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A Overview

In these Supplementary Materials, we provide more details regarding the design
of the generative transformer of MECFormer in terms of building vocabulary
(B.1), self-attention mechanisms in the encoder E(·) (B.2), and the decoder D(·)
(B.3). Then, we report ablation results per task/dataset for three designs of
projection layers: P1, PT and PECN (C.1) and the effectiveness of language de-
coder D(·) (C.2). We also take a closer look at how the process of Preliminary
Consultation works in MECFormer.

B MECFormer

B.1 Vocabulary

As mentioned in the main manuscript, we aim to adopt a language decoder to
predict the textual diagnostic term for an input WSI. First of all, a vocabulary
is built. Given that the tth task has nt diagnostic categories Ct = {cti}

nt
i=1, we

map each category cti to the natural term St
i . The term St

i is then tokenized into
nt
i words, i.e., St

i = {stj}
nt
i

j=1. Then, for each tth task, we form the tth vocabulary,

which has nt
voc =

∑nt

i=1 n
t
i words, i.e., Vt = {stj}

nt
voc

j=1 . Overall, for T tasks, we
build the vocabulary to include nvoc =

∑T
t=1 n

t
voc, i.e., V = {si}nvoc

i=1 .

B.2 Visual Encoder E(·)

For the design of the visual encoder E(·), we use Nyström Self-Attention [2] to
handle thousands of tokens, which we denote as NA(·). Given queries Q ∈ RN×d,
keys K ∈ RN×d, and values V ∈ RN×d, where N is large, K and V are first
divided into k segments, each segment having N ′ tokens, where N ′ ≪ N . These
tokens are computed as the mean per channel dimension, forming landmarks,
denoted as K̃ and Ṽ. Then, NA(·) is formulated as follows:
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F̃ = softmax
(

QK̃T√
dq

)
, Ã = softmax

(
Q̃K̃T√

dq

)+

, B̃ = softmax
(

Q̃KT√
dq

)
,

F̃ ∈ RN×N ′
, Ã ∈ RN ′×N ′

, B̃ ∈ RN ′×N ,

H = (F̃ × Ã)× (B̃ ×V),

(1)

where (·)+ denotes Moore–Penrose inverse operation.

B.3 Language Decoder D(·)

Learnable positional encoding. For positional encoding (PE), we implement
the version of learnable positional encoding. Herein, PE is an L×dmodel matrix,
where L is the length of the sequence of tokens (i.e., word embeddings) to be fed
into the language decoder D(·). PE is initialized the same as in the study by [1],
which adopts sine and cosine functions of different frequencies:

PE(i,2j) = sin
(
i · (100002j/dmodel)−1

)
,

PE(i,2j+1) = cos
(
i · (100002j/dmodel)−1

)
,

(2)

where PE(i,j) indicates the element at the jth dimension of the ith token. Hence,
each dimension in PE is represented as a sinusoid, with the interval of wave-
lengths ranging as a geometric progression from 2π to 2π · 10000. After being
initialized by 2, PE is then learnable, i.e., it is trained along with the whole
network.

Multi-head self- and cross-attention (MHSA and MHCA). For the de-
sign of the language decoder D(·), we utilize vanilla Multi-head Self-attention
(Masked_MHSA) to compute self-attention between hidden tokens, where Multi-
head Cross-attention (MHCA) to compute visual-text correspondences between
hidden tokens and visual encoded tokens from the encoder E(·). Given hidden
states h(l−1) at lth decoder layer, multi-head self-attention are computed as fol-
lows:

Q(h) = WQ,hh(l−1),(h),K(h) = WK,hh(l−1),(h),V(h) = WV,hh(l−1),(h)

h(l),(h) = Softmax
(

Q(h)K(h)T√
d/Nh

+M
)
×V(h),

h(l) = Concatenate
({

h(l),(h)
}Nh

h=1

)
,

(3)

where Nh is the number of heads. WQ,h, WK,h, and WV,h are learnable matrices
that project h(l−1) to Q(h), K(h), and V(h) at the hth head. M is an N × N
matrix. To mask the future words, the elements in M are formed as below:

Mij =

{
0, if i ≤ j

− inf, otherwise,
(4)
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where Mij is an element that indicates the masking status between the ith and
jth tokens.

