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Abstract. 3D multi-object tracking and trajectory prediction are two
crucial modules in autonomous driving systems. Generally, the two tasks
are handled separately in traditional paradigms and a few methods have
started to explore modeling these two tasks in a joint manner recently.
However, these approaches suffer from the limitations of single-frame
training and inconsistent coordinate representations between tracking
and prediction tasks. In this paper, we propose a streaming and unified
framework for joint 3D Multi-Object Tracking and trajectory Prediction
(StreamMOTP) to address the above challenges. Firstly, we construct
the model in a streaming manner and exploit a memory bank to pre-
serve and leverage the long-term latent features for tracked objects more
effectively. Secondly, a relative spatio-temporal positional encoding strat-
egy is introduced to bridge the gap of coordinate representations between
the two tasks and maintain the pose-invariance for Trajectory prediction.
Thirdly, we further improve the quality and consistency of predicted tra-
jectories with a dual-stream predictor. Extensive experiments conducted
on the popular nuScenes dataset show the effectiveness and superiority
of StreamMOTP, which outperforms previous methods significantly on
both tasks. Furthermore, the proposed framework has great potential
and advantages in actual applications of autonomous driving.

Keywords: 3D MOT · Trajectory Prediction · Streaming Framework

1 Introduction

In autonomous driving systems, 3D Multi-Object Tracking (MOT) [2,12,19,22,
26,27,34] and trajectory prediction [6,8–10,14,17,18,36–38] are two crucial tasks
which play a vital role in ensuring the driving performance of ego-vehicle. Ob-
viously, high-precision tracking can provide a more solid foundation for predic-
tion, and in turn, accurate predictions can enhance the effectiveness of tracking.
As depicted in Fig.1 (a), the two tasks are executed one after another in cur-
rent mainstream pipelines of autonomous driving. Although this paradigm has
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Fig. 1: Different pipelines for the tasks of multi-object tracking and trajectory predic-
tion in autonomous driving. (a) Cascade paradigm, where the two tasks are performed
separately with non-differentiable transitions. (b) Joint single-frame paradigm, where
the two tasks are performed jointly in a parallelized framework per frame. (c) The pro-
posed StreamMOTP, where the memory, feature, and gradient are propagated across
consecutive frames to enhance the long-term modeling ability and temporal coherence.

achieved some success, the separated processing flow can not fully exploit the
potential complementarity between the tasks of tracking and prediction, since
it suffers from information loss, feature misalignment, and error accumulation
across modules [25]. Despite some methods [24, 28, 33] attempt to integrate the
two tasks as shown in Fig.1 (b), some limitations and problems have still not
been well explored: (1) the tasks of multi-object tracking and trajectory pre-
diction are both executed in a streaming manner in actual deployments, while
the training procedure of most previous methods is conducted in a snap-shot
pattern, where the length of historical window is fixed and the long-term in-
formation can not be fully exploited efficiently. (2) In general, the coordinates
representation of objects for tracking and prediction are different, where a uni-
fied coordinate system is needed in MOT for optimal association while most
prediction methods adopt the agent-centric coordinate representation for each
object to ensure pose-invariance. (3) Most methods focus on predicting the fu-
ture trajectories of objects visible in current frame, inadvertently overlooking
those lost because of either occlusions or miss from upstream perception, which
may result in adversely affecting downstream tasks.

In this paper, we introduce StreamMOTP, a streaming framework for joint
multi-object tracking and trajectory prediction as depicted in Fig.1 (c), where
the tasks of MOT and trajectory prediction are jointly performed on succes-
sive frames. Specifically, we associate the newly perceived objects with historical
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StreamMOTP 3

tracklets and predict their future trajectories simultaneously. Different from pre-
vious works, the extracted latent features of objects are sequentially utilized in
StreamMOTP as part of the representation for the subsequent tracked objects
during the forward propagation phase. As for the back-propagation, the gra-
dients are not confined to a single frame but are propagated through multiple
frames, which greatly narrows the gap between training and online inference,
allowing for a more comprehensive learning process by accounting for temporal
dependencies across the entire sequence.

