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1 Proof for Theorem 1

Theorem 1 (Bound on Worst-Case Risk Gap).
Let Lg(fθ) = E(x,y)∼P̂g

[l(fθ; (x, y))] denote the expected loss for group g, and
define

∆(θ) = max
g∈G

Lg(fθ)−min
g∈G

Lg(fθ)

as the maximum discrepancy in expected loss across the groups. Then, for any
θ, the gap given by Equation (9) is bounded by:

Gap(θ) ≤ 2m−1 − 1

2m − 1
∆(θ),

where m denotes the cardinality of G.

Proof. Let m be the number of groups which are predefined with bias informa-
tion for the group DRO learning framework, i.e. the cardinality of G. Without
loss of generality, assume that the sequence of the expected losses is ordered
in decreasing order, L1(fθ) ≥ L2(fθ) ≥ · · · ≥ Lm(fθ). Consider a set G′ that
encompasses all possible selections of groups, formulated as:
G′ = {(L1(fθ)), (L2(fθ)), . . . , (Lm(fθ)), . . . , (L1(fθ),L2(fθ), . . . ,Lm(fθ))}.

The number of possible cases for groups including L1(fθ) is given by the sum:

1 +

(
m− 1

1

)
+

(
m− 1

2

)
+ · · ·+

(
m− 1

m− 1

)
= 2m−1. (1)

Since L1(fθ) ≥ L2(fθ) ≥ · · · ≥ Lm(fθ), we deduce that the optimal value of
the maximization problem for these groups is L1(fθ). Therefore, we can write:

EG′∼B

[
max
g∈G′

E(x,y)∼P̂g
[l(fθ; (x, y))]

]
=

m∑
i=1

2m−ipiLi(fθ), (2)

where pi denotes the sampling probability for each Li(fθ) satisfying
∑m

i=1 2
m−ipi =

1. Then, we can rewrite Equation (9) as:

Gap(θ) = L1(fθ)−
m∑
i=1

2m−ipiLi(fθ) ≥ 0. (3)
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Without making specific assumptions about the probabilities associated with
the observation of groups, we set pi to have uniform probability, pi = 1

2m−1 .
Then,

Gap(θ) =
1

2m − 1

[
(2m−1 − 1)L1(fθ)−

m∑
i=2

2m−iLi(fθ)

]
(4)

=
1

2m − 1

[
m∑
i=2

2m−iL1(fθ)−
m∑
i=2

2m−iLi(fθ)

]
(5)

=
1

2m − 1

[
m∑
i=2

{
2m−i(L1(fθ)− Li(fθ))

}]
(6)

≤ 2m−1 − 1

2m − 1
∆(θ) (7)

This completes the proof, implying that the worst-case risk gap is bounded above
by 2m−1−1

2m−1 ∆(θ).

2 Experimental Details

In this section, we detail the experimental setup used to evaluate the proposed
method, including the dataset, architectural design, training environments, and
specific hyperparameters. The careful configuration of these components ensures
that our evaluation accurately reflects the performance of the model under dif-
ferent bias conditions.

2.1 Colored MNIST

We consider two training environments, each containing 25,000 MNIST images
and one validation environment with 10,000 images. For the test environment,
we utilize official test images of the MNIST dataset with 10,000 data samples,
then add bias features. The inclusion of color and patch attributes is designed to
have high correlations with target labels; however, these correlations are unstable
as they vary across the training environments.

We train a simple Multi-Layer Perceptron (MLP) with one hidden layer,
utilizing the ReLU activation function. The hidden layer consists of 390 units,
and we set the learning rates to α = 1 × 10−1 and β = 1 × 10−3. We set
the softmax temperature coefficient to τ = 1 in the experiments on Colored
MNIST. Our experiments employ three steps of gradient descent for adaptive
bias discovery stage, and use early stopping on the validation environments with
pe = 0.2 that has similar distribution to the training distribution.

2.2 MetaShift

MetaShift [9] serves as a benchmark for measuring the performance of machine
learning models across diverse data distributions. Metashift provides a quantifi-
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able distance score to gauge the disparity between training and test domain dis-
tributions. Therefore, this benchmark enables the measurement of performance
degeneration according to the degree of distribution shifts.

In our study, we focus on the Cat vs. Dog classification task within MetaShift
dataset. Specifically, the test data samples consist of images labeled as dog(shelf)
and cat(shelf), featuring dogs or cats with shelves. For the training data, the cat
class samples include images from the cat(sofa+bed) categories. The training
samples for the dog class vary according to the degree of distributional shift,
with categories such as dog(cabinet + bed), dog(bag+box), dog(bench + bike),
and dog(boat + surfboard), which correspond to distributional distances from
dog(shelf) of 0.44, 0.71, 1.12, and 1.43, respectively.