Then, given visual encoded tokens v from the encoder, along with hidden
states h(l), MHCA is computed as follows:

Q(h) = WQ,hh(l),(h),K(h) = WK,hv(h),V(h) = WV,hv(h)

h(l),(h) = Softmax
(

Q(h)K(h)T√
d/Nh

)
×V(h),

h(l) := Concatenate
({

h(l),(h)
}Nh

h=1

)
,

(5)

For simplication, we use the same notations regarding to WQ,h, WK,h and
WV,h in Eq. 3 and Eq. 5. However, they are not shared in practice. Nh is set to
8 for both MHSA and MHCA.

C Extensive Ablation Results

Ablation results are reported in overall metrics in the main manuscript. Herein,
we report the results per task, to further ensure the effectiveness of MECFormer
in multi-task WSI classification.

C.1 Effectiveness of ECN

Table 1 reports the results of three projection designs (P1, PT , and PECN) per
task. The first observation is that using either a single projection for all tasks or
a single projection per task results in some invalid terms. Consequently, the F1,
Recall, and Precision metrics are significantly lower compared to MECFormer.

Using CTransPath as the feature extractor G(·), across all tasks, a single
projection layer (P1) results in drops of 0.005%∼7.493% in Acc, 0.161∼0.374
in F1, 0.162∼0.383 in Recall, and 0.159∼0.363 in Precision. For the design of
a single projection per task (PT ), there are also drops of 1.261∼7.229 in Acc,
0.038∼0.372 in F1, 0.031∼0.379 in Recall, and 0.045∼0.366 in Precision.

Employing UNI as the feature extractor G(·), performance drops are still ob-
served. With a single projection layer (P1), there are drops of 1.180%∼3.563%
in Acc, 0.184∼0.289 in F1, 0.187∼0.289 in Recall, and 0.178∼0.287 in Pre-
cision. The setting of a projection per task (PT ) shows larger drop margins:
1.630%∼6.623% in Acc, 0.029∼0.379 in F1, 0.032∼0.385 in Recall, and 0.020∼0.374
in Precision.

C.2 Effectiveness of the language decoder D

Table 2 reports the results with and without using the language decoder D
for each task. As shown, even without the language decoder D, there are no
invalid predictions when evaluating per task. These results are surprising and
further confirm the effectiveness of ECN. However, performance drops are still
observed when the decoder D is removed, such as a decrease from 0.396∼3.061
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Table 1: Ablation results per task on the three projection layer: P1, PT , and PECN.

Dataset Setting Acc F1 Recall Precision

CTransPath

CAMELYON-16
P1 86.822 (±5.590) 0.770 (±0.203) 0.764 (±0.188) 0.796 (±0.220)
PT 90.698 (±1.343) 0.900 (±0.013) 0.895 (±0.014) 0.911 (±0.028)
PECN 94.315 (±1.614) 0.938 (±0.018) 0.926 (±0.020) 0.956 (±0.014)

TCGA-BRCA
P1 92.818 (±3.326) 0.554 (±0.103) 0.545 (±0.113) 0.570 (±0.106)
PT 93.251 (±2.731) 0.699 (±0.204) 0.707 (±0.237) 0.730 (±0.152)
PECN 94.512 (±2.712) 0.903 (±0.047) 0.898 (±0.077) 0.916 (±0.026)

TCGA-ESCA
P1 87.998 (±7.303) 0.649 (±0.281) 0.644 (±0.286) 0.657 (±0.274)
PT 86.775 (±7.653) 0.779 (±0.227) 0.778 (±0.235) 0.787 (±0.217)
PECN 94.004 (±3.739) 0.939 (±0.038) 0.940 (±0.041) 0.941 (±0.034)

TCGA-NSCLC
P1 89.428 (±1.827) 0.555 (±0.078) 0.547 (±0.085) 0.569 (±0.072)
PT 89.726 (±3.342) 0.557 (±0.099) 0.551 (±0.103) 0.566 (±0.097)
PECN 92.962 (±1.880) 0.929 (±0.019) 0.930 (±0.017) 0.932 (±0.020

TCGA-RCC
P1 96.155 (±0.653) 0.796 (±0.126) 0.796 (±0.145) 0.798 (±0.109)
PT 94.627 (±2.878) 0.702 (±0.026) 0.693 (±0.022) 0.713 (±0.029)
PECN 96.160 (±1.744) 0.957 (±0.032) 0.960 (±0.030) 0.957 (±0.035)