Concretely, we extend the pattern of training from single-frame to multi-
frame and introduce a memory bank to maintain and update long-term latent
features for tracked objects, thereby improving the model’s capability for long-
term sequence modeling. Aiming to address the coordinate system discrepancy
between the tasks of tracking and prediction, we propose a relative Spatio-
Temporal Positional Encoding (STPE) strategy, which is applied to realize the
compromise and unification of the different agent- and ego-centric representa-
tion in the two tasks. At the same time, based on the observation that there is
an obvious overlap between the predicted trajectories of objects in consecutive
adjacent frames as depicted in Fig.1 (c, frame t− 1), we apply dual-stream pre-
dictor to effortlessly and elegantly generate future trajectories for both tracked
and new-come objects simultaneously, which benefits to both tasks of MOT and
trajectory prediction.

It should be pointed out that, with the design of the streaming and unified
framework, StreamMOTP obtains the potential and advantages to handle more
complex driving scenarios in actual applications. On the one hand, the predicted
trajectories for tracked objects could help deal with the problem of occlusions at
the current moment by marking the possible positions of obscured targets in the
current frame, as shown in Fig.1 (c, frame t). On the other hand, for the objects
newly perceived in the current frame, StreamMOTP maintains the capability to
predict their future trajectories by leveraging social interactions and contextual
features stored in the memory bank while traditional prediction methods may
fail due to the lack of historical information about them, as shown in Fig.1 (c,
frame t+ 1).

The core contributions are summarized as follows:

– We propose StreamMOTP, a joint MOT and trajectory Prediction model
based on a streaming framework to bridge the gap between training and
real-world deployment. A memory bank for tracked objects is introduced in
this framework for utilizing long-term features more effectively.

– We introduce a spatio-temporal positional encoding strategy to construct
the relative relationship between objects in different frames, which reaches
the compromise and unification of inconsistent coordinate representation in
tracking and prediction.

– We design a dual-stream predictor to simultaneously predict object trajec-
tories in the current and previous frames. The predicted trajectory from
the previous frame can further assist in predicting newly perceived objects’
trajectories, improving temporal consistency in trajectory prediction.
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– We get better performance for 3D MOT and trajectory prediction on nuScenes,
improving AMOTA / MOTA by 3.84% / 8.44% and reducing minADE /
minFDE by 0.220 / 0.141.

2 Related Work

2.1 3D Multi-Object Tracking

Existing multi-object tracking paradigms, such as tracking-by-detection (Deep-
SORT [29], AB3DMOT [26]), Joint Detection and Embedding learning (Fair-
MOT [35], JDE [23]), and joint detection and tracking (Tracktor++ [4], YONDT-
MOT [22]), typically rely on Kalman filters(KFs) to predict the positions of
tracked objects for better-association. Yet, KFs require fine-tuning of parame-
ters and struggle with occlusions (PC3TMOT [30], DeepFusionMOT [21]). In
contrast, dedicated prediction tasks can provide superior short-term prediction
results for tracking, especially in handling complex scenarios such as occlusions.
Therefore, combining the two tasks of multi-object-tracking and trajectory pre-
diction can effectively improve the overall performance of multi-object tracking.
This combination not only reduces the dependence on traditional methods like
KFs but also enhances the robustness and adaptability of the tracking methods.

2.2 Trajectory Prediction

There has been significant progress in trajectory prediction recently. With the
use of pooling [10], graph convolution [14], attention mechanism [17] [38], vector-
based methods [8] can efficiently aggregate sparse information in traffic scenes.
As the future is uncertain, some works (Multipath++ [18], HiVT [39], Wayformer
[15]) predict multimodal future distribution by decoding a set of trajectories
from scene context while others (DenseTNT [9], MTR [17], PiH [11]) generate
multimodal prediction by leveraging anchors. Though these methods greatly
improve trajectory prediction, most of them use GT past trajectories as input
for training and testing, neglecting tracking error accumulation with imperfect
inputs. Therefore, we handle the tasks of tracking and prediction jointly with no
need for GT trajectories as predictor’s inputs to provide more robust predictions
based on practical detectors in the real world.

