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A Qualitative Evaluation

A.1 Anomaly Score Visualization

To intuitively understand the use of multiple memories, we compared Patch-
Core (PC), which utilizes appearance information, with VideoPatchCore (VPC),
which incorporates not only appearance information, but also motion and high-
level information, on the SHTech and Corridor datasets.

o
3
3
o
E
Eos
3
2
<

., — PatenCore: AUC=0.48%
—— VideoPatchCore: AUC=0.94%
= Ground-truth

o 200 250
Frame number

Anomaly Score
2 s

—— PatchCore: AUC=0.34%
?| — VideoPatchCore: AUC=0.85%
e Ground-truth

00 200 ED
Frame number

(b) Fighting

Fig. 1: Comparison of anomaly scores between VPC and PC in the SHTech dataset.

Fig. 1a shows anomaly frames depicting the action of skateboarding, necessi-
tating consideration of motion information. Therefore, temporal memory plays
a crucial role in this scenario. Fig. 1b shows anomaly frames depicting the ac-
tion of fighting, necessitating consideration of interactions between two peoples.
Therefore, high-level semantic memory plays a crucial role in this scenario. It
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is known that VPC, which utilizes temporal and high-level semantic memory,
detects anomalies well, whereas PC, which does not utilize them, does not detect
anomalies.
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Fig. 2: Comparison of anomaly scores between VPC and PC in the Corridor dataset.

Fig. 2a shows anomaly frames depicting the action of sudden running, ne-
cessitating consideration of motion information. Therefore, temporal memory
plays a crucial role in this scenario. Fig. 2b shows anomaly frames depicting the
action of moving a suspicious object, necessitating consideration of relationship
between the person and object. Therefore, high-level semantic memory plays a
crucial role in this scenario. VPC, which employs high-level and temporal mem-
ory, effectively distinguishes between abnormal and normal frames. In contrast,
PC tends to produce false positives.

A.2 Object-wise Anomaly Score Visualization

For a deeper understanding of memory effectiveness, we computed anomaly
scores using each memory module for two specific objects shown in Fig. 3. One
is the most anomalous object, and the other is the most normal object, as de-
termined by the proposed model. Each object is characterized by the spatial
(S) and temporal anomaly scores (T), while frames containing these objects are
assigned a high-level anomaly score (H). The experimental results demonstrate
precise prediction of anomalous objects within frames by the proposed model,
with each memory module effectively fulfilling its role in various scenarios. For
instance, in the bicycle scenario involving abnormal appearance, S increases due
to spatial memory, while in the running scenario with abnormal behavior, T in-
creases due to temporal memory. Finally, challenging anomalies such as "wrong
direction" in the local stream are detected by H increasing in high-level memory.
This validates the effectiveness of the three memory modules in VAD.
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Fig. 3: Three anomaly scores per object on the Avenue, SHTech, and Corridor datasets.
H: high-level anomaly score, S: spatial anomaly score, T: temporal anomaly score.
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(c) High-level Memory (Avenue:02,13), (SHTech:49,68), (Corridor:18,85)

Fig. 4: t-SNE visualization of memory and test patches. The columns, from left to
right, correspond to the Avenue, SHTech, and Corridor datasets.
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Table 1: Comparison of AUROC scores for all memory banks on the Avenue, SHTech
and Corridor datasets. The best results are red and the second best results are blue.

Avenue | 1% 10% 25% 50% 75% 99%
Spatial 0.848 0.831 0.828 0.825 0.828 0.828
Temporal | 0.669 0.669 0.669 0.669 0.669 0.669
High-level | 0.844 0.845 0.848 0.844 0.844 0.844
Total 0.928 0.918 0.914 0.912 0.912 0.912
SHTech | 1% 10% 25% 50% 75% 99%
Spatial 0.748 0.744 0.747 0.747 0.746 0.746
Temporal | 0.788 0.788 0.788 0.788 0.788 0.788
High-level | 0.671 0.675 0.684 0.673 0.673 0.674
Total 0.846 0.850 0.851 0.851 0.851 0.851
Corridor | 1% 10% 25% 50% 75% 99%
Spatial 0.690 0.705 0.705 0.705 0.706 0.705
Temporal | 0.735 0.735 0.735 0.735 0.735 0.735
High-level | 0.664 0.672 0.673 0.674 0.675 0.660
Total 0.760 0.764 0.763 0.763 0.763 0.764

A.3 Patch Visualization

Fig. 4 depicts the t-SNE plots of normal patches stored in memory (denoted
by green '*’); along with normal (blue ’'0’) and anomalous patches (red ’o)
from the test data. The results show that normal patches are clustered closely
together compared to anomalous patches, aligning closely with the distribution
of memory patches. In contrast, anomalous patches exhibit a wider dispersion
and tend to be farther away from the memory patches. These findings suggest

that the proposed memory effectively stores the normalcy of videos, making it
suitable for VAD.

B Quantitative Evaluation

B.1 Detailed Analysis of Subsampling Ratio

We conducted a detailed analysis of performance changes based on subsampling
ratios in the Avenue, Shanghai, and Corridor datasets as shown in Tab. 1. In
the SHTech and Corridor datasets, the performance was better when using more
memory, whereas in the Avenue dataset, the performance tended to be higher
with less memory.

These results can be explained with two reasons. First, due to the diversity of
normal data in the SHTech and Corridor datasets, the performance improves as
more normal patches are stored in memory. Second, the Avenue dataset mainly
consists of action anomalies, making it challenging to distinguish them from
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normal instances without using temporal information. Therefore, from a spatial
memory perspective, filtering out normal patches that resemble anomalies en-
hances the performance. Meanwhile, other memories that utilize temporal infor-
mation exhibit robust performance regardless of their size. Consequently, using
only 1% of memory overall yields the best performance.

However, as evidenced by the experimental results, the performance differ-
ence between using 10% and 99% of memory is very small. Therefore, in practical
use, sufficiently good performance can be maintained even with memory usage
set at 10% or lower.
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