UNI

CAMELYON-16
P1 95.090 (±3.227) 0.692 (±0.261) 0.687 (±0.260) 0.699 (±0.263)
PT 95.607 (±3.133) 0.952 (±0.035) 0.944 (±0.042) 0.966 (±0.022)
PECN 98.191 (±1.630) 0.981 (±0.024) 0.976 (±0.037) 0.986 (±0.055)

TCGA-BRCA
P1 92.855 (±1.905) 0.647 (±0.217) 0.657 (±0.236) 0.642 (±0.200)
PT 92.460 (±2.027) 0.594 (±0.020) 0.603 (±0.040) 0.590 (±0.040)
PECN 94.090 (±0.448) 0.897 (±0.005) 0.893 (±0.006) 0.908 (±0.003)

TCGA-ESCA
P1 92.218 (±4.486) 0.727 (±0.206) 0.722 (±0.211) 0.737 (±0.196)
PT 86.775 (±8.254) 0.768 (±0.177) 0.762 (±0.183) 0.783 (±0.172)
PECN 93.398 (±2.799) 0.934 (±0.028) 0.939 (±0.026) 0.934 (±0.025)

TCGA-NSCLC
P1 90.222 (±3.585) 0.657 (±0.244) 0.654 (±0.247) 0.661 (±0.243)
PT 90.549 (±1.548) 0.559 (±0.092) 0.554 (±0.095) 0.566 (±0.090)
PECN 93.785 (±2.776) 0.938 (±0.028) 0.939 (±0.026) 0.940 (±0.025)

TCGA-RCC
P1 93.857 (±2.874) 0.775 (±0.131) 0.783 (±0.159) 0.773 (±0.110)
PT 93.099 (±6.394) 0.707 (±0.245) 0.714 (±0.266) 0.703 (±0.229)
PECN 96.930 (±1.748) 0.959 (±0.027) 0.970 (±0.029) 0.951 (±0.032)
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in Acc, 0.009∼0.037 in F1 score, and 0.024∼0.036 in Recall. Regarding Precision,
MECFormer shows a slight drop of 0.005 on TCGA-BRCA dataset. When using
UNI as a feature extractor, removing D results in drops across all metrics, such
as a decrease from 1.261%∼1.809% in Acc, 0.013∼0.022 in F1 score, 0.014∼0.022
in Recall, and 0.009∼0.027 in Precision.

Table 2: Ablation results per task on the language decoder D.

Dataset Setting Acc F1 Recall Precision

CTransPath

CAMELYON-16 MECFormer w/o D 92.248 (±1.550) 0.915 (±0.018) 0.901 (±0.018) 0.939 (±0.015)
MECFormer 94.315 (±1.614) 0.938 (±0.018) 0.926 (±0.020) 0.956 (±0.014)

TCGA-BRCA MECFormer w/o D 94.116 (±1.903) 0.894 (±0.027) 0.874 (±0.037) 0.921 (±0.020)
MECFormer 94.512 (±2.712) 0.903 (±0.047) 0.898 (±0.077) 0.916 (±0.026)

TCGA-ESCA MECFormer w/o D 90.411 (±5.478) 0.902 (±0.056) 0.903 (±0.060) 0.903 (±0.053)
MECFormer 94.004 (±3.739) 0.939 (±0.038) 0.940 (±0.041) 0.941 (±0.034)

TCGA-NSCLC MECFormer w/o D 90.606 (±0.869) 0.906 (±0.009) 0.906 (±0.008) 0.908 (±0.010)
MECFormer 92.962 (±1.880) 0.929 (±0.019) 0.930 (±0.017) 0.932 (±0.020

TCGA-RCC MECFormer w/o D 93.099 (±5.002) 0.925 (±0.050) 0.946 (±0.021) 0.918 (±0.066)
MECFormer 96.160 (±1.744) 0.957 (±0.032) 0.960 (±0.030) 0.957 (±0.035)

UNI

CAMELYON-16 MECFormer w/o D 96.382 (±1.613) 0.961 (±0.018) 0.956 (±0.021) 0.967 (±0.012)
MECFormer 98.191 (±1.630) 0.981 (±0.024) 0.976 (±0.037) 0.986 (±0.055)

TCGA-BRCA MECFormer w/o D 92.829 (±1.663) 0.875 (±0.028) 0.876 (±0.049) 0.881 (±0.044)
MECFormer 94.090 (±0.448) 0.897 (±0.005) 0.893 (±0.006) 0.908 (±0.003)