2.3 Joint Tracking and Prediction

Recent years have seen increasing interest in joint tracking and prediction. For
example, [32] refine the inputs for the predictor through a re-tracking module,
MTP [25] propose multi-hypothesis data association to create multiple track sets
for predictor simultaneously. Besides polishing the input tracklets for the predic-
tion module, some studies combine the tasks of tracking and prediction with joint
optimization. PTP [28] and PnPNet [13] uses the shared feature representation
to address both tasks. AffinPred [24], TTFD [33] use affinity matrices instead
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Fig. 2: Overview of StreamMOTP. Tracklets and proposals denote the previous frame
trajectories and the current frame detections respectively. The model first performs
Attentional Spatio-Temporal Interaction, which is based on attention with STPE, to
get context features. The tasks of tracking and prediction are then performed based
on those context features. Current context features and tracking results are updated
in memories at each time step.

of tracklets as inputs of the prediction module to enhance forecasting, but they
sacrifice the capability to provide tracking results explicitly. However, all of these
methods are performed in a snap-shot form and neglect the misalignment issue
between tracking and prediction. Compared to those approaches, our method
uses a streaming framework and a unified spatio-temporal positional encoding
strategy to address the above problems.

3 Approach

3.1 Streaming Framework

Simply, let D = {d1, . . . , dN} represent the set of objects perceived in the cur-
rent frame from a 3D object detector, where N denotes the number of objects.
Concretely, each object at frame t is represented as dti = [dpos,t

i , dsize,t
i , dhead,t

i ,

dclass,t
i , dscore,t

i ] where each element denotes the position, size, heading angle, class
and confidence score from the module of detection, respectively. In this paper,
the goal of joint 3D multi-object tracking and trajectory prediction includes
two parts, to obtain the association of multiple obstacles in adjacent frames by
assigning a unique track ID to each object, and meanwhile to predict the fu-
ture trajectories F = {f1, . . . , fN} for all agents in the current frame, with each
element of a trajectory specified by a two-dimensional coordinate (x, y).

Based on the observation that the actual physical world is continuous and
long-term history is essential for a safer autonomous driving system, we model
the task of joint 3D multi-object tracking and trajectory prediction in a stream-
ing manner (shown as Fig. 2). First of all, we extend the pattern of training from
single-frame to multi-frame so as to narrow the gap between training and actual
deployment. To be more specific, we introduce a Memory Bank for tracked ob-
jects to maintain long-term latent features for utilizing the long-term information
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more effectively, where the latent features are maintained through consecutive
frames and could further benefit the performance of both tasks, including not
only multi-object tracking but also trajectory prediction.

Specifically, the memory bank consists of F × N latent features where F
is the length of the memory bank and N is the number of objects stored per
frame. At each time, the latent feature of those tracked objects that have been
associated with the new perceived objects in the current frame would be saved
into the memory bank. These features are then utilized in subsequent frames to
enhance features for tracked objects, detailed in Sec. 3.2. The entrance and exit
of the memory bank follow the first-in, first-out rule.

3.2 Spatio-Temporal Encoder

Feature Extraction. To capture the semantic and motion information of the
obstacles in the driving scenario efficiently and adequately, we conduct feature
extraction for the tracked and new-come objects separately. For the perceived
objects from adjacent frames, we use d ∈ RNp×C and τ ∈ RNt×C to represent
the semantic features, where Np and Nt denote the number of objects at current
frame t (named as proposals) and previous frame t − 1 (named as tracklets),
respectively. At the same time, the historical trajectories of last Th frames for
Nt tracked objects are represented with H ∈ RNt×Th×C . Simply and effectively,
we deploy the Multi-Layer Perceptron (MLP) to encode the semantic information
into high-dimension features and fuse the historical data H to tracklets τ through
a Multi-Head Cross Attention (MHCA) as:

Fd = MLP(d), F̃t = MLP(τ) +MHCA(MLP(H)) (1)

where F̃t ∈ RNt×D, Fp ∈ RNp×D, and C, D correspond to the dimension of the
semantic and latent high-dimension features respectively.

