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1 Structural Causal Models

Here we include a technical definition of structural causal models used in our
work.

Definition 1 (Structural Causal Model in [15, Sec. 7.1.1] and [1, Def. 1]).
A structural causal model (SCM) is defined as a 4-tuple M = (U, V, F, P ), where
U is a set of exogenous variables describing outside factors, V = {V1, ..., Vn} is
the set of endogenous variables we measure in our model, F = {f2, ..., fn} is a
set containing functions fi that describe the functional relationships, and P is a
joint probability distribution over U . Further, each Vi has a set of parents PAi

that functionally determine Vi together with some exogenous variables Ui ⊆ U .
These parents PAi are a subset of V \ {Vi}. For settings pai of parents PAi and
ui of the exogenous variables Ui, fi determines the value vi = fi(pai, ui) of Vi.

Each causal model M can be visualized as directed graphs. Here, each variable
Vi in V defines a node, and we draw directed links from all parents PAi into
Vi. Using such a model M , we can investigate questions of the following nature:
given observed evidence, e.g., Vj = vj , what is the probability of a statement A

happening? Further, performing a do-action on Vi ∈ V is equivalent to removing
the dependency fi and instead forcing Vi to a constant value x. In other words,
we set F to Fx with Fx = {fj : Vj ̸= Vi} ∪ {Vi ← x} [1].

2 Measuring Systematic Change - Significance Test

In Algorithm 1, we provide detailed pseudo code for our proposed shuffle hy-

pothesis test regarding the significance of Ŝ(F
(e)
θ |Iϕ(e)). Further in Fig. 1, we
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visualize the estimated null-distribution as well as the originally measured score.
We see that randomly shuffling observations along the symmetry axis results in
a symmetrical distribution centered around zero, i.e., no systematic dependence
on the facial symmetry. The original score, for the example in Fig. 1, is not typi-
cal for the estimated null-distribution leading to a low p-value. Table 1 contains
the number of individuals per classifier and expression for which Algorithm 1
together with the Holm-Bonferroni correction [8] is significant. For this analysis,
we perform the shuffle test with 10K iterations. All 17 classifiers show significant
behavior changes concerning facial symmetry for all expressions and a majority
of individuals.

Algorithm 1 Testing for statistical significance of Ŝ(F
(e)
θ |Iϕ(e)).

Require: grid of predictions F
(e)
θ (Iϕ(e)(s, t)) ▷ Gridsize is S × T

Require: integer K > 0 ▷ Number of Permutations
Require: δ ∈ (0, 1) ▷ Significance Level

p← 0.0
σorig. ← Ŝ(F

(e)
θ |Iϕ(e)) ▷ Estimate the original statistic

for i ∈ {1, ...,K} do

F
(e)
θ (I

(perm.)

ϕ(e) (s, t))← permute(F
(e)
θ (Iϕ(e)(s, t)), axis = 0)

▷ Shuffle along Symmetry Axis
σperm. ← Ŝ(F

(e)
θ |I

(perm.)

ϕ(e) )

if |σperm.| > |σorig.| then ▷ Absolutes because our statistic is two sided
p← p+ 1/K ▷ Increment the p-value

end if

end for

if p < δ then

return Ŝ(F
(e)
θ |Iϕ(e)) is significant.

else

return Ŝ(F
(e)
θ |Iϕ(e)) is not significant.

end if

3 Additional Details Experiment 1

This section gives an overview of the prediction accuracy of all 17 expression clas-
sifiers achieved on our real-world data, consisting of healthy probands and pa-
tients with unilateral facial palsy. Further, we detail the hyperparameter choices
in our experiments regarding the associational methods to infer whether a causal
link exists between facial symmetry and model prediction behavior. Lastly, we
include some additional visualizations regarding the symmetry features.
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Fig. 1: Using the shuffle test, outlined in Algorithm 1, we plot the resulting scores for
100000 permutations in a histogram. Our tests use a significance threshold of p < (0.05).
The original model score for a single individual, shown as a red dashed line, lies clearly
outside the computed null distribution and is thus significant.

