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7 Proof of Theorem 1

Proof. By splitting integrals on X into a sum of integrals over Y and Z, we have,

F̂ x = →ωX
i , fX

j ↑X =

∫

X
ωX

i
→
(x)fX

j (x)dx

=

∫

Y
ωX

i
→
(y)fX

j (y)dy +

∫

Z
ωX

i
→
(z)fX

j (z)dz

= →ωX
i , fX

j ↑Y + →ωX
i , fX

j ↑Z = F̂
(Y)

+ F̂
(Z)

. (20)

The FM-layer computes the functional map in Eq. (2). We can plug in F̂ x =

F̂
(Y)

+ F̂
(Z)

into Eq. (2) and obtain Ĉyx = Cyx + C
E
yx.

8 Proof of Theorem 2

Proof. Let nx, ny, and nz be the number of vertices of X , Y, and Z, respectively.
Without loss of generality, we sort the vertices of X such that those corresponding
to the vertices in Y appear first and in the same order as those of Y. Thereby,
we can write,

ωx =

[
ω

(Y)

ω
(Z)

]
, (21)

where ω
(Y) ↓ Rny↑k and ω

(Z) ↓ Rnz↑k.
Denote, by F x ↓ Rnx↑d and F y ↓ Rny↑d the feature matrices of X and Y,

respectively. Based on our ordering, we have that,

F x =

[
F

(Y)

F
(Z)

]
. (22)

Here, F
(Y) are the features extracted from vertices on X located on the subsur-

face Y, and similarly for F
(Z). We can rewrite ω

↓
x AxF x using Eqs. (22) and

(21) as

ω
↓
x AxF x = (ω (Y))↓AyF

(Y) + (ω (Z))↓AzF
(Z), (23)

since vertices on both X and Y are associated to the same area on both shapes,
meaning that Ay = A

(Y), and likewise Az = A
(Z), where A

(Y) = Ax|Y and
A

(Z) = Ax|Z are the restrictions of Ax to the matching part of Y and Z on
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X , respectively. Plugging Eq. (23) into Eq. (3), Ĉxy = Cxy + C
E
yx is the sum of

two terms,

Cyx = (ω (Y))↓AyF
(Y)

F
↓
y AyωyQ

↔1
y , (24)

the self-functional map of Y with its correspondence in X with respect to the
basis ω

(Y)
x and ωy, and,

C
E
yx = (ω (Z))↓AzF

(Z)
F

↓
y AyωyQ

↔1
y , (25)

the unavoidable error injected into Cyx.

9 Error analysis of the FM-layer

To better understand the two components that form Ĉyx, let us simplify the
problem. Assume that X is composed of two disconnected sub-surfaces Y and
Z. As the surfaces Y and Z are disconnected, the eigenfunctions of the LBO of
X consist of two disjoint sets of functions, assuming di!erent modes. These two
disjoint sets are interleaving according to increasing eigenvalues, where one set
contains functions that are the eigenfunction of the LBO of Y extended to Z by
taking zero values for every point on Z, and vice versa for the other set.

Additionally, we assume that we have a feature extractor which is robust to
partial shape matching, that is,

F y = ε
→
xyF x, (26)

where ε
→
xy is the exact correspondence matrix between X and Y. Moreover, we

assume that the extracted features have rank d. We now look for the functional
map C

→ that would give us a perfect match between X and Y. That is,

C
→ = ω

↓
x Axε

→
yxωy, (27)

where, w.l.o.g. we choose ωx and ωy as the eigenfunctions of the LBO of surfaces
X and Y, respectively, and we sort the vertices of X such that those correspond-
ing to the vertices in Y appear first and in the same order as those of Y. we
have that ε

→
xy = Jny where Jny =

[
Iny

0

]
is the identity matrix until column

ny and only zeros columns afterwards. Without loss of generality, we sort ωx so
that its leading eigenfunctions are those related to Y, and then those related to
Z. Thus, we have,

C
→ = ω

↓
x

[
Ay

0

]
ωy =

[
ω→

y Ay

0

]
ωy = Jny . (28)

Using our previous assumptions in Eq. (6) gives us,

Cyx = (ω (Y))↓AyF
(Y)

F
↓
y AyωyQ

↔1
y

=
[
ω→

y

0

]
AyF yF

↓
y AyωyQ

↔1
y
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=
[
ω→

y AyF yF
→
y AyωyQ

↑1
y

0

]
= Jny . (29)

This is the ideal functional map as it defined by the given mapping between
the surfaces X and Y. Therefore, the second term C

E
yx is a an error which is

proportional to the area of Z.

10 The softmax operator compared to the FM-layer.

Pipelines using the FM-layer or ours using the Softmax operator all involve the
feature product F

(Z)
F

↓
y . Since the feature extractor is unaware of the loca-

tions of the missing parts, it cannot attribute trivial features, e.g. 0 only values,
at the missing parts. Therefore, the term F

(Z)
F

↓
y , present in both pipelines,

introduces errors. In the case of the FM-layer the dependence on this prod-
uct is linear, whereas in our pipeline the error in the correspondence matrix
estimated from the softmax operator is proportional to E

↔1 exp(F (Z)
F

↓
y /ε),

where E = diag(
∑

i exp((F xF
↓
y /ε)ij)). For any practical feature extractor, like

Di!usionNet [42], there is usually good alignment of features of vertices on the
partial shape and their counterpart on the full shape. Comparatively, features
on the missing parts may fail to align as well. Thus, the normalisation E

↔1 re-
duces exponentially the influence of noisy correlations with missing parts. This
is particularly the case for ε ↔ 0 (as in our experiments), as then, the softmax
with temperature hyperparameter ε collapses to the max operation. For exam-
ple, consider three points x, y, and z where x ↓ X \Z, y ↓ Y, and z ↓ Z, having
features fx, fy, and fz respectively. If fzf

↓
y = 0.5, fxf

↓
y = 0.7, and ε = 0.01,

then the error is close to 10↔9 in the softmax operation, which is negligible to
the error of 0.35 induced in the FM-layer.

