
CNN Mixture-of-Depths i

S1 Implementation Details and Further Results on
ImageNet

S1.1 Implementation Details on ImageNet

We performed our MoD experiments on ImageNet for 100 epochs, using PyTorch
1.10.1 [26] across four Nvidia GeForce 1080Ti GPUs, following standard training
protocols.‹ ‹ ‹ Our configuration included a batch size of 256, an initial learning
rate of 0.1 decreasing by a factor of 0.1 every 30 epochs, momentum set at 0.9,
and weight decay of 1ˆ10´4. This setup aligns with the practices of comparable
studies, such as DGNet [19].

S1.2 Architecture Details of ResNet MoD Models

Table 5 shows the layer configurations of the ResNet MoD models. The models
incorporates alternating block patterns in each module.

Table 5: Layer Configurations of ResNet MoD Models

Model Layer Configuration Block Type
ResNet18-MoD [2, 2, 2, 2] Basic Block
ResNet26-MoD [2, 2, 3, 4] Basic Block
ResNet34-MoD [3, 4, 6, 3] Basic Block
ResNet42-MoD [3, 3, 6, 6] Basic Block
ResNet50-MoD [3, 4, 6, 3] Bottleneck Block
ResNet75-MoD [3, 4, 14, 3] Bottleneck Block
ResNet86-MoD [3, 4, 18, 3] Bottleneck Block
ResNet101-MoD [3, 4, 23, 3] Bottleneck Block
ResNet152-MoD [3, 8, 36, 3] Bottleneck Block

S1.3 Architecture Details of MobileNetV2 MoD Models

The MobileNetV2-MoD-L represents a deeper configuration of the standard Mo-
bileNetV2. The standard MobileNetV2 [31] architecture utilizes a sequence of
inverted residual blocks with a specific configuration pattern defined by the pa-
rameters t (expansion factor), c (number of channels), n (number of times the
block is repeated), and s (stride). The MobileNetV2-MoD-L model modifies these
parameters as shown in Table 6.

S1.4 Comparative Performance of ResNet Models on ImageNet

Table 7 shows further results for MoD-enhanced ResNets, detailing improve-
ments in computational efficiency, model compactness, and inference speeds.

‹ ‹ ‹ Refer to PyTorch’s official training recipes at PyTorch repository.



ii R. Cakaj et al.

Table 6: Comparison of Standard MobileNetV2 and MobileNetV2-MoD-L Configura-
tions

Layer Standard Configuration MoD-L Configuration
1 [1, 16, 1, 1] [1, 16, 1, 1]
2 [6, 24, 2, 2] [6, 32, 2, 2]
3 [6, 32, 3, 2] [6, 64, 3, 2]
4 [6, 64, 4, 2] [6, 96, 4, 2]
5 [6, 96, 3, 1] [6, 128, 3, 1]
6 [6, 160, 3, 2] [6, 160, 3, 2]
7 [6, 320, 1, 1] [6, 320, 1, 1]

Table 7: Comparative performance of standard and ResNet-MoD models on the Ima-
geNet dataset. The table evaluates top-1 accuracy, computational complexity (GMAC),
model size (Params, in millions), and inference speed improvements on CPU and GPU.

Method Top-1 GMAC Params Inference (ms) Speed-up

Acc (%) (M) CPU GPU CPU GPU

ResNet34 73.92 3.68 21.29 98.83 1.27 — —
ResNet42-MoD 72.03 2.29 17.72 64.01 0.88 1.54 1.45
ResNet34-MoD 71.44 2.06 12.93 60.79 0.83 1.63 1.53

ResNet18 70.37 1.82 11.18 53.86 0.75 — —
ResNet26-MoD 69.53 1.36 11.4 42.16 0.58 1.28 1.28
ResNet18-MoD 64.05 0.89 5.46 33.63 0.47 1.60 1.58

S1.5 Impact of Channel Parameter c and Integration Strategy on
Accuracy and Inference Times

We evaluate the influence of the channel parameter c on the top-1 validation
accuracy and inference times of the ResNet50-MoD model on the ImageNet
dataset. The parameter c determines the number of channels processed by the
MoD approach. Additionally, we compare two strategies for reintegrating pro-
cessed channels: adding them to the first k channels (S) versus adding them back
to their original positions (OP).