3.1 Real-World Prediction Accuracy

We are interested in the overall prediction accuracy of the model on our real-
world data set consisting of 36 healthy probands and 36 patients with unilateral
facial palsy. Both were instructed to mimic a happy expression. The probands
repeated the information four times in two sessions, yielding 288 images. The pa-
tients followed the same instruction video during a ten-day biofeedback training
at the hospital. They also repeated the exercise four times during a session on
the first, third, and last day of therapy. An additional fourth session was offered
after six months but was not followed up by some patients. Thus, we obtained
503 images for the patients.

In Table 2, we display the prediction accuracy of the happy emotion. We see
strong differences per model and group. Therefore, we also denote the average
accuracy per model and dataset to understand how we can see a particular trend
per dataset. As expected and shown in the main paper, the performance of the
models degrades for images that contain some form of facial asymmetry (either
simulated at s = 0.0, s = 0.5, or actual facial palsy). Thus, we assume that facial
symmetry is the underlying cause impacting the internal decision rules of the
black box classifiers. We also see that the DDAMFN++ model trained on the
AffectNet similarly performs worse on our real-world data than on the synthetic
data we use for our intervention framework. Interestingly, the RAFDB-provided
checkpoints seem more robust, at least in the case of happy .

Given that we also follow a similar experimental setup as in FER2013, models
trained on it have the best performance on our data, observable in the table.
Several reasons could be involved; either mimicry and natural facial expression
have some inherent differences, the model source on public data (and human
annotated) cannot differentiate, or the impact of confounding factors like camera
pose. Lighting ensures that the models focus more on facial expressions.
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Table 1: We report how many of the 200 individuals, using the Holm-Bonferroni [8]
corrected p-values, have been significant (p < 0.05). We can see that the majority of
all results are significant, confirming our hypothesis that facial symmetry impacts the
internal decision rules.

Dataset Model Angry Disgust Fear Happy Sad Surprise

AffectNet7

DAN [26] 200 200 200 200 200 200
DDAMFN++ [29] 200 200 200 200 200 200
HSEmotion [23] 200 200 200 200 200 200
PosterV2 [12] 200 199 200 200 200 200

AffectNet8

DAN [26] 200 200 200 200 200 200
DDAMFN++ [29] 200 200 198 200 200 200
HSEmotion [23] 200 200 200 200 200 200
PosterV2 [12] 200 200 200 200 200 200

FER2013

EmoNeXt-Tiny† [5] 200 200 200 200 200 200

EmoNeXt-Small† [5] 199 194 200 200 200 200

EmoNeXt-Base† [5] 163 137 200 200 200 200

EmoNeXt-Large† [5] 133 187 196 195 198 187
ResidualMaskingNet [18] 200 194 199 200 200 200

Segmentation-VGG19† [25] 199 148 200 148 200 129

RAFDB
DAN [26] 200 199 200 200 200 200
DDAMFN++ [29] 200 200 200 200 200 200
PosterV2 [12] 200 194 200 200 195 200

Models such as PosterV2 perform well in our synthetic framework (likely
due to the optimized expression parameters). Still, they seemed to overfit on the
training data RAFDB as they performed worse on the probands but somehow
better on the patients.

3.2 Feature Attribution Hyperparameter Choices

Our main experiment 2 tests the statistical dependence between expression clas-
sifier outputs and facial symmetry. We focus on the happy logit and find that
most models change their behavior significantly for variations in facial symmetry.
We employ the feature attribution method described in [21] toward this goal.
This method frames supervised learning as an SCM [15] and tests whether net-
work predictions and a pre-defined feature (facial symmetry) are conditionally
independent given the reference annotation. If we have to discard this null hy-
pothesis, we know that the classifier output values vary significantly for changes
in the investigated feature. This procedure is motivated by Reichenbach’s com-
mon cause principle [19].

Clearly, the choice of conditional independence test is an important hyper-
parameter choice to ensure that the results are reliable. Further, Shah and Pe-
ters [24] prove that there is no optimal test that can control type-I errors, i.e.,
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Table 2: We evaluated each classifier on the faces of the healthy probands and patients
with unilateral facial palsy mimicking the happy facial expression. Low accuracy is
displayed in a darks shade , and high accuracy is displayed in a light shade . Models
trained on FER2013 especially seem to work well on our data set. Models trained on
RAFDB seem to be less suitable. Further, we provide the mean accuracy of all models
per data set (with at least one correct classification).