For the experiment, we train a ResNet-50 model [6] with an SGD optimizer
at a learning rate of 1 × 10−3 and L2 regularization of 1 × 10−4. The softmax
temperature coefficient in this experiment is set to τ = 1.

2.3 CivilComments-wilds

CivilComments-wilds dataset [2,8] is a benchmark for evaluating a model’s abil-
ity to generalize across shifts in the toxic text classification task. Concretely,
the dataset offers an insight into how toxicity classifiers may inadvertently learn
biases present in the training data, associating toxicity with mentions of specific
demographics [5,10]. The data is divided into 16 groups based on 8 demographic
identities and toxicity labels, and models are evaluated by their worst-group ac-
curacy. We utilize 269,038 training data samples, 45,180 validation data samples,
and 133,782 test data samples.

We use the DistilBERT-base-uncased model for five epochs with early stop-
ping and apply Bayesian optimization for hyperparameter tuning.

2.4 MultiNLI

MultiNLI dataset serves as a benchmark for evaluating our model’s ability to
handle biases. We use training, validation, and test splits from [11], as the official
test set is inaccessible, consisting of 206,175, 82,462, and 123,712 samples, re-
spectively. We identify two biases for evaluation. First, we annotate cases where
negation words in the hypothesis, such as nothing, never, nobody, and no, are
highly correlated with the label contradiction, using annotations from [11]. Sec-
ond, we manually annotate instances in which a high lexical overlap of more
than five words between the premise and hypothesis correlates with the label
entailment.

We fine-tune pretrained BERT [4] for three epochs, following the original
settings as reported in [4]. The learning rate is set with a fixed linearly-decaying
starting point at 2× 10−5 for both α and β. As in the previous experiments, the
softmax temperature coefficient is set to τ = 1.
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2.5 Camelyon17-wilds

In the field of machine learning-based medical image processing, OoD gener-
alization is a critical problem in obtaining a universally applicable prediction
model across various hospitals. Camelyon17-wilds dataset [1,8] is a medical im-
age classification benchmark explicitly targeting this problem. The main goal
of Camelyon17-wilds is to achieve high prediction accuracy for predicting the
presence of tumor tissue on image patches taken from hospitals not included in
the training data.

The training data consists of image patches from three hospitals, while the
test data contains patches from a distinct hospital not represented in the training
set. This test hospital provides the most visually unique patches compared to the
other data. The final model selection is performed based on the accuracy on OoD
validation data, different from both training and test distributions. Validation
data also comes from a distinct distribution but shares more visual patterns with
training data than test data.

Camelyon17-wilds is a binary classification task to determine whether a given
96×96 image patch’s central region contains any tumor tissue. It includes 302,436
training patches, 34,904 OoD validation data, and 85,054 OoD test patches.

We employ DenseNet-121 [7] without pretrained parameters, training it from
scratch on Camelyon17-wilds, following the official setting from [8]. We utilize
Bayesian optimization for hyperparameter tuning.

2.6 FMoW-wilds

FMoW-wilds dataset [3,8] serves as another benchmark for OoD generalization,
encompassing satellite images captured across various locations and times. This
dataset contains RGB satellite images, and the associated task involves clas-
sifying 62 different functional purposes of buildings and land, guided by the
images and metadata. The latter provides the location and time information
for each image. The training data spans images taken from 2002 to 2013, while
the validation and test data cover 2013 to 2015 and 2016 to 2017, respectively.
FMoW-wilds aims to evaluate a model’s generalizability to future images.

The dataset is divided into five geographic regions for each data split, repre-
senting the locations where the images were captured. The OoD generalization
performance is assessed using the worst-region accuracy for the test data, where
the data collection period does not overlap with the training data.

FMoW-wilds presents an image classification task targeting the prediction of
62 categories of building or land use from given 224× 224 images. The training
split includes 76,863 images from 2002 to 2013, while the validation split contains
19,915 images from 2013 to 2015. The OoD test data comprises 22,108 images
taken from 2016 to 2018. All splits include images from five regions: Africa, the
Americas, Oceania, Asia, and Europe. The model is evaluated by measuring the
worst-region accuracy on the OoD test data.

