NC4K

Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑ Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑ Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑

SINet 20CVPR 0.752 0.606 0.100 0.771 0.771 0.551 0.051 0.807 0.808 0.723 0.058 0.871
PFNet 21CVPR 0.782 0.695 0.085 0.841 0.800 0.660 0.040 0.877 0.829 0.745 0.053 0.887
MGL-R 21CVPR 0.776 0.673 0.088 0.812 0.814 0.666 0.035 0.851 0.833 0.739 0.053 0.867
SLSR 21CVPR 0.787 0.696 0.080 0.838 0.804 0.673 0.037 0.880 0.840 0.766 0.048 0.895
UGTR 21ICCV 0.785 0.686 0.086 0.823 0.818 0.667 0.035 0.853 0.839 0.747 0.052 0.874
BSANet 22AAAI 0.794 0.717 0.079 0.851 0.818 0.699 0.034 0.891 0.842 0.771 0.048 0.897
BGNet 22IJCAI 0.812 0.749 0.073 0.870 0.831 0.722 0.033 0.901 0.851 0.788 0.044 0.907
SINetV2 22TPAMI 0.820 0.743 0.071 0.882 0.815 0.680 0.037 0.887 0.847 0.770 0.048 0.903
FDNet 22CVPR 0.844 0.778 0.062 0.898 0.837 0.731 0.030 0.918 - - - -
SegMAR 22CVPR 0.816 0.753 0.071 0.874 0.833 0.724 0.034 0.899 0.841 0.781 0.046 0.896
ZoomNet 22CVPR 0.820 0.752 0.066 0.877 0.838 0.729 0.029 0.888 0.853 0.784 0.043 0.896
FPNet 23ACMMM 0.851 0.802 0.056 0.905 0.850 0.755 0.028 0.912 - - - -
UEDG 23TMM 0.863 0.817 0.048 0.922 0.858 0.766 0.025 0.924 0.879 0.830 0.035 0.929
FSPNet 23CVPR 0.856 0.799 0.050 0.899 0.851 0.735 0.026 0.895 0.879 0.816 0.035 0.915
FEDER 23CVPR 0.802 0.738 0.071 0.867 0.822 0.716 0.032 0.900 0.847 0.789 0.044 0.907
DINet 24TMM 0.821 0.748 0.068 0.873 0.832 0.724 0.031 0.903 0.856 0.790 0.043 0.909
RISNet 24CVPR 0.870 0.827 0.050 0.922 0.873 0.799 0.025 0.931 0.882 0.834 0.037 0.925

DCNet Ours 0.873 0.834 0.042 0.928 0.860 0.772 0.024 0.931 0.882 0.834 0.033 0.934

by 10 every 50 epochs. During training, all input images are resized to 384×384
and augmented by random horizontal flipping, cropping, rotation, and color en-
hancement before being fed into our network. The batch size is set to 16 and the
total number of training epochs is set to 100.

4.2 Comparison with State-of-the-art Methods

We compare our DCNet with several representative methods, including SINet [?],
PFNet [?], MGL_R [?], SLSR [?], UGTR [?], BSANet [?], BGNet [?], SINetV2
[?], FDNet [?], SegMAR [?], ZoomNet [?], FPNet [?], UEDG [?], FSPNet [?],
FEDER [?], DINet [?] and RISNet [?]. For a fair comparison, all the predicted
maps are provided by the authors or reproduced by the public released codes.

Table. 1 presents the quantitative results of our proposed method against
other competitors. We can observe that our method consistently outperforms
competitors on all the benchmark datasets. Specifically, our DCNet ranks first
on CAMO and NC4K, and performs slightly worse than the recently published
SOTA model RISNet [?] on COD10K, indicating the superiority of our proposed
network.

Fig. 6 shows the visual comparisons of our DCNet and some other state-of-
the-art methods. From the results we can clearly see that our prediction results
precisely locate the camouflaged objects and identify the blurred object bound-
aries in the challenging scenarios, including small objects (rows 1, 2), medium
objects (rows 3, 4), large objects (rows 5, 6), occlusions (row 3) and multiple
objects (row 2). For example, in the first row, other methods incorrectly detect
the interference as the target object. In contrast, our DCNet can capture the
inconspicuous objects. For the large objects, the prediction maps of most meth-
ods are structurally incomplete (row 6) or have fuzzy edges (row 5). Due to the
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Image GT Ours RISNet DINet FEDER FPNet UEDG ZoomNet BGNet SINetV2

Fig. 6: Visual comparisons of several representative COD methods and our proposed
DCNet.

(a) (b) (c) (d) (e) (f) (g)

Fig. 7: Visualization of feature maps for FOC. (a) Image, (b) GT of object, (c) O4,
(d) O1, (e) GT of edge, (f) B4, (g) B1. Please zoom in for more details.

integration of edge and structure representations in the frequency domain, our
prediction maps have clearer edges and a more complete internal structure.

4.3 Ablation Studies

Effectiveness of Key Components. To verify the effectiveness of the pro-
posed key components, we conduct a series of ablation experiments on large-
scale COD10K and NC4K datasets, as shown in Table. 2. We first completely
replace all the key components with a concatenation operation and a convolu-
tional layer to construct the baseline, denoted as "B". Then, we gradually add
different components to the baseline network, including the frequency feature
conversion (i.e., OCT), the FFA module, the FFL module, the FOC module
and the DFR module. From Table. 2, we can see that the performance gradu-
ally increases, indicating that each proposed component play positive role in our
network to achieve accurate segmentation results.
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Table 2: Ablation analyses of each component.