Dataset Model s = 0.0 s = 0.5 s = 1.0 Probands Patients

AffectNet7

DAN [26] 57.50% 99.00% 100.00% 94.44% 62.82%
DDAMFN++ [29] 0.00% 0.00% 19.50% 0.35% 0.20%
HSEmotion [23] 96.00% 100.00% 100.00% 0.00% 0.00%
PosterV2 [12] 87.00% 100.00% 100.00% 97.92% 61.23%
Average 80.17% 99.67% 79.88% 64.24% 41.42%

AffectNet8

DAN [26] 0.00% 30.50% 88.50% 91.32% 45.92%
DDAMFN++ [29] 0.00% 8.00% 45.00% 0.35% 6.56%
HSEmotion [23] 0.00% 0.00% 97.50% 0.00% 0.00%
PosterV2 [12] 0.00% 20.50% 99.00% 89.93% 36.58%
Average 0.00% 19.67% 82.50% 60.53% 29.69%

FER2013

EmoNeXt-Base† [5] 10.50% 71.00% 97.50% 99.65% 70.38%

EmoNeXt-large† [5] 28.50% 77.50% 100.00% 98.26% 63.42%

EmoNeXt-small† [5] 10.50% 68.50% 100.00% 98.96% 66.40%

EmoNeXt-tiny† [5] 0.00% 12.50% 87.00% 97.92% 58.45%
ResidualMaskingNet [18] 33.50% 89.00% 100.00% 92.36% 59.05%

Segmentation-VGG19† [25] 2.00% 39.50% 99.00% 97.22% 31.81%
Average 17.00% 59.67% 97.25% 97.40% 58.25%

RAFDB

DAN [26] 30.00% 65.50% 94.50% 32.29% 54.27%
DDAMFN++ [29] 69.00% 99.00% 100.00% 90.97% 76.34%
PosterV2 [12] 25.50% 80.00% 100.00% 8.68% 38.17%
Average 41.50% 81.50% 98.17% 43.98% 56.26%

Total Average 40.91% 64.03% 89.85% 72.71% 48.77%

false positives, irrespective of the joint latent distribution in the non-parametric
case. Because we have no knowledge about the joint distribution of all variables
important in our analysis, we are exactly in the non-parametric case. Here, we
follow previous work [2, 16, 17, 20] and select multiple non-linear tests. Specifi-
cally, we select conditional HSIC [6], CMIknn [22], and FCIT [3]. We consider
the result from all three tests and report the majority decision [20].

The selected conditional independence tests themselves have different hyper-
parameter choices. First, for conditional HSIC [6], we have to select a suitable
kernel function. We follow the suggestion of the authors and select the common
radial basis functions kernel. Additionally, we use the heuristic by Gretton et
al. [7] to approximate suitable kernel widths for all of our three variables. Sec-
ond, similarly for CMIknn [22], we follow the suggested hyperparameter settings.
Specifically, we set kperm., i.e., the neighborhood size, to five and use ten percent
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of the data to estimate the conditional mutual information (kCMI = 0.1 cotn
for n data points). Lastly, for FCIT [3], we again follow the suggestions by the
authors. In other words, we set the number of data permutations to eight and
use ten percent of the data to calculate the test statistic.

3.3 Additional Visualizations Regarding Logit Activations

Following previous work [2], we visualize the difference in the happy logit behav-
ior between the healthy probands and facial palsy patients. Fig. 2 contains these
results split between the training datasets of the 17 models we investigate in
this work. However, these are associational investigations, i.e., of the first level
of the PCH [1]. In other words, we do not isolate changes in facial symmetry
from confounding factors and it is highly likely that other features correlate with
the presence of facial palsy. Hence, while we observe changes in classifier behav-
ior on real data, our interventional investigation is more reliable and provides
actionable insights.