As shown in Table 8, reintegrating processed channels into the first k channels
consistently outperforms the original position strategy, yielding better accuracy
across all values of c. Furthermore, using c “ 64 has the optimal balance between
accuracy and inference time. It should be noted that c ą 64 is not feasible since
the number of channels in the first Conv-Block of ResNets is limited to 64.

To further analyze the integration strategy, Table 9 presents a comparison
of the performance of standard and ResNet-MoD models where the processed
channels are added to the last k channels of the original feature map. This ex-
perimental variation aims to assess the impact of consistent channel positioning
on network performance. The results indicate that MoD-lk models perform com-
parably to their counterparts where processed channels are added to the first k



CNN Mixture-of-Depths iii

Table 8: Top-1 accuracy and inference times in ms on ImageNet for different values
of c, comparing results when processed channels are added to the first k channels (S)
versus their original positions (OP) for ResNet50-MoD.

c Top-1 (S) Top-1 (OP) GPU (S) CPU (S)

2 72.51 55.36 2.23 132.64
4 73.74 60.78 1.99 118.85
8 74.43 63.05 1.90 114.85
16 74.74 65.35 1.97 114.06
32 74.68 70.80 1.83 111.30
64 74.79 70.31 1.75 108.74

channels, suggesting that maintaining a consistent position for processed infor-
mation within the feature maps is beneficial for optimizing model performance.

Table 9: This table presents a comparison between standard MoD models and the
MoD-lk models, where processed channels are integrated into the last k channels. The
evaluation covers top-1 accuracy, computational complexity (GMAC), model size (in
millions of parameters), and inference speed improvements on both CPU and GPU.
The aim is to analyze the impact of channel positioning on the performance of ResNet
models on the ImageNet dataset.

Method Top-1 GMAC Params Inference (ms) Speed-up

Acc (%) (M) CPU GPU CPU GPU

ResNet86-MoD 76.72 3.92 25.60 150.96 2.40 1.06 1.05
ResNet86-MoD-lk 76.64 3.92 25.60 150.96 2.40 1.06 1.05
ResNet75-MoD 76.27 3.48 23.10 128.90 2.19 1.25 1.15
ResNet75-MoD-lk 76.22 3.48 23.10 128.90 2.19 1.25 1.15
ResNet50-MoD 74.79 2.60 18.11 108.74 1.75 1.48 1.44
ResNet50-MoD-lk 74.57 2.60 18.11 108.74 1.75 1.48 1.44

S1.6 Impact of MoD on Performance Variance

We provide standard deviations for the ResNet experiments on ImageNet in Ta-
ble 10. Other state-of-the-art pruning and dynamic computation methods, such
as DGNet [19], Batch-Shaping [1], ConvNet-AIG [36], HRANK [21], FPGM [13],
and DynConv [37], do not report standard deviations, preventing direct com-
parison. Nevertheless, the consistent results across different MoD configurations
demonstrate that the MoD approach does not introduce additional variance, as
evidenced by the low standard deviations.



iv R. Cakaj et al.

Table 10: Top-1 Accuracy and standard deviation comparison on ImageNet across var-
ious ResNet and ResNet-MoD models. This comparison shows that the MoD approach
does not increase variance and maintains performance stability similar to standard
ResNet models.

Method Top-1 Acc. (%) ˘ Std. Dev.