11 The PFAUST benchmark

We created the PFAUST benchmark from FAUST remeshed [38] similarly to the
way SHREC’16 [15] was created from TOSCA [12]. For each shape in FAUST,
we randomly chose m vertices, and for each selected vertex we removed all other
vertices on the shape within a geodesic radius of r. As these holes may disconnect
the shape, we then keep only the connected component with the largest number
of vertices. This process constructs the parts of our shapes. For the full shapes,
we only chose subjects with ID ending with 0. Shapes created from the train and
test splits of FAUST remeshed populate our train and test splits respectively,
and we provide for each partial shape its ground-truth correspondence matrix
with its full shape. Thus, the training set contains 8 full shapes and 80 partial
shapes. The test set is analogous except for its number of shapes; 20 partial and
2 full shapes. We created two datasets, PFAUST-M and PFAUST-H, generated
with di!erent choices of m and r to create two levels of missing regions. A high
number of small holes significantly changes the topology, which makes the partial
shape correspondence task harder than with fewer albeit larger holes. As such,
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Fig. 4: Example of shapes existing in our new PFAUST benchmark. The left shape is
from PFAUST-M, while the right one is from PFAUST-H, which are of medium and
hard di!culty, respectively.

PFAUST-M and PFAUST-H are of “medium” and “hard” di"culties, respectively.
We created PFAUST-M by taking r = 0.16 and m = 4, and PFAUST-H by
choosing r = 0.1 and m = 13. See Fig. 4 for plots of example shapes from each
dataset.

12 Additional Implementation Considerations

Our method. We trained our method using the Adam optimizer [23], with a
learning rate of 10↔3 and cosine annealing scheduler [28] with minimum learning
rate parameter ϑmin = 10↔4 and maximum temperature of Tmax = 300 steps.
We train for 20000 iterations, and at test time our refinement process has 15
iterations.

On RobustFMnet. The method by Cao et al. [14] was claimed to produce state-
of-the-art results when applied to various shape correspondence benchmarks
including partial shape matching. And yet, the methodology proposed in [14],
in spite of its conceptual beauty, involved di"culties in the evaluation phase.
The results reported by Cao et al. were obtained by first pre-training on the
full shapes from the TOSCA dataset [12]. The problem is that the shapes and
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poses used in the TOSCA full shape dataset also play active part in the test
set of SHREC’16. The test set used by Cao et al. was thereby, unfortunately
unintentionally, contaminated. Recently, to avoid test set contamination, the
authors pretrained the models on four external datasets. However, the standard
methodology in the field does not use any external datasets. As such, we did
not include results from these updated models for fair comparison with all other
methods. It turns out, that without such pre-training, the method struggles to
compete with previous approaches like [27,39] for partial shape matching.

Fig. 5: PCK curves of existing unsupervised methods and ours on the test sets of
SHREC’16 CUTS (top left), SHREC’16 HOLES (top right), PFAUST-M (bottom left)
and PFAUST-H (bottom right). Our method is systematically superior compared to
competing unsupervised approaches.

13 Further results

We provide the Percentage of Correct Keypoints (PCK) curves of ours and exist-
ing unsupervised methods, RobustFMnet [14] and UnsupDPFM [4], methods on
the SHREC’16 and PFAUST benchmarks in Fig. 5. We also provide additional
qualitative results of our method for partial shape matching on the SHREC’16
CUTS (Fig. 6) and HOLES (Fig. 7) datasets. Finally, we provide visual qualita-
tive results on our new PFAUST-M (Fig. 8) and PFAUST-H (Fig. 9) datasets.
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Fig. 6: Additional qualitative results on the SHREC’16 CUTS dataset. Zoom in for a
better view.
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Fig. 7: Additional qualitative results on the SHREC’16 HOLES dataset. Zoom in for
a better view.
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Source

Source

Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet[13] [4] [13] [4] [13] [4] [13] [4]

Fig. 8: Qualitative results on PFAUST-M of our method and RobustFMnet [14] and
UnsupDPFM [4], zoom in for a better view. We obtain visually appealing results that
outperform previous unsupervised methods. This figure also presents the shape par-
tiality present in PFAUST-M, which mostly consists in body parts removal due to the
size of the holes created on the original shapes.

Source

Source

Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet Ours UnsupDPFMRobustFMnet[13] [4] [13] [4] [13] [4] [13] [4]

Fig. 9: Qualitative results on PFAUST-H of our method and RobustFMnet [14] and
UnsupDPFM [4]. Zoom in for a better view. We obtain visually appealing results
that outperform previous unsupervised methods. This figure also presents the shape
partiality present in PFAUST-H, which involves extremely challenging topology with
13 holes.
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