Nevertheless, Fig. 2 shows a decrease in happy activations for most models.
This is congruent with the aggregated performance results in Table 2. Further,
these results are in line with our insights gained using our interventional frame-
work: asymmetry results in lower activations for the happy class. Interestingly,
we observe a slight deviation for models trained on the RAFDB. Here DAN [26],
and PosterV2 [12] show higher activations and improved performance. Nonethe-
less, both models still struggle with facial palsy patients and are outperformed
by DDAMMFN++ [29] trained on the same dataset.

Additionally, we also visualize the results for the continuous LPIPS [28] sym-
metry. For regressing the mean and standard deviation, we use a window regres-
sion approach as described in [16]. We display these visualizations in Fig. 3.

Overall, we observe for most models a decrease in logit activations for de-
creasing facial symmetry. Hence, these results are congruent with the findings
made in the main paper and Fig. 2. Furthermore, we again observe a very small
effect size for DDAMFS++ [29] for both features. These findings are in agree-
ment with the noted performance in Table 2.

Nevertheless, we want to highlight two additional observations: First, in
Fig. 3d, we observe an unexpected increase in activations. While these are asso-
ciational insights, i.e., there are many possible reasons, these increases are also
visible in Fig. 2d. Second, while for most models in Fig. 3, we observe a decrease
in logit activations for lower facial symmetry, we note a smaller increase again
for the most asymmetric faces.
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(a) Shift in output behavior for classifiers trained on AffectNet7 [13] with respect to facial palsy.
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(b) Shift in output behavior for classifiers trained on AffectNet8 [13] with respect to facial palsy.
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(c) Shift in output behavior for classifiers trained on FER2013 [4] with respect to facial palsy.
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(d) Shift in output behavior for classifiers trained on RAFDB [9, 10] with respect to facial palsy.
Note that we find the behavior shift for the DAN [26] model is not significant.

Fig. 2: We follow [2] and visualize the differences in the classifiers happy logit distri-
bution for healthy probands and facial palsy patients. Here 2a - 2d contain models
trained on the indicated dataset respectively.
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(a) Shift in output for classifiers trained on AffectNet7 [13] with respect to LPIPS [28] symmetry.
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(b) Shift in output for classifiers trained on AffectNet8 [13] with respect to LPIPS [28] symmetry.
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(c) Shift in output for classifiers trained on FER2013 [4] with respect to LPIPS [28] symmetry.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
LPIPS Symmetry

0.0

0.5

1.0

H
a
p
p
y
L
o
g
it
A
ct
iv
a
ti
o
n

RAFDB

DAN

DDAMFN++

PosterV2

(d) Shift in output for classifiers trained on RAFDB [9,10] with respect to LPIPS [28] symmetry.

Fig. 3: We follow [2,16] and regress the shift in the classifiers happy logit distribution
for measured LPIPS [28] symmetry scores of healthy probands and facial palsy patients.
Here 3a - 3d contain models trained on the indicated dataset respectively. Note that
higher LPIPS corresponds to lower symmetry [28].
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Table 3: Using our intervention framework, we optimized each expression classifier Fθ

using logit activation for each of the six base emotions. We display the average logit
activation per model and emotion. Low activation is displayed in a darks shade , and

high activation is displayed in a light shade . We observe that fear has a generally low
activation, indicating that the models have issues classifying fear or that the FLAME
expression cannot model fear.

Dataset Model Angry Disgust Fear Happy Sad Surprise

AffectNet7

DAN [26] 0.862 0.853 0.446 0.842 0.702 0.917
DDAMFN++ [29] 0.356 0.331 0.136 0.220 0.233 0.292
HSEmotion [23] 0.915 0.913 0.403 0.979 0.824 0.954
PosterV2 [12] 0.835 0.931 0.505 0.950 0.747 0.931

AffectNet8

DAN [26] 0.776 0.805 0.416 0.464 0.732 0.881
DDAMFN++ [29] 0.237 0.211 0.122 0.228 0.212 0.316
HSEmotion [23] 0.595 0.759 0.349 0.340 0.590 0.826
PosterV2 [12] 0.814 0.911 0.499 0.666 0.725 0.928

