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Abstract. Atmospheric turbulence in long-range imaging significantly
degrades the quality and fidelity of captured scenes due to random varia-
tions in both spatial and temporal dimensions. These distortions present
a formidable challenge across various applications, from surveillance to
astronomy, necessitating robust mitigation strategies. While model-based
approaches achieve good results, they are very slow. Deep learning ap-
proaches show promise in image and video restoration but have struggled
to address these spatiotemporal variant distortions effectively. This paper
proposes a new framework that combines geometric restoration with an
enhancement module. Random perturbations and geometric distortion
are removed using a pyramid architecture with deformable 3D convo-
lutions, resulting in aligned frames. These frames are then used to re-
construct a sharp, clear image via a multi-scale architecture of 3D Swin
Transformers. The proposed framework demonstrates superior perfor-
mance over the state of the art for both synthetic and real atmospheric
turbulence effects, with reasonable speed and model size.

Keywords: Atmospheric turbulence · Video restoration · Transformer.

1 Introduction

Light propagation through the various layers of the atmosphere, which differ in
temperature, pressure, humidity, and wind speed, introduces diffraction-related
blurring and random refractions. These variations cause fluctuation in intensity
and random phase distortions in the wavefront of light waves, significantly de-
grading the performance of imaging systems. Most image and video enhancement
and restoration techniques have been proposed, addressing specific problems like
denoising and deblurring. However, these methods may not be directly used to
solve the problem of atmospheric turbulence, as it involves multiple types of
distortion, making it challenging to model its degradation accurately. Success-
ful approaches will be invaluable in many applications, including air-to-ground
imaging, long-range terrestrial video surveillance, creative industries such as nat-
ural history filmmaking, and other computer vision applications, including object
recognition and tracking.

This ACCV 2024 paper, provided here by the Computer Vision Foundation, is the author-created version.
The content of this paper is identical to the content of the officially published ACCV 2024

LNCS version of the paper as available on SpringerLink: https://link.springer.com/conference/accv
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Traditional methods for turbulence video restoration typically involve: (i)
removing pixel offset caused by tilt, often using the optical flow method; (ii)
employing lucky image fusion to select and combine the clearest pixel blocks
within a specific interval; and/or (iii) applying blind deconvolution algorithms
to remove residual fuzziness [7,8,47,52,53]. However, these methods have notable
limitations. They rely heavily on a large quantity of measured data for fusion,
use general and non-optimized point spread function (PSF) priors in blind de-
convolution, and struggle to effectively address the complex statistical behavior
of atmospheric turbulence [8, 12, 19]. Additionally, they are prone to artifacts
from inaccurate flow estimates and are very slow.

In recent years, deep learning approaches have emerged to tackle the chal-
lenge of atmospheric turbulence mitigation. These methods include deep-stacked
autoencoder neural network models and convolutional UNet-like architectures [2,
8,13]. Although these models have shown promising results in simulations, they
often rely on simplified assumptions about atmospheric turbulence and lack suf-
ficient real-world datasets, limiting their generalization to diverse scene recon-
structions. The effectiveness of these models on actual measured data remains
an area of active research.

In this work, we propose a novel framework called DeTurb that integrates two
modules: (i) a non-rigid registration module to reduce wavy effects and temporal
distortion caused by atmospheric turbulence, and (ii) a feature fusion module to
select and fuse useful features for enhanced visualization. Several existing video
restoration methods include alignment and feature fusion modules [21,28,29,41],
which we found to be more effective when separated rather than combined into
a single process. The two-step approach has also proven effective in dealing with
atmospheric turbulence issues. Model-based methods, such as space-invariant
deconvolution (SID) [52] and complex wavelet-based fusion (CLEAR) [1], employ
non-rigid image registration to reduce random perturbations. SID then applies
deblurring to the near-diffraction-limited image, while CLEAR produces a sharp
image through wavelet-based image fusion. With the advent of deep learning,
similar strategies have continued (sometimes referred to as tilt-blur models),
such as the CNN-based method AT-Net [43] and the transformer-based method
TMT [49].

In our DeTurb framework, both modules employ UNet-like architectures.
The first module learns different levels of turbulence distortion, while the second
module extracts features from different scales, reconstructing local details related
to semantic meanings. A multi-scale approach (like UNet) is essential because
the levels of turbulence distortion are unpredictable (atmospheric turbulence is
quasi-periodic [25]). Additionally, distortion levels can vary spatially due to the
varying distances between objects and the camera—the further an object is to
the camera, the more distortion it shows.