Additionally, to equip our model with long-term temporal modeling capa-
bility, we exploit the latent features saved in the memory bank. Inspired by
dynamic weight learning [1] [20] , an ego transformation is applied to ensure the
temporal alignment and effective feature usage across frames:

α, β = MLP(Et − Es)

M = αLN(M̃) + β
(2)

where Eq.2 is an affine transformation that converts latent feature from past
frame M̃ to current time M . The parameters α, β are derived from the ego
difference between two frames. Es, Et denotes the frames where the latent feature
is saved and utilized. LN stands for layer normalization. Then we apply temporal
aggregation of long-term latent memory maintained in the memory bank for each
tracked object with MHCA and then fuse the latent memory feature with the
extracted feature of tracklets as follows:

Ft = F̃t +MHCA(M) (3)
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Spatio-Temporal Positional Encoding. For the task of tracking, aligning
all features within a unified coordinate system is essential for feature association.
In contrast, for prediction tasks, previous research [18] [39] have demonstrated
the advantages of agent-centric representations, which normalize various tra-
jectories to local coordinate systems centered on the selected agent. To bridge
the gap between coordinate representation between tracking and prediction, we
propose a relative Spatio-Temporal Positional Encoding (STPE) strategy. This
approach differentiates between coordinate-independent and dependent features,
using the former as query tokens for attention mechanism during feature inter-
action, while the latter is incorporated into attention through relative positional
encoding. To be specific, we encode the relative spatio-temporal position be-
tween object i in previous frame t (tracklet frame) and object j in current frame
p (proposal frame) as follows:

δtpij = MLP([spj − sti, θ
p
j − θti ]) (4)

where s denotes the coordinate (x, y) of the object, and θ denotes the heading
rate, both of which are coordinate-dependent features. We calculate the relative
difference between two objects at different frames and embed it into δtpij .

Attentional Spatio-Temporal Interaction. Based on relative embedding
from the spatio-temporal positional encoding strategy, we fuse the features of
proposals and tracklets with cross-attention and self-attention iteratively. Take
the proposal branch as an example, we use query-centric attention with a spatio-
temporal positional encoding strategy, incorporating the relative positional em-
bedding into the key/value of the attention mechanism.

F̃ p
i = MHCA

(
Q = F p

i ,K/V = {F t
j + δtpij }j∈Ni

)
F p′
i = MHSA

(
Q = F̃ p

i ,K/V = {F̃ p
j + δpij}j∈Ni

) (5)

As shown in Eq. 5, F p
i denotes the coordinate independent embedding of

object i in current frame p, δtpij refers to the relative embedding calculated in
Eq. 4. We first employ cross-attention to fuse the tracked objects’ information
from previous frames into new-come objects from current frames. Subsequently,
self-attention is utilized within the current frame to foster awareness among de-
tected objects in this frame. This process enables the features of newly perceived
objects to incrementally assimilate comprehensive information, enriching their
contextual awareness. We denote the result of this branch as proposals context
feature F p′

i . Similarly, The tracklet branch undergoes the same propagation and
gets tracklets context feature F t′

i in parallel as Eq. 6:

F̃ t
i = MHCA

(
Q = F t

i ,K/V = {F p
j + δptij }j∈Ni

)
F t′
i = MHSA

(
Q = F̃ t

i ,K/V = {F̃ t
j + δtij}j∈Ni

) (6)
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3.3 MOT Head

Association with Optimal Transport. The core purpose of the MOT head
for StreamMOTP is to associate the M-tracked objects in the previous frame and
the N-perceived objects in the current frame. To find the association relationship,
we learn an affinity matrix A(tp) ∈ RNt×Np based on the tracklets context feature
and proposals context feature after feature interaction. We use the dot product
to calculate the similarity score, where each entry A

(tp)
ij represents the similarity

between tracked object i and detected object j.