For this task, we employ a DenseNet-121 model pretrained on the ImageNet
dataset and finetune it on the FMoW-wilds images. Following the official hyper-
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Table 1: Test accuracy (%) on the vanilla MNIST dataset which does not include
any synthetic biases. Note that the test environment has noise on the shape of digits
pc = 0.25; hence the optimal test accuracy is 75.0%.

Algorithm Test accuracy

ERM 73.0
ABD (with noise pc) 58.0
ABD (without noise pc) 73.0

Optimal 75.0

Table 2: Comparison of running times for Group DRO and ABD in the MultiNLI
experiment using Nvidia RTX A6000.

Algorithm Running Time

Group DRO 1,155 seconds
ABD 2,062 seconds

parameters from [8], we optimize with learning rates of 1×10−4 for both α and
β, without utilizing L2-regularization.

3 Additional Experimental Results

3.1 ABD with Unbiased Data

We also experiment with our algorithm in the setting without biases in the train-
ing data, using the vanilla MNIST. We evaluate ABD on the original MNIST,
which does not contain any biases, and assess the model’s performance on the
test settings of the Colored MNIST task. Table 1 shows that even if the training
data does not include spurious correlations so that the ABD cannot discover
biases, the model can still achieve reasonable performance with our learning
framework. However, when the training samples include label noise with a prob-
ability of pc = 0.25 on the shape of the digits, the performance of the model is
degraded. This occurs because the biased model may mistakenly interpret the
noise as biases during the adaptive bias discovery stage. We plan to address these
issues related to ABD in future work.

3.2 Compuatational Efficiency

We provide a comparison of the computationally demanding time for both Group
DRO and ABD, focusing on the time taken for model training on MultiNLI
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Fig. 1: GradCAM visualization of a biased model with our adaptive bias discovery
method on the MetaShift test data sample for diverse learning steps.

experiment in Table 2. Here, we utilized Nvidia RTX A6000 for the experiments.
While ABD requires more computational resources than Group DRO, it can
achieve superior performance in handling bias features, as evidenced by our
experimental results.

3.3 Additional GradCAM Visualizations

We provide additional GradCAM visualizations comparing ERM and ABD on
MetaShift dataset. Figure 1 shows GradCAM results of a biased model in our
ABD framework for diverse learning steps. It illustrates the evolving focus of the
biased model within the ABD framework, highlighting how its attention shifts
across different epochs. This shift in focus reflects the dynamic nature of ABD’s
adaptive bias discovery process, as the model progressively identifies and adjusts
to various biases present in the dataset.

In addition, we evaluate trained model on MetaShift dataset with ERM and
ABD on web-crawled images. Specifically, the model is trained on dog(boat+surfboard)
scenario. Thus, we evaluate the model on web images with dog surfing. Fig-
ure 2 shows GradCAM visualizations of trained models with ERM and ABD.
We observe that ERM-trained model tends to focus on background features
while model trained with our method focuses on dog. This discrepancy make
ERM-trained model be degraded on MetaShift test data since test data sam-
ples, dog(shelf) do not contain ocean background.

In addition, we evaluate models trained on the MetaShift dataset with ERM
and ABD using web-crawled images. Specifically, the models are trained on the
dog(boat+surfboard) scenario, and tested on web images depicting dogs surfing.
Figure 2 presents the GradCAM visualizations of models trained with both ERM
and ABD. We observe that the model trained with ERM tends to focus on
background features, whereas the model trained with our method concentrates
on the dog itself. This discrepancy leads to a degradation in the performance
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Fig. 2: GradCAM visualization of models trained with ERM and ABD on Web-
Crawled images. Each model is trained on MetaShift dataset for dog(boat+surfboard),
i.e., distributional shifts score is 1.43. The web search keyword used was Dog Surfing.
References for each image are provided in Section 3.3.

of the ERM-trained model on the MetaShift test data, the dog(shelf) samples,
as they do not contain an ocean background. References for the web-crawled
images are provided in the following section.

References for Web-Crawled Images in Figure 2 (a) https://ca-times.
brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/
2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-
times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%
2Fsugar-the-surf-dog-2.jpg

(b) https://cdn11.bigcommerce.com/s-zu7ew0vx99/images/stencil/
1280x1280/products/18489/20225/dog-and-surfboard__11424.1620747142.
jpg?c=1

