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In this supplementary material to the main paper, we provide additional
interpretability results of the semantic conditioned features, complementing the
qualitative results presented in the paper, more timing statistics, and a deeper
analysis on DINO backbone size selection.

1 Inference time analysis and deep-matchers

Table 1. Single Pair Time Analysis. Although we have a longer total time, we can
cache the extraction results and reuse them later.

Time in milliseconds
Extraction Matching Total

Ours 127.183 1.389 128.571
LightGlue 35.381 26.674 50.657

Pairs per second
Ours 7.86 720.03 7.78
LightGlue 28.26 37.49 16.11

For having a better view of the pratical use of our method we included two
timing studies:

1) We calculated the extraction and matching time for one pair of images
with the ScanNet resolution of 968× 1,296 and 2,048 keypoints. In an NVIDIA
GeForce RTX 3080/10GB, LightGlue run the feature extraction in 35ms and
matching in 27ms, while our method takes 127ms for feature extraction and
1.3ms for feature matching, as shown in Tab. 1

https://www.verlab.dcc.ufmg.br/descriptors/reasoning_accv24/
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2) To simulate a more realistic scenario, like an SfM pipeline where one
image will be matched multiple times, we calculated and cached all keypoints
and features for N images and then matched all pairs of images, i.e., N(N−1)

2 , as
usually done in COLMAP. Fig. 1 shows how LightGlue’s matching time quickly
escalates. Our method becomes more efficient than the deep matcher after just
15 images (a small size dataset).
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Fig. 1. Time analysis. Time for all images keypoints and descriptors and match all
pairs of images. The total time includes GPU-CPU transfers and caching the extrac-
tions operations.

We also calculated the compute times to run the 7Scenes benchmark. The
timing include some other operations performed by the HLoc framework (com-
monly used to run the benchmark) that may not be optimized, reducing the gap
between the methods. Fig. 2 shows the results.
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Fig. 2. Time on the 7Scenes benchmark.

2 Further analysis on DINOv2 backbone size.

The sensitivity study on the DINOv2 backbone size reveals that the larger foun-
dation models do not significantly increase pose estimation performance. It is
worth noting that ViTs, as used in DINO, are not suitable for fine matching due
to the low spatial resolution of their feature maps, but they have strong seman-
tic understanding capabilities due to their global receptive field and attention
mechanism. The goal of using foundation models in our pipeline is to provide
semantic guidance for the texture features, and the semantic understanding of
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small models have shown to be good in our experiments, while reducing compu-
tational overhead. This aligns with results reported in the DINOv2 paper, where
tasks requiring general semantic understanding such as instance-level recogni-
tion and semantic segmentation (DINOv2 paper – Tabs. 7,9,10), exhibit similar
performance across all backbone sizes.

3 Interpretability of the features

The proposed description strategy with semantic conditioning also displays in-
terpretable features, which further explain the obtained matching results both
quantitatively and from visual inspection (as shown in Fig. 3 of the main paper).
We provide more examples of feature interpretability in the following Figs. 3, 4
and 5 of this supplementary material.
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Fig. 3. Interpretability and consistency of the conditioned features. We show
the closest 128 matches to a given query keypoint (red point in the first column)
for the different descriptors with either sole semantics, the refined texture descriptor,
or the proposed semantic conditioned features (fourth column). Hotter colors indicate
higher similarity. Notice how the semantic information focuses on instances with similar
meaning, like the objects on the table and the chairs, guiding the textural features.



4 F. Cadar et al.

Matches using XFeat Matches using Ours XFeat

Query Location Semantics Texture

Top 128 Correlated Features

Conditioned Features

Matches using XFeat Matches using Ours XFeat

Query Location Semantics Texture

Top 128 Correlated Features

Conditioned Features

Fig. 4. Interpretability and consistency of the conditioned features. In some
cases, the original texture-only features can already show a good matching performance,
but they still yield many outliers. In these two examples, the semantic information
plays a bigger part in filtering lowering the probability of matching areas with different
contexts, also lowering the number of outlier matches.
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Fig. 5. Interpretability and consistency of the conditioned features. Observe
how, with similar semantics in both query points, the texture information helps to
differentiate the semantics.


	[Supplementary Material]  Leveraging Semantic Cues from Foundation  Vision Models for Enhanced Local  Feature Correspondence