A
(tp)
ij =

⟨F t′

i , F p′

j ⟩
√
D

,∀(i, j) ∈ Nt ×Np (7)

where D is the dimension of the context feature.
Given the affinity matrix, we get the optimal affinity matrix A(opt) ∈

R(Nt+1)×(Np+1) through log sinkhorn algorithm as SuperGlue [16], which
performs differentiable optimal transport in log-space for stability. Under our
streaming framework, the use of the log sinkhorn algorithm allows the model to
modify the model parameters of previous frames while optimizing subsequent
frames for continuous tracking and prediction. The last row and the last column
of A(opt) respectively represent newly appeared objects and tracklets without
corresponding matched objects.

Tracking Loss. We supervise the output affinity matrix A(opt) with the
ground truth (GT) relationship represented by the matrix A(g) ∈ R(Nt+1)×(Np+1).
The accuracy of A(opt) is judged by how closely its high-value elements align with
the ones in A(g). Therefore, we use the following loss:

Ltracking = − 1

Nm
· (A(opt)e−U + U) ·A(g) (8)

where the uncertainty matrix U ∈ R(Nt+1)×(Np+1) is derived from tracklets and
proposals feature using MLP and max operation, ensuring the robustness of
training [?]. e−U denotes the exponentiation of each element in −U . Nm is the
number of matching pairs in A(g). Finally, we get association relationship A from
A(opt).

3.4 Dual-Stream Predictor

The predictor predicts all agents’ multi-modal future trajectories. The detail of
the predictor is shown in Fig. 3.

Single Frame Prediction. To jointly predict all future trajectories for per-
ceived objects in the current frame, we utilize a transformer-based decoder that
incorporates the previous encoded context feature by learnable intention queries.
To combine the advantages of the prior acceleration of convergence provided by
the anchor-based model [17] and the high flexibility of the anchor-free model [18],
we combine learnable tokens and anchors to form the query:
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Ql
p = I + ϕ(AT ) + ϕ(x̂l−1

T ) (9)

where Ql
p ∈ RNp×K×D is the query input at the current frame and layer l

decoder, which is combined from a learnable embedding I, the endpoints of
the anchors AT , and the predicted endpoints of previous layer x̂l−1

T , which are
fused through ϕ (a sinusoidal position encoding followed by an MLP). Next, to
aggregate features from context embedding, we perform attention mechanism on
the temporal and social dimensions to get multi-modal prediction output.

Dual-Stream Predictor. Predictions for previously tracked and currently
perceived objects largely overlap on matched objects. As shown in Fig.4, the
Tf+1 predictions from frame t-1 should be consistent with the Tf predictions
from current frame t. Besides, it’s much more feasible to generate consecutive
output trajectories with the streaming nature of the proposed framework of
StreamMOTP. Based on the observations, we propose a dual-stream predictor.
The predictor comprises two branches: a primary branch focuses on making
predictions for the detected objects in current frame and a supportive auxil-
iary branch for the previous tracked objects. The primary branch follows Single
Frame Prediction to predict from the context features of proposals, while the aux-
iliary branch leverages the context features of tracklets to generate K adaptive
predictions Ŷt ∈ RNt×K×(Tf+1)×2 specific to the tracked objects. Since the pre-
diction result Ŷt from the tracklet frame and Ŷp from the proposal frame have Tf

overlapping, using Ŷt to guide the prediction of Ŷp enhances both accuracy and
temporal coherence of the predicted trajectory. Specifically, we encode and map
the overlapping Tf frame of Ŷt to yield auxiliary features FYt

∈ RNp×K×Tf×D:

FYt
= MLP(PE(AT Ŷt)) (10)
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Fig. 4: The idea of temporal consistency between consecutive frames, where the con-
sistency of the overlap is beneficial for aligning trajectories for continuity and stability.

where PE(·) denotes sinusoidal position encoding, A ∈ RNt×Np denotes the
association matrix given by MOT head.