FER2013

EmoNeXt-Tiny† [5] 0.400 0.083 0.269 0.508 0.278 0.821

EmoNeXt-Small† [5] 0.727 0.088 0.342 0.752 0.345 0.885

EmoNeXt-Base† [5] 0.548 0.076 0.432 0.720 0.465 0.884

EmoNeXt-Large† [5] 0.902 0.352 0.644 0.886 0.829 0.862
ResidualMaskingNet [18] 0.959 0.995 0.500 0.884 0.581 0.997

Segmentation-VGG19† [25] 0.818 0.067 0.725 0.976 0.846 0.919

RAFDB
DAN [26] 0.991 0.877 0.088 0.874 0.947 0.999
DDAMFN++ [29] 0.077 0.070 0.013 0.585 0.808 0.771
PosterV2 [12] 0.993 0.996 0.312 0.982 0.987 1.000

4 Additional Details Experiment 2

This section details the behavior analysis of the 17 expression classifiers on our
synthetic intervention data. We start with setup and information about the facial
expression optimization before displaying the sampled individuals. Afterward, we
display the facial expressions achieved during the optimization per classifier for
an individual. Finally, we visualize the resulting activation surfaces.

4.1 Classifier Facial Expression Optimization

Our experiments optimized each classifier Fθ regarding the six base emotions.
Therefore, we report the average logit activation per model and emotion reached
in Table 3. We can observe several interesting properties in the logit activation.
First, not all models can reach high logit activation based on facial expression
changes. This indicates that models also leverage other facial information while
classifying facial expressions. Furthermore, we observe that fear has a low acti-
vation among all classifiers except SegmentationVgg19 [25]. The surprise facial
expression has a high activation among all classifiers, whereas DDAMFN++ [29]
is the sole outlier; overall, reached activation is low.
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4.2 Individuals

We provide an overview of all created individuals in Fig. 4. The data can be
downloaded here:https://doi.org/10.6084/m9.figshare.27074587.v1. All
resemblance to existing people is not intended and could only result from the
underlying FLAME geometry model [11] and the texture from the BaselFace-
Model [14].

Fig. 4: 200 individual population I

https://doi.org/10.6084/m9.figshare.27074587.v1
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4.3 Average Facial Expression

Together with the reached logit activations, see Table 3, we are interested in
the resulting facial expression. These should depict the internal representation
of the respective emotion and give insight into what each classifier assumes.
Furthermore, we assume the underlying base dataset influences the expression.

Average Facial Expression - Per Dataset Using our generative facial ex-
pression network, we can now create a representation of how different classifiers
represent the underlying training dataset. This means the expression vectors of
all 200 individuals per dataset and model are averaged and shown in Fig. 5. This
visualization gives an intuitive feeling about the underlying facial expression per
FER benchmark [4,9,10,13]. Looking at the expression columns, we see that all
interpretations of a face are slightly different. For example, for angry , the mouth
frowning angles are different. For disgust the mouth is slightly opened compared
to angry . For fear we can clearly see that raising the eye brows is common. The
happy expression varies either with a wider grin or the opening state of the eye.
The sad expression varies in the intensity of the frowning, but the eyebrows are
not activated by the corrugator muscle. Also, the eyes are generally closed. For
the surprise expression, we can see wide-open eyes and raised eyebrows in the
shared interpretation.

Even though they are similar in their visual state, the intensity and expres-
siveness are different per model and could be the underlying reason for differences
in the model architectures or the data used in the benchmark.

Fig. 5: Average Facial Expression used for classification based on the underlying train-
ing dataset.
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Average Facial Expression - AffectNet7 Fig. 6 contains the average facial
expressions for models trained on AffectNet7 [13].

Fig. 6: The average facial expressions for models trained on AffectNet7 [13]

Average Facial Expression - AffectNet8 Fig. 7 contains the average facial
expressions for models trained on AffectNet8 [13].

Fig. 7: The average facial expressions for models trained on AffectNet8 [13]
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Average Facial Expression - FER2013 Fig. 8 contains the average facial
expressions for models trained on FER2013 [4].