R152-MoD 77.81 ˘ 0.05
R101 77.81 ˘ 0.07
R101-MoD 77.08 ˘ 0.08
R86-MoD 76.72 ˘ 0.04
R75-MoD 76.27 ˘ 0.07
R50 76.25 ˘ 0.19
R50-MoD 74.79 ˘ 0.08

S2 Implementation Details Semantic Segmentation

In the Cityscapes experiments, PyTorch 1.10.1 [26] and four Nvidia GeForce
1080Ti GPUs were used. Using the MMSegmentation Framework [4], we utilized
FCN [23] on the dataset [5], which consists of 2,975 training, 500 validation,
and 1,525 testing images across 19 semantic classes. Training involved resizing,
random cropping, flipping, photometric distortion, normalization, and padding.
Testing employed multi-scale flip augmentation and normalization.

The FCN model, with a ResNet50 backbone, used an Encoder-Decoder ar-
chitecture with FCN-Head as the decode and auxiliary heads. The model used
SyncBN and a dropout ratio of 0.1, with the auxiliary head contributing 40% to
the total loss.

Optimization was via SGD (learning rate 0.01, momentum 0.9, weight decay
0.0005). A polynomial decay learning rate policy was applied (power 0.9, mini-
mum learning rate 1e-4), over 80,000 iterations with checkpoints and evaluations
(focusing on mIoU) every 8,000 iterations.

S3 Implementation Details Object Detection

Model Configuration: We configure our Faster R-CNN [29] with a ResNet-50
backbone and a Feature Pyramid Network (FPN) neck for multi-scale feature
extraction.

Data Preprocessing and Augmentation: Our preprocessing pipeline employs a
sequence of transformations to prepare input images for object detection tasks.
Initially, images are loaded and their corresponding annotations are retrieved.
Subsequently, we resize the images to a resolution of p1000, 600q, ensuring the
preservation of their original aspect ratio. To augment the dataset and intro-
duce variability, we apply random horizontal flips with a 50% probability. This
augmentation strategy is applied uniformly across the training dataset, aiming



CNN Mixture-of-Depths v

to enhance model robustness and generalization capability. For validation, im-
ages undergo a similar resizing process without the application of random flips,
maintaining consistency in evaluation conditions.

Training Configuration: The model is trained on the combined train sets of
VOC2007 and VOC2012 and evaluated on the VOC2007 val set. Training uses
a batch size of 2. We adopt SGD with momentum and weight decay, adjusting
the learning rate as per a predefined schedule. The mean Average Precision
(mAP) metric, calculated using the “11points” interpolation method, serves as
the evaluation metric.

Evaluation: The evaluation on the VOC2007 val set employs the standard VOC
mAP metric, adhering to the “11points” method. This setup mirrors the training
configuration but without data augmentation, ensuring deterministic inference.

S4 Experiments on CIFAR

Our evaluation of the MoD approach was performed on the CIFAR-10/100
datasets, comprising 50,000 training and 10,000 test color images of 32x32 pix-
els. We utilized a range of CNN architectures for our experiments, including
ResNet18/34/50 [11] and VGG16/19-BN [32]. Table 11 presents the results of
applying the MoD approach to the CNNs trained on CIFAR-10/100.

To ensure robustness and reproducibility, each model was trained and eval-
uated five times using different random seeds, impacting network initialization,
data ordering, and augmentation processes. We present the mean test accuracy
and its standard deviation for these trials. The data split comprised 90% for
training and 10% for validation, with the best-performing model on the valida-
tion set chosen for the final evaluation.

S5 Comparative Analysis of MoD in CNNs and
Transformers

In the main body of this paper, we detailed the application of the MoD ap-
proach to CNNs. This section aims to outline how this approach differs from the
Mixture-of-Depths application in Transformers [27].

Token vs. Channel Processing:

– Transformers: In Transformers, MoD operates at the token level. Tokens
represent the units of data processed throughout the model’s architecture,
typically as subwords or whole words. They are processed throughout the
entire Transformer architecture.

– CNNs: Conversely, MoD in CNNs treats channels within feature maps as
“tokens”. This novel approach differs from Transformers because channels
in traditional CNNs are not treated as tokens, and their significance and
composition vary from one convolutional layer to the next.



vi R. Cakaj et al.