TCGA-ESCA MECFormer w/o D 91.613 (±2.747) 0.915 (±0.028) 0.917 (±0.033) 0.916 (±0.025)
MECFormer 93.398 (±2.799) 0.934 (±0.028) 0.939 (±0.026) 0.934 (±0.025)

TCGA-NSCLC MECFormer w/o D 92.493 (±2.680) 0.925 (±0.027) 0.925 (±0.027) 0.926 (±0.027)
MECFormer 93.785 (±2.776) 0.938 (±0.028) 0.939 (±0.026) 0.940 (±0.025)

TCGA-RCC MECFormer w/o D 95.398 (±4.138) 0.946 (±0.050) 0.953 (±0.053) 0.942 (±0.046)
MECFormer 96.930 (±1.748) 0.959 (±0.027) 0.970 (±0.029) 0.951 (±0.032)

C.3 Analysis of Preliminary Consultation

To provide a closer look at the process of Preliminary Consultation, i.e., how the
router R(·) specifies the contributions of experts to a given task, we present a
visualization to show how the weights are produced per task. As we perform the
Expert Assignment process, we also show how the weights change after multi-
plying by the scale hyperparameter γ in Fig. 1. As shown, before Expert Assign-
ment, the router works well at recognizing tasks, i.e., specifying which expert
should provide the most knowledge for the CAMELYON16, TCGA-BRCA, and
TCGA-ESCA datasets. In these cases, the router assigns the highest weights to
the expert corresponding to the input WSI. However, regarding TCGA-RCC and
TCGA-NSCLC, the TCGA-BRCA expert seems to be specified to provide the
most knowledge, as its weight appears to be the highest. From our perspective,
this is understandable. As observed in Fig. 4 in the main manuscript, the sam-
ples of TCGA-BRCA, TCGA-NSCLC, and TCGA-RCC are the most overlapped
in terms of raw features, while CAMELYON16 and TCGA-ESCA appear more
distinct. Based on this observation, we suppose that the BRCA, NSCLC, and
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RCC WSI samples share some characteristics that confuse the router. To address
this phenomenon, the Expert Assignment process scales up the weights that are
to be the highest (based on the assumption that the target task is known) by
multiplying them by a scale factor γ and then applying the softmax function.
This operation not only does not negatively impact CAMELYON16, BRCA, or
ESCA—since if they are the highest, they remain the highest—but also encour-
ages the weights of RCC and NSCLC to become the highest, thereby promoting
their corresponding experts to make the most significant contributions.

Fig. 1: Visualization of weights produced by the router R(·) before and after multi-
plying scale hyperparameter γ. Each subplot corresponds to a specific task.

D Extensive Model Analyses

D.1 Hyperparameters

Figure 2 shows the overall F1 results for scaling γ and shifting β hyperparame-
ters, each ranging from 1 to 5 with 0.5 intervals. Higher γ generally yields better
performance, to which MECFormer is more sensitive. Increasing γ from 1.0 to
1.5 improves the F1 score by 0.037 ∼ 0.064 across all β values. Meanwhile, in-
creasing β by 0.5 results in slight variations of −0.008 ∼ 0.015 across all γ values.
Performance stabilizes with γ from 2.0 to 4.5 and peaks at γ = 5.0. The best
results, obtained with γ = 5.0 and β = 1.0.

D.2 Model Complexity

For training and inference, we conduct all the experiments on a PC with Ubuntu
20.04.6 LTS, an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, and a single
NVIDIA A6000 GPU with 48GB of VRAM. All the models and experiments
are implemented using the PyTorch library, version 1.8.1. To investigate model
complexity, we provide Figure 3. As the number of patches per slide increases,
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Fig. 2: Impact of scaling (γ) and shifting (β) hyperparameters on overall F1 score.
Please zoom out for viewing ease.

MECFormer’s FLOPs rise due to the introduction of the PECN and language
decoder D (Fig. 3a). Despite higher FLOPs, MECFormer is the top performer
in a joint training setting, which requires a single model to handle all five WSI
classification tasks (Fig. 3b).
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Fig. 3: Model complexity comparison between models: (a) FLOPs vs. number of
patches trade-off (b) FLOPs vs. 5-task average accuracy (joint training) trade-off.



8 Doanh C. Bui et al.

References

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017) 2

2. Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V.: Nyström-
former: A nyström-based algorithm for approximating self-attention. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 14138–14148 (2021)
1


	MECFormer: Multi-task Whole Slide Image Classification with Expert Consultation Network (Supplementary Material)