No. Method COD10K NC4K

B OCT FFA FFL FOC DFR Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑ Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑

1○ ✓ 0.836 0.710 0.032 0.904 0.867 0.803 0.039 0.915
2○ ✓ ✓ 0.842 0.728 0.030 0.914 0.872 0.811 0.038 0.926
3○ ✓ ✓ ✓ 0.851 0.738 0.028 0.918 0.875 0.817 0.037 0.926
4○ ✓ ✓ ✓ ✓ 0.851 0.741 0.027 0.919 0.875 0.820 0.036 0.928
5○ ✓ ✓ ✓ ✓ ✓ 0.853 0.757 0.026 0.925 0.882 0.825 0.034 0.931

Ours ✓ ✓ ✓ ✓ ✓ ✓ 0.860 0.772 0.024 0.931 0.882 0.834 0.033 0.934

Table 3: Ablation analyses of the configurations of our propsoed modules.

Method COD10K NC4K

Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑ Sm ↑ Fω
β ↑ M ↓ Em

ϕ ↑

w/o SFL 0.849 0.740 0.028 0.918 0.873 0.817 0.037 0.926

All_B 0.848 0.747 0.027 0.919 0.874 0.818 0.037 0.925
All_O 0.850 0.755 0.026 0.923 0.879 0.828 0.035 0.931
O+B 0.848 0.748 0.027 0.918 0.877 0.821 0.036 0.927

w/o BS 0.846 0.736 0.029 0.911 0.877 0.816 0.036 0.926
w/o OS 0.850 0.745 0.028 0.914 0.878 0.821 0.036 0.926

All_Fs 0.858 0.764 0.025 0.927 0.879 0.830 0.034 0.929
All_Fd 0.859 0.767 0.025 0.927 0.882 0.831 0.034 0.932

Ours 0.860 0.772 0.024 0.931 0.882 0.834 0.033 0.934

Effectiveness of Frequency-aware Feature Learning Different from the
previous frequency-based networks for camouflaged object detection, we derive
our DCNet entirely from a spatial frequency perspective. To verify the effec-
tiveness of spatial frequency learning, we construct the network "w/o SFL" by
removing the octave units that convert the RGB features into the spatial fre-
quency domain features Fi(i = 1, 2, 3, 4). The experimental results are shown
in Table. 3. Compared to our network, we observe a significant decrease of the
network "w/o SFL" in performance, verifying that the frequency features are
suitable for the COD task due to their powerful representation ability of details
and structure. The visual comparison as shown in Fig. 8. It can be seen that our
spatial frequency-based network uniformly detects the complete target object
and suppresses the irrelevant background noise in the complex scenes where the
camouflaged objects are visually blended into their surroundings.

In our network, we perform different implementations of the FFL module for
the boundary cue and the object cue. To confirm its rationality, we construct
three variants, including using FFL-B for dual guidance cues (i.e., All_B), using
FFL-O for dual guidance cues (i.e., All_O), and swapping the position of the
FFL-B and FFL-O modules (i.e., O+B). As shown in Table. 3, we can see that
the performance of the three variants decreases, indicating that our different
implementations for the boundary and position cues make full use of the different
frequency features.
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Img GT Ours w/o SFL Img GT Ours w/o SFL

Fig. 8: Visual comparisons of the network "w/o SFL" and our model.

Effectiveness of Dual-guidance Feature Calibration Our FOC module is
used to optimize the boundary and object with the assistance of the side-output
spatial frequency feature. To show the effect of the FOC more intuitively, we
exhibit the visualized features B1, O1, B4 and O4 in Fig. 7. By comparing O4

and O1, we can observe that the interior regions of the target object in features
O1 are highlighted more completely, and by comparing B4 and B1, it can be
seen that the boundary feature B1 has more consistent boundaries, confirming
that the dual guidance cues are progressively refined by our FOC module.

In addition, we also construct two networks by removing the boundary stream
(i.e., w/o BS) and the object stream (i.e., w/o OS), respectively, as shown
in Table. 3. Comparing “w/o BS” and “w/o OS” with our network, it can be
seen that the networks using merely one guidance cue perform worse than our
network, indicating that it is important for the COD task to capture the clear
boundaries and complete interiors.

We also provide two variants, including merely sending the feature Fs to
FOC and DFR (i.e., All_Fs) and using the feature Fd for FOC and DFR (i.e.,
All_Fd). As shown in Table. 3, the experimental results indicate that exploit-
ing the advantages of different frequency features contributes to performance
improvement.

5 Conclusion

In this paper, we rethink the COD task entirely from the perspective of spatial
frequency information to propose a frequency feature network, termed DCNet,
for accurate segmentation results. Instead of partially using the frequency in-
formation, we fully derive our network using the spatial frequency information.
Specifically, our network mainly consists of two parts: a frequency-aware fea-
ture learning stage and a dual-guidance feature calibration stage. We first in-
tegrate the cross-level frequency features and then group them to explore their
intra-group relationships, thus obtaining the boundary and position cues of the
camouflaged objects. Subsequently, unlike the previous works that directly gen-
erate the guidance cue at the early stage, we gradually refine the guidance cues,
which are used to calibrate and enrich the camouflaged object feature for high-
quality prediction. The experimental results show that our network exhibits a
competitive performance against the state-of-the-art COD methods.
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