To address displacement among frames caused by turbulence and moving
objects, deformable convolutions were applied in [17]. However, our architecture
differs by processing data in a 3D manner, handling features in both spatial and
temporal dimensions simultaneously. Fluctuations in velocity due to atmospheric
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turbulence cause local displacements between frames, rather than uniform global
shifts [18]. As a result, 3D operations are more effective than 2D ones in extract-
ing and enhancing features. Specifically, non-rigid registration is achieved using
deformable 3D convolutions [45]. After local spatial alignment among frames,
the aligned features from each layer of the pyramid are enhanced using 3D Swin
Transformers [42].

In summary, our main contributions can be summarised as follows:

– We propose a novel framework, DeTurb, for restoring long-range videos af-
fected by spatiotemporal distortions due to atmospheric turbulence. With
comparable inference speed, DeTurb significantly outperforms the state of
the art in terms of video quality.

– DeTurb mitigates geometric distortion using a non-rigid registration module,
and then enhances edges and texture details with a feature fusion module.

– The non-rigid registration module estimates the flow of random perturba-
tions and moving objects via a UNet-like architecture, in which each scale
performs deformable 3D convolutions.

– The feature fusion module combines features of registered frames with 3D
Swin transformers arranged in a UNet-like architecture. This aims to enhance
both local and global details for better visualization.

2 Existing methods

Atmospheric turbulence, usually resulting from temporal variations occurring
near the ground, is typically anisoplanatic for large field-of-view objects, ex-
hibiting spatial variations that complicate the correction process. Given these
complexities, learning-based techniques, specifically those involving deep learn-
ing, have become increasingly effective in mitigating these effects. Unlike tradi-
tional methods (e.g., [1,3,23,52]), these techniques rely on the processing power
of neural networks to predict and correct distortions, leading to more adaptable
and robust solutions.

Convolutional Neural Networks (CNNs) have been at the forefront of this
effort, as they are well-suited for image processing tasks due to their ability
to extract hierarchical features from images. CNNs can effectively learn to rec-
ognize and mitigate the effects of turbulence, thereby significantly enhancing
image clarity [13, 26, 44]. Another innovative approach is Generative Adversar-
ial Networks (GANs), which employ a dual-network architecture comprising a
generator and a discriminator that work in tandem to produce highly refined
outputs from severely degraded inputs. GANs are capable of generating clear,
high-resolution images from those distorted by atmospheric conditions. For ex-
ample, ATVR-GAN [11] integrates a Recurrent Neural Network (RNN) into the
GAN’s generator, while in [24], phase disturbance reduction is performed in the
Fourier domain, which is then used as a condition for the GAN. LTT-GAN [33]
applies style transfer via GAN to restore faces degraded by atmospheric turbu-
lence.
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Fig. 1. Diagram of the proposed DeTurb. Top-row: end-to-end framework comprising
the non-rigid registration and the feature fusion modules. Bottom-row: block diagrams
of 3D Swin transformer encoder and decoder blocks.

More recently, transformer-based methods have shown promising results in
handling atmospheric turbulence by employing different attention mechanisms to
process image patches. This enables precise correction of atmospheric distortions
across various scales within an image. These methods have discovered long-term
dependencies in data and demonstrated great potential in this field [32,46,49,50].
TurbNet [32] extracts features through a transformer UNet-like architecture and
utilizes physics-inspired downstream methods to reconstruct clean images. The
Swin transformer is employed for estimating turbulent flow in [46]. TMT [49] uti-
lizes vision transformers to remove blur, while ASF-Transformer [50] integrates
spatial-aware and frequency-aware transformer blocks into a UNet framework.

Diffusion models (DMs) are also of interest in these applications. Two re-
cent methods, [35] and [38], focus on restoring faces degraded by atmospheric
turbulence using the Denoising Diffusion Probabilistic Model (DDPM), initially
proposed by [16]. In [20], a physics-based simulator is directly integrated into
the training process of a restoration model. Furthermore, [40] proposes a condi-
tional diffusion model under a variational inference framework for more generic
images. DMs serve as generative priors for blind restoration in [9], which exploits
a degradation model involving tilt and blur, akin to the concept in TMT [49]
that utilizes two concatenated modules for tilt removal and deblurring.