(c) https://upload.wikimedia.org/wikipedia/commons/c/c3/Hanging_
18.jpg

(d) https://www.surfertoday.com/images/stories/surfingdog.jpg

https://ca-times.brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%2Fsugar-the-surf-dog-2.jpg
https://ca-times.brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%2Fsugar-the-surf-dog-2.jpg
https://ca-times.brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%2Fsugar-the-surf-dog-2.jpg
https://ca-times.brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%2Fsugar-the-surf-dog-2.jpg
https://ca-times.brightspotcdn.com/dims4/default/8c96fcf/2147483647/strip/true/crop/2396x3503+0+0/resize/1200x1754!/quality/75/?url=https%3A%2F%2Fcalifornia-times-brightspot.s3.amazonaws.com%2Feb%2F35%2F9b8969e145e68f5478a2d05db08b%2Fsugar-the-surf-dog-2.jpg
https://cdn11.bigcommerce.com/s-zu7ew0vx99/images/stencil/1280x1280/products/18489/20225/dog-and-surfboard__11424.1620747142.jpg?c=1
https://cdn11.bigcommerce.com/s-zu7ew0vx99/images/stencil/1280x1280/products/18489/20225/dog-and-surfboard__11424.1620747142.jpg?c=1
https://cdn11.bigcommerce.com/s-zu7ew0vx99/images/stencil/1280x1280/products/18489/20225/dog-and-surfboard__11424.1620747142.jpg?c=1
https://upload.wikimedia.org/wikipedia/commons/c/c3/Hanging_18.jpg
https://upload.wikimedia.org/wikipedia/commons/c/c3/Hanging_18.jpg
https://www.surfertoday.com/images/stories/surfingdog.jpg
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(e) https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-
1469727158617-1.jpggettyimages-91910627-1024x1024.jpg,https://media.
gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-
stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=
ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=

References

1. Bandi, P., Geessink, O., Manson, Q., Van Dijk, M., Balkenhol, M., Hermsen, M.,
Bejnordi, B.E., Lee, B., Paeng, K., Zhong, A., et al.: From detection of individual
metastases to classification of lymph node status at the patient level: the came-
lyon17 challenge. IEEE transactions on medical imaging 38(2), 550–560 (2018)
4

2. Borkan, D., Dixon, L., Sorensen, J., Thain, N., Vasserman, L.: Nuanced metrics
for measuring unintended bias with real data for text classification. In: Companion
proceedings of the 2019 world wide web conference. pp. 491–500 (2019) 3

3. Christie, G., Fendley, N., Wilson, J., Mukherjee, R.: Functional map of the world.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 6172–6180 (2018) 4

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186 (2019) 3

5. Dixon, L., Li, J., Sorensen, J., Thain, N., Vasserman, L.: Measuring and mitigating
unintended bias in text classification. In: Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society. pp. 67–73 (2018) 3

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 3

7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017) 4

8. Koh, P.W., Sagawa, S., Xie, S.M., Zhang, M., Balsubramani, A., Hu, W., Yasunaga,
M., Phillips, R.L., Gao, I., Lee, T., et al.: Wilds: A benchmark of in-the-wild
distribution shifts. In: International Conference on Machine Learning. pp. 5637–
5664. PMLR (2021) 3, 4, 5

9. Liang, W., Zou, J.: Metashift: A dataset of datasets for evaluating contextual
distribution shifts and training conflicts. In: International Conference on Learning
Representations (2022), https://openreview.net/forum?id=MTex8qKavoS 2

10. Park, J.H., Shin, J., Fung, P.: Reducing gender bias in abusive language detection.
arXiv preprint arXiv:1808.07231 (2018) 3

11. Sagawa*, S., Koh*, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neu-
ral networks. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=ryxGuJrFvS 3

https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-1469727158617-1.jpg gettyimages-91910627-1024x1024.jpg, https://media.gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=
https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-1469727158617-1.jpg gettyimages-91910627-1024x1024.jpg, https://media.gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=
https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-1469727158617-1.jpg gettyimages-91910627-1024x1024.jpg, https://media.gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=
https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-1469727158617-1.jpg gettyimages-91910627-1024x1024.jpg, https://media.gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=
https://blog.myollie.com/wp-content/uploads/2018/07/surf_dog-1469727158617-1.jpg gettyimages-91910627-1024x1024.jpg, https://media.gettyimages.com/id/91910627/photo/man-with-surfboard-and-dog-with-stick-in-mouth-running-out-of-ocean.jpg?s=1024x1024&w=gi&k=20&c=ERXDurZsK3JoMqpWD0Ty7pVgdamNiNMzkKTGnpRxktM=
https://openreview.net/forum?id=MTex8qKavoS
https://openreview.net/forum?id=ryxGuJrFvS

	Supplementary Material: Adaptive Bias Discovery  for Learning Debiased Classifier