In addition to Single Frame Prediction, auxiliary features and anchor queries
from the current frame are aggregated together in our dual-stream predictor.
We adopt cross attention, taking current anchor embedding as query, and the
prediction features from the auxiliary tracklet branch as key and value:

Q = MHCA(Q = Q,K/V = FYt
) (11)

We place Eq. 11 after the interaction between queries and proposals context
features, while before the self-attention of the queries, making the queries interact
sequentially with historical features, future features, and the social context.

Multi-modal Prediction Loss with Gaussian Mixture Model. As the
future behaviors of the agents are highly multi-modal, we follow [18] to represent
the distribution of predicted trajectories with Gaussian Mixture Model (GMM):

f
({

Yt
i

}Tf

t=1

)
=

K∑
k=1

pi,k

Tf∏
t=1

GMM
(
Yt

i | µt
i,k, σ

t
i,k

)
(12)

where {pi,k}Kk=1 is the probability distribution between K modes, and the k−th
mixture component’s Gaussian density for agent i at time step t is parameterized
by µt

i,k and σt
i,k. Given Eq. 12 for all predicted steps, we adopt negative log-

likelihood loss and supervised predictions for new-come objects in the current
frame and for the tracked objects simultaneously. Loss can be formulated as:

Lprediction = − log f(Ŷp)− log f(Ŷt) (13)

Then, the final loss of our model is denoted as:

L = λLtracking + Lprediction (14)

where λ ∈ R>0 is the weight for tracking loss to balance the joint optimization
of the two tasks.
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StreamMOTP 11

Table 1: Comparison with existing approaches (on nuScenes). All results are based
on detections from Megvii and use only Lidar as input.

(a) 3D MOT Result

Methods AMOTA ↑ MOTA ↑

mmMOT [34] 23.93 19.82
GNN3DMOT [27] 29.84 23.53
AB3DMOT [26] 39.90 31.40

PTP [28] 42.36 32.06

StreamMOTP 46.30 40.50

(b) One Step MOTP Result

Methods minADE ↓ minFDE ↓

Social-GAN [10] 1.794 2.850
TraPHic [6] 1.827 2.760

Graph-LSTM [7] 1.646 2.445
PTP [28] 1.017 1.527

StreamMOTP 0.810 1.481

(c) Multi Step MOTP Result

Methods minADE ↓ minFDE ↓

PTP [28] 2.320 3.819
MTP(S=10) [28] 1.585 2.512

MTP(S=200) 1.325 1.979
AffinPred [24] 0.977 1.628

StreamMOTP 0.757 1.487

4 Experiments

4.1 Experimental Setup and Implementation Details

Dataset and Metrics. The proposed method is evaluated using the widely rec-
ognized nuScenes dataset. Following the standard practices of nuSences dataset
[5], we predict trajectories for objects perceived in the current frame and use
the distance threshold of 2m to match them with GT future trajectories. In
the task of trajectory prediction, the models predict future trajectories for 3s
and 6s, with a time interval of 0.5s, based on 2s historical data, to align with
other works. As for the task of MOT, We employ the commonly used AMOTA,
MOTA, and AMOTP for evaluation. Standard minADE and minFDE metrics
are used to evaluate the prediction performance. Moreover, we design the metric
of ‘tc’ to evaluate the temporal consistency, which is calculated as the ADE in
Tf −1 overlapping frames between predictions from T to T +Tf and predictions
from T − 1 to T + Tf − 1.

Inputs. In StreamMOTP, input data is formatted in a sequential format.
During training, we split the streaming video into training slices and use a sliding
window to sequentially get the inputs at each timestamp. To address detector
noise, we incorporate the detected results and employ the ground truth (GT)
matching relationships up to the (t−1)-th frame to create history tracks. Newly
perceived objects without association in the current frame serve as proposals. In
online inference, the model takes raw detections as input to perform tracking
and prediction jointly.