3 Proposed method

The proposed framework is shown in Fig. 1, where the non-rigid registration
module (described in Sec. 3.1) is concatenated with the feature fusion module
(described in Sec. 3.2).
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3.1 Non-rigid registration module

As mentioned earlier, several methods address multiple frame inputs of the
video using frame or feature alignment processes. Among these, we were in-
spired by [49], where a UNet architecture with depth-wise 3D convolutions is
used to estimate flow across multiple frames. We improve this process with de-
formable 3D convolutions. A key contribution is that, in atmospheric turbu-
lent environments, objects exhibit visual distortions within small ranges of pixel
displacement, appearing randomly in all directions. The use of deformable 3D
convolutions provides flexibility in capturing the shapes of the distorted objects
across different scales of the UNet in space and time, enabling the extraction of
appropriate features from the distorted scenes. After obtaining multi-scale flows
each frame in the input group is warped to the current frame from coarse to fine
displacements, as shown in Fig. 1.

Deformable 3D convolutions. The transition from the deformable 2D convolu-
tions [10] to 3D ones involves extending the adaptability of convolution opera-
tions to the third dimension. Deformable 3D convolutions are defined as Eq. 1,

y(p0) =
∑
pn∈G

w(pn) · x(p0 + pn +∆pn), (1)

where p0 denotes a location in the output feature map y, pn represents the n-th
location in the convolution sampling grid G ∈ {(−1,−1,−1), (−1,−1, 0), ..., (1, 1,
0), (1, 1, 1)} for a grid size of 3×3×3, w is the convolution weight, and x is the
input feature map. ∆pn is the learnable offset for the n-th location, introducing
adaptability to the convolution operation [45]. Consequently, the convolutional
kernel’s receptive field can adjust in response to alterations in the input feature
map’s shape, thereby accommodating changes in the dimensions and scales of
the identified patterns.

Architecture settings. The basic architecture is a 3D-UNet with a depth of 4. The
number of depths of the non-rigid registration relies on the local displacement
among frames due to atmospheric turbulence. The deformable 3D convolutions
(Def3DConv) are used in depth 2nd-4th as listed in Table 1 (left). Each convolu-
tion is integrated with ReLU activation functions. Deformable convolutions still
rely on a predefined kernel size, but it adds the ability to dynamically adjust
the sampling locations within that predefined kernel grid during the convolution
process. This adjustment allows them to adapt better to local variations in the
input data. Following [49] to further enhance the perceptual field and improve
the detection of features across varying scales, the kernel sizes are strategically
set in the encoder. The first level uses a larger kernel size of 7, maintained for
the second level to capture broader features and anomalies caused by turbu-
lence before reducing to size 5 and 3 in the third and fourth levels, respectively.
This arrangement allows the network to capture and process various distortion
patterns, from broad to more localised disturbances. For decoder, we use 3D
transposed convolutions (3DTranspConv) and the kernel size of 3 for all levels.
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Table 1. DeTurb network configuration. Input size of H × W × N . 3DConv is a 3D
convolution block, Def3DConv is a deformable 3D convolution block, and 3DTransp-
Conv is a transposed convolution block. 3DSwinBlock_Enc is a 3D Swin Transformer
Encoder block and 3DSwinBlock_Dec is a 3D Swin Transformer Decoder block.

Non-rigid registration module Feature fusion module
Layer (kernel size) Out dimension Layer (kernel size) Out dimension