Fig. 8: The average facial expressions for models trained on FER2013 [4]

Average Facial Expression - RAFDB Fig. 9 contains the average facial
expressions for models trained on RAFDB [9,10].

Fig. 9: The average facial expressions for models trained on RAFDB [9,10]
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4.4 Model Activation Surfaces

The main paper shows that we use a finite grid over T and S to compute the
FAIS score. Given that we only highlighted the final time step t = 1.0, we show
here the full logit activation surfaces used to compute our score.

(a) HSEmotion [23] (b) DAN [26]

(c) DDAMFN++ [29] (d) PosterV2 [12]

Fig. 10: AffectNet7 [13]

(a) HSEmotion [23] (b) DAN [26]

(c) DDAMFN++ [29] (d) PosterV2 [12]

Fig. 11: AffectNet8 [13]
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(a) ResidualMaskingNet [18] (b) SegmentationVGG19 [25]

(c) EmoNeXt-Tiny [5] (d) EmoNeXt-Small [5]

(e) EmoNeXt-Base [5] (f) EmoNeXt-Large [5]

Fig. 12: FER2013 [4]

(a) DAN [26] (b) DDAMFN++ [29]

(c) PosterV2 [12]

Fig. 13: RAFDB [9,10]
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4.5 Model Symmetry Impact

The main paper shows that we compute the interpretable asymmetry score using
a finite grid over T and S. Given that we only highlighted the final time step
t = 1.0, we show here the full logit activation surfaces used to compute our score.

(a) HSEmotion [23] (b) DAN [26]

(c) DDAMFN++ [29] (d) PosterV2 [12]

Fig. 14: AffectNet7 [13]
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(a) HSEmotion [23] (b) DAN [26]

(c) DDAMFN++ [29] (d) PosterV2 [12]

Fig. 15: AffectNet8 [13]
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(a) ResidualMaskingNet [18] (b) SegmentationVGG19 [25]

(c) EmoNeXt-Tiny [5] (d) EmoNeXt-Small [5]

(e) EmoNeXt-Base [5] (f) EmoNeXt-Large [5]

Fig. 16: FER2013 [4]
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(a) DAN [26] (b) DDAMFN++ [29]

(c) PosterV2 [12]

Fig. 17: RAFDB [9,10]
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4.6 Local Explanations - Saliency Maps

We aim to understand the impact of facial asymmetry globally; local explana-
tions via saliency maps still offer insights but require human interpretation. We
use an occlusion-based interpretation approach [27] for the ground truth and
predicted label using the average emotion simulated with the default identity.

Local Explanations - AffectNet7 The saliency maps indicate that indepen-
dent of the predicted or the ground truth label, the majority impact is only on
one side of the face. This supports our global observation that facial symmetry
has a strong impact on the model behavior.

(a) Model focus based on the ground truth label.

(b) Model focus based on the predicted truth label.

Fig. 18: The occlusion-based saliency maps for models trained on AffectNet7 [13]
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Local Explanations - AffectNet8 The saliency maps indicate that indepen-
dent of the predicted or the ground truth label, the majority impact is only on
one side of the face. This supports our global observation that facial symmetry
has a strong impact on the model behavior.

(a) Model focus based on the ground truth label.

(b) Model focus based on the predicted truth label.

Fig. 19: TThe occlusion-based saliency maps for models trained on AffectNet8 [13]
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Local Explanations - FER2013 The saliency maps indicate that independent
of the predicted or the ground truth label, the majority impact is only on one
side of the face. This supports our global observation that facial symmetry has
a strong impact on the model behavior.

(a) Model focus based on the ground truth label.

(b) Model focus based on the predicted truth label.

Fig. 20: The occlusion-based saliency maps for models trained on FER2013 [4]
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Local Explanations - RAFDB The saliency maps indicate that independent
of the predicted or the ground truth label, the majority impact is only on one
side of the face. This supports our global observation that facial symmetry has
a strong impact on the model behavior.

(a) Model focus based on the ground truth label.

(b) Model focus based on the predicted truth label.

Fig. 21: The occlusion-based saliency maps for models trained on RAFDB [9,10]
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