Token vs. Channel Selection:

– Transformers: Selection is based on a linear projection that assigns a scalar
value to each token.

– CNNs: CNNs use a mini neural network (incorporating Adaptive Average
Pooling 2D, a two-layer fully connected network with Sigmoid activation) in-
spired by Squeeze-and-Excitation blocks [15], specifically tailored for image-
based tasks.

Architecture Modification:

– Transformers: The architecture of Transformer blocks remains unchanged
with the use of MoD; only the quantity of processed tokens varies. Trans-
former models are designed to handle a variable number of tokens.

– CNNs: In CNNs, varying the number of channels in convolutional layers
is impractical. MoD thus requires adjustments to the convolutional layers
themselves, including a reduction in the number of channels in the convolu-
tion kernels to match the reduced number of input feature map channels.

Reintegration of Processed Information:

– Transformers: Processed tokens are added back to their original counter-
parts, a method made effective through the use of positional encoding.

– CNNs: Unlike in Transformers, neither replacing nor adding back processed
channels to their original positions has proven effective in CNNs. More ef-
fective is the addition of processed channels to a fixed set of channels, such
as the first k channels, to maintain consistency in locating processed infor-
mation within the network.



CNN Mixture-of-Depths vii

Table 11: Performance metrics comparison on the CIFAR-10 and CIFAR-100 datasets
using standard models and their MoD variants. This table illustrates the trade-off be-
tween efficiency and inference time, demonstrating that the MoD models can achieve
comparable performance to the standard models at faster inference times or im-
proved performance at comparable inference times. FLOPS are in millions of multiply-
accumulate operations (MMAC), parameters in millions (M), and inference times in
milliseconds (ms).

Model Set Test Acc. FLOPS Params Inference (ms) Speed-up

(%) (MMAC) (M) CPU GPU CPU GPU

ResNet18 C10 94.04 ˘ 0.08 557 11.17 15.67 0.24 - -

ResNet18-MoD C10 92.37 ˘ 0.18 255 4.95 8.32 0.14 1.88 1.73

ResNet34 C10 93.69 ˘ 0.27 1016 21.28 30.52 0.42 - -

ResNet34-MoD C10 93.83 ˘ 0.20 633 12.42 18.10 0.27 1.69 1.54

ResNet50 C10 93.31 ˘ 0.33 1310 23.52 48.47 0.83 - -

ResNet50-MoD C10 93.24 ˘ 0.24 808 16.07 33.76 0.58 1.44 1.41

ResNet18 C100 76.47 ˘ 0.18 557 11.22 14.99 0.23 - -

ResNet18-MoD C100 72.73 ˘ 0.21 255 4.99 8.89 0.13 1.69 1.75

ResNet34 C100 77.07 ˘ 0.41 1160 21.33 30.67 0.42 - -

ResNet34-MoD C100 76.86 ˘ 0.23 633 12.47 18.66 0.27 1.64 1.55

ResNet50 C100 76.17 ˘ 0.63 1310 23.71 46.64 0.81 - -

ResNet50-MoD C100 76.76 ˘ 0.61 808 16.26 34.81 0.58 1.34 1.41

VGG16-BN C10 93.27 ˘ 0.11 315 15.25 8.80 0.14 - -

VGG16-BN-MoD C10 91.79 ˘ 0.14 155 9.83 5.47 0.16 1.61 0.87

VGG19-BN C10 93.21 ˘ 0.07 400 20.57 11.55 0.18 - -

VGG19-BN-MoD C10 91.82 ˘ 0.18 155 9.91 5.81 0.22 1.99 0.81

VGG16-BN C100 72.48 ˘ 0.32 315 15.30 9.27 0.14 - -

VGG16-BN-MoD C100 69.23 ˘ 0.25 155 9.88 6.41 0.15 1.45 0.95

VGG19-BN C100 71.34 ˘ 0.12 400 20.61 11.38 0.18 - -

VGG19-BN-MoD C100 69.19 ˘ 0.11 155 9.96 5.75 0.23 1.98 0.80