3DConv+MaxPool (7×7) H
2
× W

2
×64 2×3DConv (4×4) H

2
× W

2
×32

Def3DConv+MaxPool (7×7) H
4
× W

4
× 256 3DSwinBlock_Enc H

4
× W

4
×64

Def3DConv+MaxPool (5×5) H
8
× W

8
× 256 3DSwinBlock_Enc H

8
× W

8
× 128

Def3DConv (3×3) H
8
× W

8
× 512 3DSwinBlock_Enc H

16
× W

16
× 256

3DTranspConv+3DConv (3×3) H
4
× W

4
× (256 → 2N) 3DSwinBlock_Enc H

32
× W

32
× 512

3DTranspConv+3DConv (3×3) H
2
× W

2
× (128 → 2N) 3DSwinBlock_Dec H

16
× W

16
× 256

3DTranspConv+3DConv (3×3) H ×W × (64 → 2N) 3DSwinBlock_Dec H
8
× W

8
× 128

2DWarpk, k ∈ {0, 1, 2} H
2k

× W
2k

× 3N 3DSwinBlock_Dec H
4
× W

4
× 64

3DConv (7×7) H ×W × 3N 3DTranspConv H ×W × 32
3DConv (1×1) H ×W × 3

3.2 Feature fusion module

Similar to many methods proposed for video processing [2,29,37], we process data
through multiscale feature learning using a UNet-like architecture, as shown in
Fig. 1 and parameters are listed in Table 1 (right). The process begins with input
initial feature extraction through two blocks of 3D convolutions, which prepare
the data by highlighting essential features for subsequent layers. The 3D Swin
Transformer [42] is used as its efficiency in modelling complex dependencies. It
utilises shifted window mechanisms to handle the input data’s non-uniformity.
The processed data is then channelled through a UNet-like architecture with a
depth of 4. This approach ensures that the enhancement of local areas is re-
lated to the semantic information of those areas and their surroundings. This
multi-scale processing is crucial for restoring fine textures and edges in distorted
frames, enhancing the model’s capability to effectively address a range of distor-
tion scales introduced by atmospheric conditions. The last 3D convolution layer
converts features to RGB output.

3D Swin Transformer. The 3D Swin transformers [4, 39, 42] extend the Swin
transformer architecture to three dimensions, adapting it to better understand
volumetric or sequential data by incorporating the temporal dimension. This
offers significant advancements over traditional models in handling the com-
plexities of video reconstruction. The model introduces a hierarchical structure
to process data at multiple scales, capturing detailed spatial-temporal features.
Our 3D Swin transformer uses a shifted window-based self-attention mechanism
across three dimensions as used in [4,42], effectively capturing dynamic changes
over time.
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As shown in Fig. 1 bottom-row, the 3D Swin Transformer Encoder block uses
3D convolutions to merge and downsample features across multiple channels.
These features are then split to undergo processing by one 3D ResNet block and
one 3D Swin transformer block, with the final output being the sum of these two
blocks’ outputs. In each 3D Swin Transformer Decoder block, a 3D transposed
convolution operator is used to combine and upsample feature maps.

Another benefit of the 3D Swin Transformer blocks is that in both the encoder
and decoder, cyclic shifts are applied to the input of multi-head self-attention
to improve interaction between adjacent and non-adjacent tokens in three di-
rections. It works by shifting the input tokens cyclically by a specified number
of units s in each dimension, where s is typically set to half the window size.
This shifting rearranges the tokens so that those from adjacent windows in the
original configuration may end up in the same window post-shift. This process
enables the model to compute similarities and interactions between tokens that
were initially in neighboring windows, which helps overcome the limitation of
the original window-based self-attention that only computes interactions within
the same window. The cyclic shifting thus facilitates the capture of broader
contextual information across adjacent windows, enhancing the network’s abil-
ity to learn long-distance dependency information. However, it also leads to an
increase in the number of windows and variability in window sizes, which is man-
aged through a window-masking mechanism to ensure that only relevant token
similarities are considered. More details about the 3D Swin transformer block
can be found in [4].

3.3 Loss Functions

Two loss functions are employed similar to [49]: Charbonnier Loss and Edge
Loss. In the distortion mitigating module, atmospheric turbulence effects can
create outliers in the pixel-wise loss. To address this, Charbonnier loss is used,
as it combines the benefits of both ℓ1 and ℓ2 losses, effectively handling outliers
better [6]. Defined by Eq. 2,

LChar(x, y) =
√
(x− y)2 + ϵ2, (2)

where x and y represent the predicted and true values, and ϵ is a small constant
(e.g., 1e− 3) to ensure numerical stability, this loss function effectively balances
the error distribution. It provides a smooth gradient even when small errors
are present, which is particularly beneficial for handling the subtle but critical
differences in turbulence-affected images, where precision in error correction is
essential. To ensure sharp results, the loss LEdge is added after training for a
certain number of iterations (300k in this paper). The edge loss LEdge is defined
as described in Eq. 3,

LEdge(x, y) = λLChar(x− g((g(x)↓2)↑2), y − g((g(y)↓2)↑2)), (3)

where g is a Gaussian filter, g = gTh × gh, where gh =[.05, .25, .4, .25, .05]. λ
represents a small gain (set to 0.05 in this paper), and (·)↓2 and (·)↑2 denote
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downsampling and upsampling by 2, respectively. Bilinear filtering is used for
both upsampling and downsampling.