Training. To avoid poor latent memories which may impede the training
procedure in early stages, scheduled sampling [3] is applied to the memory
bank. We train our model for 180 epochs. Specifically, features in the memory
bank are selected through sampling, and the sampling rate starts to increase at
epoch 30, following a sigmoid curve.

4.2 Comparison with Related Work

Table 1 compares StreamMOTP with other methods in tracking and predic-
tion, using the same Megvii [40] detector for fairness. For MOT, we evaluate
all categories, while for trajectory prediction, we adopt two settings from prior
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12 Zhuang, Wang, et al.

Table 2: Ablation study on the components of StreamMOTP.

Memory Bank STPE Stream Predictor AMOTA AMOTP MOTA minADE minFDE MR tc

0.523 0.781 0.426 0.572 0.942 0.113 -
✓ ✓ 0.556 0.770 0.466 0.384 0.594 0.075 -

✓ ✓ 0.528 0.782 0.431 0.524 0.838 0.103 -
✓ ✓ 0.544 0.768 0.456 0.488 0.776 0.098 2.081
✓ ✓ ✓ 0.556 0.779 0.472 0.377 0.586 0.072 1.942

studies: (1) Setting1: One Step MOTP. In Setting1, we follow a single-step
tracking and 3s prediction, similar to PTP [28]. The model uses GT past tra-
jectories t ∈ {Tc − Th, · · · , Tc − 1} and GT detections in the current frame Tc,
conducts MOT at the current frame, and forecasts future trajectories in frames
t ∈ {Tc + 1, · · · , Tc + Tf}. Results for all classes from the nuScenes Predic-
tion Challenge are reported. This setting is more suitable for Vehicle-to-Vehicle
(V2V) scenario. (2) Setting2: Multi Step MOTP. In setting2, we perform
standard tracking and 6s prediction for detected objects in Tc, based on their
tracked histories, and evaluate prediction results on all vehicle classes. This set-
ting aligns more closely with the current stage of autonomous driving and is
more widely adopted in industry deployments.

Our model surpasses previous related work in both tasks of multi-object
tracking and trajectory prediction. In MOT performance, shown in Table 1a,
our model not only achieves gains over PTP baseline [28] with improvements of
3.94% in AMOTA and 8.44% in MOTA, but also surpasses several competing
trackers. Table 1b shows the prediction comparison for one-step MOTP. Our
model reaches the lowest minADE of 0.810 and minFDE of 1.481, which out-
performs PTP [28] by 0.207 on minADE and 0.046. Moreover, Table 1c offers
a comparison of multi-step MOTP’s predictions, where our model attains state-
of-the-art performance with a minADE of 0.757 and a minFDE of 1.487, out-
performing AffinPred [24] by 0.220 and 0.141, respectively. The improvements
in Table 1c are more obvious than in Table 1b for the reason that trajectory
prediction in setting1 is more saturated than in setting2, indicating the larger
growth potential for prediction based on tracked trajectory.

4.3 Ablation Studies

We evaluated the impact of each module within our StreamMOTP framework, as
summarized in Table 2, where the bottom row represents the full implementation
of our method. All models are experimented on Setting2, except that the detector
is switched to CenterPoint [31] and 3s prediction metrics are computed on True
Positive detections at a recall rate of 0.6. The Megvii detector, being an older
model, exhibits subpar detection capabilities. Therefore, we switch to a detector
with relatively moderate performance to better measure each module’s efficacy.

Effects of each module. Firstly, upon removing the memory bank, we ob-
served a slight decline in performance for both tracking and prediction tasks. We
will further explore it later. Secondly, we remove the spatio-temporal positional
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Table 3: The effect of slice length (abbreviated as "Slice") and the use of a memory
bank (abbreviated as "Mem") on tracking and prediction.