4 Datasets

4.1 Synthetic dataset

As ground truth for atmospheric turbulence mitigation is not available, we gen-
erate synthetic distorted sequences from clean ones. We employed the method
based on P2S transform, proposed in [31], to generate atmospheric turbulence
distortions, as it has proved to be efficient for use as training data.

For static scenes, the dataset is sourced from the Place Dataset [51], where
9,017 images were randomly selected. These images serve as the basis for simu-
lation, where each generates 50 corresponding turbulence-impacted images and
their distortion-free counterparts, resulting in a total of 9,017 pairs of static
scene sequences (total 450,850 image pairs).

For dynamic scenes, the dataset is enriched with video content from multiple
sources to ensure variability and complexity, mimicking real-world conditions
more accurately. The primary sources for these dynamic scenes are the Sports
Video in the Wild (SVW [36]) dataset, the ground truth videos from the TSR-
WGAN [22] project, and the Video Dataset of Perceived Visual Enhancements
(VDPVE [14]). This integration forms a comprehensive collection of 6,495 video
pairs (total 2,749,582 image pairs).

The dataset is split into training and testing subsets to facilitate practi-
cal training and evaluation. The static images are divided into 7,499 pairs for
training and 1,518 pairs for validation. The dynamic videos are similarly split, al-
locating 4,700 videos for training and 1,795 for testing, maintaining a cap of 120
frames per video in the testing set to ensure uniformity in evaluation conditions.

4.2 Real datasets

Videos with real atmospheric turbulence are used to evaluate the performance
and generalization capabilities of the proposed method. This includes two datasets:
the OTIS [15] dataset and the CLEAR [2] dataset. The OTIS dataset contains
16 static scenes with ground truth. The CLEAR dataset includes 11 dynamic
scenes with significant motion and 8 static scenes with minimal or no motion.
This dataset comes with pseudo ground truth generated using complex wavelet-
based image fusion. Collectively, these datasets encompass a broad spectrum of
turbulence conditions.

5 Results and discussions

5.1 Experiment settings

We trained the two modules separately. Initially, the non-rigid registration mod-
ule was trained for 400K iterations using 12 frames of input video, a patch size
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of 128, and a batch size of 2. This phase focused on establishing a robust base
for angular correction before proceeding to more complex tasks. Once this mod-
ule’s training was solidified, the feature fusion module was trained for 600K
iterations under the same batch size, patch size, and learning rate conditions,
ensuring consistency in training dynamics. Both models employ the Adam op-
timizer, known for its efficiency in handling sparse gradients on noisy problems,
in conjunction with a Cosine Annealing scheduler. This scheduler adjusts the
learning rate from an initial value of 2× 10−4 to 1× 10−6, promoting a gradual
and controlled optimization process.

We evaluated and compared our method with four state-of-the-art models de-
signed to mitigate atmospheric turbulence in long-range imaging: AT-Net [43],
TurbNet [32], TSRWGAN [22], TMT [49], and DATUM [48]. Additionally, we
included the state-of-the-art video restoration models, BasicVSR++ [5], STA-
SUNet [29], and VRT [27]. These models were retrained with our synthetic
datasets and tested on both synthetic and real-world datasets. All comparative
models were trained using similar data augmentation strategies as employed for
the TMT, ensuring comparable conditions and fair performance evaluation.

5.2 Performance on synthetic datasets

With ground truth available, we perform an objective assessment using PSNR,
SSIM, and LPIPS measurements. Table 2 presents the average results, calculated
by first averaging the results of all frames within each scene, and then averag-
ing these scene results. This approach ensures that the results are not biased
toward longer videos. The results clearly show that our method outperforms
other existing methods for all metrics, highlighting that the deformable prop-
erty facilitates a more flexible convolution operation, effectively modeling and
correcting geometric distortions caused by atmospheric variations. Additionally,
3D Swin transformers demonstrate their effectiveness in deblurring and visual
quality enhancement. Interestingly, BasicVSR++ delivers good results in PSNR
and SSIM, but not in LPIPS. BasicVSR++ also exploits deformable convolu-
tions, but applies optical flows for large motion beforehand. This should benefit
dynamic scenes, which we plan to investigate further in future work. Example
subjective results of the synthetic videos are shown in Fig. 2, where our visual
results are sharper, and the zoomed-in areas of the straight lines reveal cleaner
and clearer restored lines than other methods. This comparison obviously aligns
with the objective results.

5.3 Performance on real dataset

For real atmospheric turbulence, we evaluated our proposed DeTurb and com-
pared it with existing methods using both reference and no-reference metrics.
The static scenes of the OTIS dataset come with ground truth, while the scenes of
the CLEAR dataset come with pseudo ground truth; hence, objective assessment
is possible. We employed NIQE scores [34] as a no-reference evaluation. NIQE is
based on a quality-aware set of statistical features derived from a straightforward
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Table 2. Performance comparison on static and dynamic scenes using a synthetic
dataset. Bold and underline indicate the best and second-best results, respectively.

Methods Static Scenes Dynamic Scenes

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
AT-Net [43] 20.86 0.603 0.518 20.21 0.587 0.488
TurbNet [32] 21.40 0.637 0.431 21.35 0.635 0.433
STA-SUNet [29] 23.58 0.712 0.352 23.45 0.706 0.348
BasicVSR++ [5] 26.10 0.792 0.279 26.14 0.790 0.280
TSRWGAN [22] 24.99 0.763 0.249 25.05 0.760 0.251
VRT [27] 25.85 0.782 0.218 25.78 0.766 0.266
TMT [49] 25.94 0.795 0.202 26.09 0.767 0.264
DATUM [48] 27.00 0.787 0.198 27.35 0.819 0.250
DeTurb (ours) 27.17 0.827 0.170 27.44 0.815 0.242

Table 3. Performance comparison on real atmospheric turbulence scenes. Bold and
underline indicate the best and second-best results, respectively.

Methods Static Scenes Dynamic Scenes

PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓
Distorted inputs - - - 26.48 - - - 28.07
AT-Net [43] 15.65 0.593 0.483 16.37 18.04 0.773 0.472 27.56
TurbNet [32] 15.08 0.684 0.453 26.11 19.38 0.736 0.411 27.23
STA-SUNet [29] 20.74 0.698 0.433 26.94 22.66 0.784 0.358 26.68
BasicVSR++ [5] 21.66 0.754 0.232 26.72 26.84 0.845 0.206 25.03
TSRWGAN [22] 16.87 0.710 0.228 26.72 24.73 0.809 0.130 24.88
VRT [27] 15.25 0.620 0.338 28.46 25.26 0.818 0.133 25.63
TMT [49] 15.17 0.611 0.329 29.21 25.59 0.822 0.122 27.98
DATUM [48] 24.65 0.827 0.204 25.01 26.46 0.838 0.096 22.72
DeTurb (ours) 24.53 0.841 0.128 24.34 26.99 0.847 0.088 22.77

Fig. 2. Subjective results of a synthetic scene. The bottom of each picture shows a
magnified version of the straight lines.
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yet effective natural scene statistic (NSS) model in the spatial domain. These
features are extracted from a collection of natural, undistorted images. Lower
scores indicate better perceptual quality.

Table 3 shows the average results of these scenes. Comparing the two existing
methods that performed best on the synthetic data, BasicVSR++ and TMT,
our method achieves better scores across all metrics, particularly in LPIPS. For
the no-reference metric NIQE, our method achieves approximately 9% and 16%
higher scores, respectively. Fig. 3 and Fig. 4 illustrate examples of the restored
scenes, with the last column showing the pseudo ground truth from CLEAR. Our
method produces results with clearer edges and more readable text compared to
BasicVSR++ and TMT. Although it cannot restore textures or text as well as
CLEAR, our method achieves smoother edges than CLEAR. Overall, DeTurb
outperforms other learning-based methods.

Fig. 5 shows examples of varying levels of turbulence. When the atmospheric
turbulence is low, DeTurb produces very sharp edges, achieving straight lines and
clear curves, particularly at high contrast, such as text on road signs. However,
strong distortions are more difficult to recover, as demonstrated in the last row
where light rays propagate through the medium from a distance. Although the
results appear sharper, random geometric distortion is still present in the results
of all methods.