Slice Mem AMOTA MOTA minADE minFDE MR

3 0.570 0.490 0.633 0.953 0.137
5 0.560 0.478 0.402 0.621 0.075
10 0.557 0.466 0.384 0.594 0.075

3 ✓ 0.570 0.486 0.537 0.813 0.119
5 ✓ 0.564 0.478 0.392 0.602 0.072
10 ✓ 0.556 0.472 0.377 0.586 0.072

Table 4: Ablation study of Memory Bank when training slice=3.

Memory Length F AMOTA MOTA minADE minFDE MR

0 0.570 0.490 0.633 0.953 0.137
1 0.569 0.487 0.603 0.921 0.135
2 0.570 0.486 0.537 0.813 0.120

encoding in the spatio-temporal interaction module and encode the absolute co-
ordinate feature in the same way as the attribute feature. There is a significant
drop in performance for both tasks of tracking and prediction, which shows that
spatio-temporal positional encoding maintains the pose-invariance for trajectory
predictions and effectively addresses the issue of inconsistent coordinate repre-
sentations. Thirdly, we replace the dual streaming predictor with a single frame
predictor. The second-last row shows that the dual-stream predictor plays a vital
role in advancing prediction performance. The modest decrease in tracking fur-
ther corroborates that augmenting prediction capabilities also benefits tracking
results. Notably, the tc metric also drops when the dual-stream predictor is elim-
inated, which indicates that the dual-stream predictor enhances the trajectory
predictions’ quality and consistency, since it leverages predictions from previous
frames as a valuable prior for predicting current perceived objects’ trajectories,
yielding more viable and steady outcomes.

Effects of streaming framework. The effectiveness of the streaming frame-
work and the memory bank is explored by adjusting the lengths of training seg-
ments. In Table 3, tracking performance remains stable, but prediction accuracy
improves significantly with longer segments due to reliance on extensive sequen-
tial information. This finding stems from the gap that our models are trained in
split slices (multi-frame sequences of length k) but evaluated in streaming video
(the average length is 40 in nuScenes, k ≪ 40). This gap constrains the effec-
tiveness of approaches, especially for previous snap-shot methods. Our streaming
framework addresses this gap by utilizing temporal information across frames,
boosting prediction. Moreover, the integration of the memory bank, particularly
with shorter slices, markedly boosts prediction accuracy by the retention and
utilization of long-term latent features in the memory bank, therefore improving
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Fig. 5: Qualitative results of StreamMOTP on the nuScenes validation set during
consecutive frames. The tracked history and detection are shown in black, models’
best score prediction and ground-truth trajectories are drawn in blue and red. The
predictions of other modes are drawn in gray. The top row shows the results given by
the dual-stream predictor while the bottom row shows the results with a base predictor.

the model’s capability for long-term sequence modeling. This is crucial under
resource constraints that limit slice length and temporal receptive field. Further-
more, Table 4 shows that as the length of the memory bank expands, the model’s
performance grows, which further demonstrates the impact of the memory bank.

4.4 Qualitative Results

We provide some qualitative results in Fig. 5 to show our predictions. There is
a brand new object without historical trajectory perceived at frame t. Stream-
MOTP successfully predicts its future trajectory with social interactions. More-
over, by comparing the two rows, we can see that all mode predictions in the
top row are smoother and more precise, and the highest score of the predictions
fluctuates less. More visualization can be found in our supplementary video.

5 Conclusion

In this paper, we introduce StreamMOTP, a streaming and unified framework
for joint multi-object tracking and trajectory prediction. With the design of the
memory bank, spatio-temporal positional encoding strategy, and dual-stream
predictor, streamMOTP bridges the gap between training and actual deploy-
ment, as well as maintains better capability and great potential for both tasks of
MOT and prediction. The experiments on nuSences demonstrate the effective-
ness and superiority of the proposed framework. We hope this work could further
offer insights into the multi-task end-to-end autonomous driving systems.
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