5.4 Ablation study

The results of the ablation study are shown in Table 4. First, we investigated the
influence of deformable 3D convolutions by replacing them with depth-wise 3D
convolutions, as used in TMT [49]. All metrics indicated a performance reduc-
tion, particularly for LPIPS. Next, we tested the impact of the 3D Swin trans-
formation by replacing it with 2D Swin transformers [30]. Although the overall
performance was reduced, it was not as significant as the decrease observed
when replacing deformable 3D convolutions with depth-wise 3D convolutions.
This highlights the importance of addressing spatiotemporal distortions caused
by atmospheric turbulence. This significance is further confirmed by the sub-
stantial reduction in restoration quality when the non-rigid registration module
is removed, which has a greater impact than removing the feature fusion module
from the pipeline.

For clearer visualization, Fig. 6 shows the y-t plane images, illustrating how
a specific line or point at a particular x position within an image evolves over
time across video frames. This provides a view of the stabilization achieved by
turbulence mitigation models. We selected the middle point of the width. The
left image is from the original distorted scene, showing clear vertical streaks
and inconsistencies. The feature fusion model alone shows improvement, with
noticeably reduced streaking and clearer continuity of lines, but some random
geometric distortions are still present, as seen in the middle figure. The entire
pipeline, including the non-rigid registration, exhibits the highest level of clarity
and consistency, effectively mirroring the original structure of the scene with
superior stabilization of vertical elements.
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Table 4. Ablation study showing the effects of replacing or removing certain modules
in the proposed framework. The results are averaged from both synthetic and real
scenes, except for NIQE, which is computed only on the real scenes.

Methods Static Scenes Dynamic Scenes

PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓
Deform3D → DW Conv 3D 24.25 0.772 0.249 25.73 27.05 0.789 0.231 25.08
3D Swin → 2D Swin 25.15 0.800 0.188 25.75 27.13 0.816 0.193 23.72
wo Non-rigid 23.88 0.761 0.261 26.02 26.87 0.795 0.246 25.12
wo Fusion 24.07 0.778 0.258 25.70 26.53 0.800 0.228 24.89
DeTurb 25.85 0.834 0.149 24.34 27.22 0.831 0.165 22.77

Fig. 3. Subjective results of a real distorted scene. The left column shows a static
scene, while the other columns depict dynamic scenes. From top to bottom, the rows
display the distorted input, BasicVSR++ results, TMT results, our DeTurb results,
and CLEAR results.
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Fig. 4. Subjective results (similar to Fig. 11 in the DATUM paper [48]).

Fig. 5. Subjective results of a zoomed-in real scene with varying amounts of atmo-
spheric turbulence distortion. The top to bottom rows show cases ranging from easy
to difficult to restore.

Fig. 6. Example y-t planes of static ‘Man’ scene restored without and with the non-
rigid registration module
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5.5 Computing Budget

We include an assessment of the inference-time computing budget for each model.
This analysis is conducted on a single NVIDIA 4090 GPU, providing a stan-
dardized basis for comparing the computational demands of each model. Table 5
summarizes the computing resources and time required for each model. Although
none of the learning-based methods currently meet real-time requirements, they
are significantly faster than conventional model-based methods such as SID and
CLEAR.

Table 5. Inference time computing budget, measured per frame on a 256×256 resolu-
tion image (average speed calculated from five test trials).

Methods # parameters (M) FLOPs/frame (G) speed (s)
SID [52] - - 132.32

CLEAR [2] - - 25.37
TurbNet [32] 26.60 190.69 5.79

STA-SUNet [29] 21.82 - 2.04
BasicVSR++ [5] 9.76 127.30 1.20
TSRWGAN [22] 46.28 2,836 2.58

VRT [27] 18.32 7,759 7.35
TMT [49] 23.92 1,304 2.37

DeTurb (ours) 58.79 1,975 2.55

6 Conclusion

This paper introduces DeTurb, a novel framework for atmospheric turbulence
reduction. The proposed framework consists of two modules: non-rigid regis-
tration and feature fusion. The first module uses deformable 3D convolutions
to estimate flow and mitigate random geometric distortion across several dis-
torted frames. The second module, utilizing a UNet-like architecture of 3D Swin
transformers, further sharpens and enhances the details of the current frame.
Experimental results demonstrate that DeTurb outperforms existing methods
specifically designed for atmospheric turbulence problems as well as methods
proposed for video restoration and enhancement. However, there is still room
for improvement in situations of strong atmospheric turbulence.
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